Grand Unified Theories

Total Page:16

File Type:pdf, Size:1020Kb

Grand Unified Theories Licentiate Thesis Phenomenology of SO(10) Grand Unified Theories Marcus Pernow Particle and Astroparticle Physics, Department of Physics, School of Engineering Sciences, KTH Royal Institute of Technology, SE-106 91 Stockholm, Sweden Stockholm, Sweden 2019 Typeset in LATEX Vetenskaplig uppsats f¨or avl¨aggande av teknologie licentiatexamen (TeknL) inom ¨amnesomr˚adetfysik. Scientific thesis for the degree of Licentiate of Engineering (Lic Eng) in the subject area of Physics. ISBN 978-91-7873-269-2 TRITA-SCI-FOU 2019:38 c Marcus Pernow, September 2019 Printed in Sweden by Universitetsservice US AB Abstract Although the Standard Model (SM) of particle physics describes observations well, there are several shortcomings of it. The most crucial of these are that the SM cannot explain the origin of neutrino masses and the existence of dark matter. Furthermore, there are several aspects of it that are seemingly ad hoc, such as the choice of gauge group and the cancellation of gauge anomalies. These shortcomings point to a theory beyond the SM. Although there are many proposed models for physics beyond the SM, in this thesis, we focus on grand unified theories based on the SO(10) gauge group. It predicts that the three gauge groups in the SM unify at a higher energy into one, which contains the SM as a subgroup. We focus on the Yukawa sector of these models and investigate the extent to which the observables such as fermion masses and mixing parameters can be accommodated into different models based on the SO(10) gauge group. Neutrino masses and leptonic mixing parameters are particularly interesting, since SO(10) models naturally embed the seesaw mechanism. The difference in energy scale between the electroweak scale and the scale of unification spans around 14 orders of magnitude. Therefore, one must relate the parameters of the SO(10) model to those of the SM through renormalization group equations. We investigate this for several different models by performing fits of SO(10) models to fermion masses and mixing parameters, taking into account thresholds at which heavy right-handed neutrinos are integrated out of the the- ory. Although the results are in general dependent on the particular model under consideration, there are some general results that appear to hold true. The observ- ables of the Yukawa sector can in general be accommodated into SO(10) models only if the neutrino masses are normally ordered and that inverted ordering is strongly disfavored. We find that the observable that provides the most tension in ` the fits is the leptonic mixing angle θ23, whose value is consistently favored to be lower in the fits than the actual value. Furthermore, we find that numerical fits to the data favor type-I seesaw over type-II seesaw for the generation of neutrino masses. Key words: Grand unified theories, renormalization group equations, neutrino masses, gauge coupling unification. iii Sammanfattning Trots att partikelfysikens standardmodell beskriver observationer v¨al s˚ahar den ett antal brister. De mest framtr¨adande av dessa ¨ar att standardmodellen inte kan beskriva ursprunget av neutrinernas massa samt existensen av m¨ork materia. Dessutom verkar ett antal av dess aspekter ad hoc, s˚asom valet av gaugegrupp och att gaugeanomalierna ov¨antat tar ut varandra Dessa brister pekar mot en teori bortom standardmodellen. Trots att det finns m˚angaf¨orslag till modeller f¨or fysik bortom standardmodellen s˚afokuserar vi p˚a storf¨orenade teorier baserade p˚agaugegruppen SO(10). Den f¨orutsp˚aratt de tre gaugegrupperna i standardmodellen f¨orenas vid en h¨og energiskala. Denna f¨orenade gaugegrupp inneh˚allerstandardmodellen som en delgrupp. Vi fokuserar s¨arskilt p˚aYukawasektorn hos dessa modeller och unders¨oker i vilken omfattning som observabler s˚asomfermionmassor och blandningsparametrar kan rymmas i olika modeller baserade p˚aSO(10)-gaugegruppen. Neutrinomassor och leptonska bland- ningsparametrar ¨ar s¨arskilt intressanta eftersom SO(10)-modeller inneh˚allergung- br¨ademekanismen. Skillnaden i energiskala mellan den elektrosvaga skalan och f¨oreningsskalan str¨acker sig ¨over 14 storleksordningar. D¨arf¨or b¨or man relatera parametrarna i SO(10)-modellen till de i standardmodellen genom renormeringsgruppsekvationer. Vi unders¨oker detta f¨or ett antal olika modeller genom att utf¨ora numeriska an- passningar av SO(10)-modeller till fermionmassor och blandningsparametrar och tar h¨ansyn till tr¨osklar vid vilka de tunga h¨ogerh¨anta neutrinerna integreras ut ur teorin. Trots att resultaten i regel beror p˚aden s¨arskilda modellen som studeras s˚afinner vi ett antal resultat som verkar g¨alla allm¨ant. Observablerna i Yukawa- sektorn kan allm¨ant sett rymmas i SO(10)-modeller endast om neutrinomassorna ¨ar normalt ordnade och