Atomic Parity Violation, Polarized Electron Scattering and Neutrino-Nucleus Coherent Scattering

Total Page:16

File Type:pdf, Size:1020Kb

Atomic Parity Violation, Polarized Electron Scattering and Neutrino-Nucleus Coherent Scattering Available online at www.sciencedirect.com ScienceDirect Nuclear Physics B 959 (2020) 115158 www.elsevier.com/locate/nuclphysb New physics probes: Atomic parity violation, polarized electron scattering and neutrino-nucleus coherent scattering Giorgio Arcadi a,b, Manfred Lindner c, Jessica Martins d, Farinaldo S. Queiroz e,∗ a Dipartimento di Matematica e Fisica, Università di Roma 3, Via della Vasca Navale 84, 00146, Roma, Italy b INFN Sezione Roma 3, Italy c Max-Planck-Institut für Kernphysik (MPIK), Saupfercheckweg 1, 69117 Heidelberg, Germany d Instituto de Física Teórica, Universidade Estadual Paulista, São Paulo, Brazil e International Institute of Physics, Universidade Federal do Rio Grande do Norte, Campus Universitário, Lagoa Nova, Natal-RN 59078-970, Brazil Received 7 April 2020; received in revised form 22 July 2020; accepted 20 August 2020 Available online 27 August 2020 Editor: Hong-Jian He Abstract Atomic Parity Violation (APV) is usually quantified in terms of the weak nuclear charge QW of a nucleus, which depends on the coupling strength between the atomic electrons and quarks. In this work, we review the importance of APV to probing new physics using effective field theory. Furthermore, we correlate our findings with the results from neutrino-nucleus coherent scattering. We revisit signs of parity violation in polarized electron scattering and show how precise measurements on the Weinberg’s angle give rise to competitive bounds on light mediators over a wide range of masses and interactions strengths. Our bounds are firstly derived in the context of simplified setups and then applied to several concrete models, namely Dark Z, Two Higgs Doublet Model-U(1)X and 3-3-1, considering both light and heavy mediator regimes. © 2020 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3. * Corresponding author. E-mail addresses: [email protected] (G. Arcadi), [email protected] (M. Lindner), [email protected] (J. Martins), [email protected] (F.S. Queiroz). https://doi.org/