inverterad ordning ¨ar starkt missgynnad. Vi finner att ` den observabel som ¨ar sv˚arastatt anpassa till ¨ar blandningsvinkeln θ23 vars v¨arde fr˚ananpassningarna konsekvent ¨ar l¨agre ¨an det faktiska v¨ardet. Dessutom finner vi att numeriska anpassningar till data gynnar typ-I-gungbr¨ademekanismen ¨over typ-II-gungbr¨ademekanismen f¨or genereringen av neutrinomassor. Nyckelord: Storf¨orenade teorier, renormeringsgruppsekvationer, neutrinomas- sor, gaugekopplingsf¨orening. iv Preface This thesis is the result of my research at the Department of Physics from August 2017 to October 2019. The first part of the thesis presents an introduction to the subjects relevant to the scientific work of this thesis. These include the Standard Model and its shortcomings, grand unification and SO(10), as well as renormaliza- tion group equations and the numerical methods used. The second part contains the three papers that my research has resulted in. List of papers The scientific papers included in this thesis are: Paper (I) [1] T. Ohlsson and M. Pernow Running of fermion observables in non-supersymmetric SO(10) models J. High Energy Phys. 11, 028 (2018) arXiv:1804.04560 Paper (II) [2] S. M. Boucenna, T. Ohlsson and M. Pernow A minimal non-supersymmetric SO(10) model with Peccei{Quinn symmetry Phys. Lett. B 792, 251 (2019) arXiv:1812.10548 Paper (III) [3] T. Ohlsson and M. Pernow Fits to non-supersymmetric SO(10) models with type I and II seesaw mecha- nisms using renormalization group evolution J. High Energy Phys. 06, 085 (2019) arXiv:1903.08241 v vi Preface The thesis author's contribution to the papers I participated in the scientific work as well as in the writing of all papers included in this thesis. I am also the corresponding author of all three papers. 1. I modified large parts of the code and ran all numerical computations. All figures were produced by me and I wrote the majority of the paper. 2. All calculations were performed by me and I wrote the code for the numerical computations. I produced all figures and wrote large parts of the paper. 3. I performed all numerical computations, produced all figures, and wrote most of the paper. Preface vii Acknowledgements My sincerest thanks go to my supervisor Tommy Ohlsson for taking me on as his PhD student and giving me the opportunity to do research in theoretical particle physics, and for suggesting that I apply to Stiftelsen Olle Engkvist Byggm¨astare for funding. Thank you for the guidance and advice that you have given as well as for the scientific collaboration that led to the papers included in this thesis. The two years of my PhD studies that culminated in this thesis were made possible by financial support from Stiftelsen Olle Engkvist Byggm¨astare.I am very grateful to that foundation for accepting my application. Thank you to the members of the theoretical particle physics group. I am especially grateful to Sofiane for all the discussions about physics and everything else. These discussions really helped me to understand the process of model building in particle physics. Thank you also to my former office mate Stefan for making the office a nice environment and for the many discussions about physics and teaching. Thank you Mattias for being such a great motivator and competitor in the gym. Many thanks are due to all the people of the former theoretical physics group for pleasant lunch discussions, fika and after-work beers. Thank you for making the corridor such a nice place to work. Now that we have moved upstairs, I thank all the members of particle and astroparticle physics group for welcoming us up here. I would like to thank my family for their support during my studies. Thank you to my parents for always supporting and encouraging me and to my brother Jonathan for always sharing his many innovative ideas with me. Thank you to my grandparents for always being supportive and especially to my grandfather for inspiring me to study physics in the first place. Last, but certainly not least, thank you Lara for all your love and support. This thesis is dedicated to you. Contents Abstract . iii Sammanfattning . iv Preface v List of papers . .v The thesis author's contribution to the papers . vi Acknowledgements . vii Contents ix I Introduction and background material 1 1 Introduction 3 1.1 Outline . .4 2 The Standard Model 5 2.1 Overview of the Standard Model . .5 2.1.1 Gauge sector . .6 2.1.2 Fermionic particle content . .6 2.1.3 The Higgs mechanism . .8 2.1.4 Fermion masses . 10 2.1.5 Parameters of the Standard Model . 12 2.2 Open questions and some proposed solutions . 12 2.2.1 Observational problems . 12 2.2.2 Aesthetic problems . 16 3 Grand unified theories and SO(10) 19 3.1 Gauge coupling unification . 20 3.2 Candidate gauge groups . 22 3.2.1 Viable gauge groups . 24 3.2.2 The SU(5) group . 24 3.2.3 The Pati{Salam group . 26 ix x Contents 3.2.4 The SO(10) group .
Recommended publications
  • The Seesaw Mechanism
    C. Amsler, Nuclear and Particle Physics The seesaw mechanism This section deals with a model to explain the triflingly small neutrino mass (< 2 eV), which is much smaller than that of other fermions such as the next lightest one, the elec- tron (0.5 MeV). In the standard model neutrinos and antineutrinos are different (Dirac) particles. The chirality of the neutrino is negative, that of the antineutrino positive (see *15.79*). The neutrinos and antineutrinos involved in the weak interaction with other particles are represented by the spinors 1 − γ5 1 + γ5 = and ( c) = c; (1) L 2 R 2 respectively, where and c are solution of the Dirac equation (chapter *15*). The spinors 1 + γ5 1 − γ5 = and ( c) = c (2) R 2 L 2 correspond to sterile neutrinos and antineutrinos. The following discussion deals with only one flavour of neutrinos, say νe, but is ap- plicable to νµ and ντ as well. We shall denote the neutrino spinor by and that of the charge conjugated antineutrino by c. We have shown in section *15.5* that T T c = C = iγ2γ0 : (3) Table1 lists a few useful relations satisfied by the charge conjugation C, which are easily verified by using the properties of γ matrices derived in chapter *15*. Table 1: Some properties of the charge conjugation. Cy = CT = −C C2 = −1 CCy = 1 CCT = 1 Cγ0C = γ0 γ0Cγ0 = −C We have seen e.g. in section *14.4* that the neutrino is observed to be left-handed and the corresponding antineutrino right-handed. As discussed in section *15.3* the spinors (1) and (2) are eigenstates of the chirality operator γ5, but chirality is equivalent to han- dedness in the limit of vanishing masses, hence the subscripts L and R in (1) and (2).
    [Show full text]
  • The Seesaw Mechanism and Renormalization Group Effects
    November 14, 2004 20:49 Proceedings Trim Size: 9in x 6in lindner THE SEESAW MECHANISM AND RENORMALIZATION GROUP EFFECTS M. LINDNER Physik Department, Technische Universit¨at M¨unchen James-Franck-Str., D-85748 Garching/M¨unchen, Germany E-mail: [email protected] Neutrino mass models predict masses and mixings typically at very high scales, while the measured values are determined at low energies. The renormalization group running which connects models with measurements is discussed in this paper. Analytic formulae for the running which include both Dirac- and Majorana CP phases are provided and they allow a systematic understanding of all effects. Some applications and numerical examples are shown. 1. Introduction The determination of neutrino masses and mixings has made enormous progress in recent years. Furthermore it is expected that precision neu- trino physics will become possible in the future such that the lepton sector may ultimately provide the most precise information on flavour structures. Already now exists enough information to try to understand the patterns of masses and mixings in different models of flavour, but this will become much more interesting in the future with growing precision. One class of models is, for example, given by discrete flavour symmetries which might emerge as unbroken subgroups of broken flavour gauge symmetries. There are different reasons why the scale where an understanding of flavour be- comes possible is very high. This has the consequence, that like in the quark sector 1,2 renormalization group (RGE) effects must potentially be taken into account when high energy predictions are compared with low energy measurements.
    [Show full text]
  • Frstfo O Ztif
    FRStfo o ztif * CONNISSARIAT A L'ENERGIE ATOMIQUE CENTRE D'ETUDES NUCLEAIRES DE SACLAY CEA-CONF -- 8070 Service de Documentation F9119! GIF SUR YVETTE CEDEX L2 \ PARTICLE PHYSICS AND GAUGE THEORIES MOREL, A. CEA CEN Socloy, IRF, SPh-T Communication présentée à : Court* on poxticlo phytic* Cargos* (Franc*) 15-28 Jul 1985 PARTICLE PHYSICS AND GAUGE THEORIES A. MOREL Service de Physique Théorique CEN SACLA Y 91191 Gif-sur-Yvette Cedex, France These notes are intended to help readers not familiar with parti­ cle physics in entering the domain of gauge field theory applied to the so-called standard model of strong and electroweak interactions. They are mainly based on previous notes written in common with A. Billoire. With re3pect to the latter ones, the introduction is considerably enlar­ ged in order to give non specialists a general overview of present days "elementary" particle physics. The Glashow-Salam-Weinberg model is then treated,with the details which its unquestioned successes deserve, most probably for a long time. Finally SU(5) is presented as a prototype of these developments of particle physics which aim at a unification of all forces. Although its intrinsic theoretical difficulties and the. non- observation of a sizable proton decay rate do not qualify this model as a realistic one, it has many of the properties expected from a "good" unified theory. In particular, it allows one to study interesting con­ nections between particle physics and cosmology. It is a pleasure to thank the organizing committee of the Cargèse school "Particules et Cosmologie", and especially J. Audouze, for the invitation to lecture on these subjects, and M.F.
    [Show full text]
  • Abdus Salam United Nations Educational, Scientific and Cultural International XA0101583 Organization Centre
    the 1(72001/34 abdus salam united nations educational, scientific and cultural international XA0101583 organization centre international atomic energy agency for theoretical physics NEW DIMENSIONS NEW HOPES Utpal Sarkar Available at: http://www.ictp.trieste.it/-pub-off IC/2001/34 United Nations Educational Scientific and Cultural Organization and International Atomic Energy Agency THE ABDUS SALAM INTERNATIONAL CENTRE FOR THEORETICAL PHYSICS NEW DIMENSIONS NEW HOPES Utpal Sarkar1 Physics Department, Visva Bharati University, Santiniketan 731235, India and The Abdus Salam Insternational Centre for Theoretical Physics, Trieste, Italy. Abstract We live in a four dimensional world. But the idea of unification of fundamental interactions lead us to higher dimensional theories. Recently a new theory with extra dimensions has emerged, where only gravity propagates in the extra dimension and all other interactions are confined in only four dimensions. This theory gives us many new hopes. In earlier theories unification of strong, weak and the electromagnetic forces was possible at around 1016 GeV in a grand unified theory (GUT) and it could get unified with gravity at around the Planck scale of 1019 GeV. With this new idea it is possible to bring down all unification scales within the reach of the next generation accelerators, i.e., around 104 GeV. MIRAMARE - TRIESTE May 2001 1 Regular Associate of the Abdus Salam ICTP. E-mail: [email protected] 1 Introduction In particle physics we try to find out what are the fundamental particles and how they interact. This is motivated from the belief that there must be some fundamental law that governs ev- erything.
    [Show full text]
  • Neutrino Mass and Grand Unification
    Neutrino mass and grand unification Rabindra N Mohapatra Maryland Center for Fundamental Physics and Department of Physics, University of Maryland, College Park, MD 20742, USA E-mail: [email protected] Abstract. Simple grand unified theories (GUT) of matter and forces provide a natural home for the seesaw paradigm for understanding small neutrino masses within a framework that also connects quark flavor to that of leptons. This provides a promising possibility for a unified approach to the flavor puzzle. To see what recent indications of a ”large” value for the neutrino mixing parameter θ13 mean for this approach, I report on investigations based on supersymmetric SO(10) GUTs with type II seesaw for neutrino masses and find that it seem to support this point of view, with other predictions testable in near future. 1. Introduction Understanding neutrino masses and mixings is an integral part of attempts to unravel the flavor puzzle in particle physics. During the past decade, the large amount of information on neutrino masses and mixings gained from the study of accelerator, reactor, solar, and cosmic ray neutrino observations have provided additional information that may have moved the frontier of understanding in this field forward. Several crucial pieces of the puzzle must still be found before we can begin to have a complete picture of neutrino masse. They include Dirac vs Majorana nature of the neutrino masses, normal vs inverted nature of the mass hierarchy, as well as the values of the mixing angle θ13, and CP phases. One major step in this direction is the announcement that the T2K experiment has possible indications for a non-zero value for θ13 [1].
    [Show full text]
  • Fundamental Physical Constants: Looking from Different Angles
    1 Fundamental Physical Constants: Looking from Different Angles Savely G. Karshenboim Abstract: We consider fundamental physical constants which are among a few of the most important pieces of information we have learned about Nature after its intensive centuries- long studies. We discuss their multifunctional role in modern physics including problems related to the art of measurement, natural and practical units, origin of the constants, their possible calculability and variability etc. PACS Nos.: 06.02.Jr, 06.02.Fn Resum´ e´ : Nous ... French version of abstract (supplied by CJP) arXiv:physics/0506173v2 [physics.atom-ph] 28 Jul 2005 [Traduit par la r´edaction] Received 2004. Accepted 2005. Savely G. Karshenboim. D. I. Mendeleev Institute for Metrology, St. Petersburg, 189620, Russia and Max- Planck-Institut f¨ur Quantenoptik, Garching, 85748, Germany; e-mail: [email protected] unknown 99: 1–46 (2005) 2005 NRC Canada 2 unknown Vol. 99, 2005 Contents 1 Introduction 3 2 Physical Constants, Units and Art of Measurement 4 3 Physical Constants and Precision Measurements 7 4 The International System of Units SI: Vacuum constant ǫ0, candela, kelvin, mole and other questions 10 4.1 ‘Unnecessary’units. .... .... ... .... .... .... ... ... ...... 10 4.2 ‘Human-related’units. ....... 11 4.3 Vacuum constant ǫ0 andGaussianunits ......................... 13 4.4 ‘Unnecessary’units,II . ....... 14 5 Physical Phenomena Governed by Fundamental Constants 15 5.1 Freeparticles ................................... .... 16 5.2 Simpleatomsandmolecules . .....
    [Show full text]
  • Physics Beyond the Standard Model (BSM)
    Vorlesung 10: Search for Physics Beyond the Standard Model (BSM) • Standard Model : success and problems • Grand Unified Theories (GUT) • Supersymmetrie (SUSY) – theory – direct searches • other models / ideas for physics BSM Tevatron and LHC WS17/18 TUM S.Bethke, F. Simon V10: BSM 1 The Standard Model of particle physics... • fundamental fermions: 3 pairs of quarks plus 3 pairs of leptons • fundamental interactions: through gauge fields, manifested in – W±, Z0 and γ (electroweak: SU(2)xU(1)), – gluons (g) (strong: SU(3)) … successfully describes all experiments and observations! … however ... the standard model is unsatisfactory: • it has conceptual problems • it is incomplete ( ∃ indications for BSM physics) Tevatron and LHC WS17/18 TUM S.Bethke, F. Simon V10: BSM 2 Conceptual Problems of the Standard Model: • too many free parameters (~18 masses, couplings, mixing angles) • no unification of elektroweak and strong interaction –> GUT ; E~1016 GeV • quantum gravity not included –> TOE ; E~1019 GeV • family replication (why are there 3 families of fundamental leptons?) • hierarchy problem: need for precise cancellation of –> SUSY ; E~103 GeV radiation corrections • why only 1/3-fractional electric quark charges? –> GUT indications for New Physics BSM: • Dark Matter (n.b.: known from astrophysical and “gravitational” effects) • Dark Energy / Cosmological Constant / Vacuum Energy (n.b.: see above) • neutrinos masses • matter / antimatter asymmetry Tevatron and LHC WS17/18 TUM S.Bethke, F. Simon V10: BSM 3 Grand Unified Theory (GUT): • simplest symmetry which contains U(1), SU(2) und SU(3): SU(5) (Georgi, Glashow 1974) • multiplets of (known) leptons and quarks which can transform between each other by exchange of heavy “leptoquark” bosons, X und Y, with -1/3 und -4/3 charges, ± 0 as well as through W , Z und γ.
    [Show full text]
  • Threshold Corrections in Grand Unified Theories
    Threshold Corrections in Grand Unified Theories Zur Erlangung des akademischen Grades eines DOKTORS DER NATURWISSENSCHAFTEN von der Fakult¨at f¨ur Physik des Karlsruher Instituts f¨ur Technologie genehmigte DISSERTATION von Dipl.-Phys. Waldemar Martens aus Nowosibirsk Tag der m¨undlichen Pr¨ufung: 8. Juli 2011 Referent: Prof. Dr. M. Steinhauser Korreferent: Prof. Dr. U. Nierste Contents 1. Introduction 1 2. Supersymmetric Grand Unified Theories 5 2.1. The Standard Model and its Limitations . ....... 5 2.2. The Georgi-Glashow SU(5) Model . .... 6 2.3. Supersymmetry (SUSY) .............................. 9 2.4. SupersymmetricGrandUnification . ...... 10 2.4.1. MinimalSupersymmetricSU(5). 11 2.4.2. MissingDoubletModel . 12 2.5. RunningandDecoupling. 12 2.5.1. Renormalization Group Equations . 13 2.5.2. Decoupling of Heavy Particles . 14 2.5.3. One-Loop Decoupling Coefficients for Various GUT Models . 17 2.5.4. One-Loop Decoupling Coefficients for the Matching of the MSSM to the SM ...................................... 18 2.6. ProtonDecay .................................... 21 2.7. Schur’sLemma ................................... 22 3. Supersymmetric GUTs and Gauge Coupling Unification at Three Loops 25 3.1. RunningandDecoupling. 25 3.2. Predictions for MHc from Gauge Coupling Unification . 32 3.2.1. Dependence on the Decoupling Scales µSUSY and µGUT ........ 33 3.2.2. Dependence on the SUSY Spectrum ................... 36 3.2.3. Dependence on the Uncertainty on the Input Parameters ....... 36 3.2.4. Top-Down Approach and the Missing Doublet Model . ...... 39 3.2.5. Comparison with Proton Decay Constraints . ...... 43 3.3. Summary ...................................... 44 4. Field-Theoretical Framework for the Two-Loop Matching Calculation 45 4.1. TheLagrangian.................................. 45 4.1.1.
    [Show full text]
  • The Grand Unified Theory of the Firm and Corporate Strategy: Measures to Build Corporate Competitiveness
    THE GRAND UNIFIED THEORY OF THE FIRM AND CORPORATE STRATEGY: MEASURES TO BUILD CORPORATE COMPETITIVENESS by Hong Y. Park Professor of Economics Department of Economics College of Business and Management Saginaw Valley State University University Center, MI 48710 e-mail: [email protected] Geon-Cheol Shin Professor School of Business Kyung Hee University Seoul, Korea e-mail: [email protected] This study was funded by the Fulbright Foundation, the Korea Economic Research Institute (KERI), and Saginaw Valley State University. Abstract A good understanding of the nature of the firm is essential in developing corporate strategies, building corporate competitiveness, and establishing sound economic policy. Several theories have emerged on the nature of the firm: the neoclassical theory of the firm, the principal agency theory, the transaction cost theory, the property rights theory, the resource-based theory and the evolutionary theory. Each of these theories identify some elements that describe the nature of the firm, but no single theory is comprehensive enough to include all elements of the nature of the firm. Economists began to seek a theory capable of describing the nature of the firm within a single, all- encompassing, coherent framework. We propose a unified theory of the firm, which encompasses all elements of the firm. We then evaluate performances of Korean firms from the unified theory of the firm perspective. Empirical evidences are promising in support of the unified theory of the firm. Introduction A good understanding of the nature of the firm is essential in developing corporate strategies and building corporate competitiveness. Several theories have emerged on the nature of the firm: The neoclassical theory of the firm, the principal agency theory, the transaction cost theory, the property rights theory, the resource-based theory and the evolutionary theory.
    [Show full text]
  • Atomic Parity Violation, Polarized Electron Scattering and Neutrino-Nucleus Coherent Scattering
    Available online at www.sciencedirect.com ScienceDirect Nuclear Physics B 959 (2020) 115158 www.elsevier.com/locate/nuclphysb New physics probes: Atomic parity violation, polarized electron scattering and neutrino-nucleus coherent scattering Giorgio Arcadi a,b, Manfred Lindner c, Jessica Martins d, Farinaldo S. Queiroz e,∗ a Dipartimento di Matematica e Fisica, Università di Roma 3, Via della Vasca Navale 84, 00146, Roma, Italy b INFN Sezione Roma 3, Italy c Max-Planck-Institut für Kernphysik (MPIK), Saupfercheckweg 1, 69117 Heidelberg, Germany d Instituto de Física Teórica, Universidade Estadual Paulista, São Paulo, Brazil e International Institute of Physics, Universidade Federal do Rio Grande do Norte, Campus Universitário, Lagoa Nova, Natal-RN 59078-970, Brazil Received 7 April 2020; received in revised form 22 July 2020; accepted 20 August 2020 Available online 27 August 2020 Editor: Hong-Jian He Abstract Atomic Parity Violation (APV) is usually quantified in terms of the weak nuclear charge QW of a nucleus, which depends on the coupling strength between the atomic electrons and quarks. In this work, we review the importance of APV to probing new physics using effective field theory. Furthermore, we correlate our findings with the results from neutrino-nucleus coherent scattering. We revisit signs of parity violation in polarized electron scattering and show how precise measurements on the Weinberg’s angle give rise to competitive bounds on light mediators over a wide range of masses and interactions strengths. Our bounds are firstly derived in the context of simplified setups and then applied to several concrete models, namely Dark Z, Two Higgs Doublet Model-U(1)X and 3-3-1, considering both light and heavy mediator regimes.
    [Show full text]
  • Unified Equations of Boson and Fermion at High Energy and Some
    Unified Equations of Boson and Fermion at High Energy and Some Unifications in Particle Physics Yi-Fang Chang Department of Physics, Yunnan University, Kunming, 650091, China (e-mail: [email protected]) Abstract: We suggest some possible approaches of the unified equations of boson and fermion, which correspond to the unified statistics at high energy. A. The spin terms of equations can be neglected. B. The mass terms of equations can be neglected. C. The known equations of formal unification change to the same. They can be combined each other. We derive the chaos solution of the nonlinear equation, in which the chaos point should be a unified scale. Moreover, various unifications in particle physics are discussed. It includes the unifications of interactions and the unified collision cross sections, which at high energy trend toward constant and rise as energy increases. Key words: particle, unification, equation, boson, fermion, high energy, collision, interaction PACS: 12.10.-g; 11.10.Lm; 12.90.+b; 12.10.Dm 1. Introduction Various unifications are all very important questions in particle physics. In 1930 Band discussed a new relativity unified field theory and wave mechanics [1,2]. Then Rojansky researched the possibility of a unified interpretation of electrons and protons [3]. By the extended Maxwell-Lorentz equations to five dimensions, Corben showed a simple unified field theory of gravitational and electromagnetic phenomena [4,5]. Hoffmann proposed the projective relativity, which is led to a formal unification of the gravitational and electromagnetic fields of the general relativity, and yields field equations unifying the gravitational and vector meson fields [6].
    [Show full text]
  • Supersymmetry Min Raj Lamsal Department of Physics, Prithvi Narayan Campus, Pokhara Min [email protected]
    Supersymmetry Min Raj Lamsal Department of Physics, Prithvi Narayan Campus, Pokhara [email protected] Abstract : This article deals with the introduction of supersymmetry as the latest and most emerging burning issue for the explanation of nature including elementary particles as well as the universe. Supersymmetry is a conjectured symmetry of space and time. It has been a very popular idea among theoretical physicists. It is nearly an article of faith among elementary-particle physicists that the four fundamental physical forces in nature ultimately derive from a single force. For years scientists have tried to construct a Grand Unified Theory showing this basic unity. Physicists have already unified the electron-magnetic and weak forces in an 'electroweak' theory, and recent work has focused on trying to include the strong force. Gravity is much harder to handle, but work continues on that, as well. In the world of everyday experience, the strengths of the forces are very different, leading physicists to conclude that their convergence could occur only at very high energies, such as those existing in the earliest moments of the universe, just after the Big Bang. Keywords: standard model, grand unified theories, theory of everything, superpartner, higgs boson, neutrino oscillation. 1. INTRODUCTION unifies the weak and electromagnetic forces. The What is the world made of? What are the most basic idea is that the mass difference between photons fundamental constituents of matter? We still do not having zero mass and the weak bosons makes the have anything that could be a final answer, but we electromagnetic and weak interactions behave quite have come a long way.
    [Show full text]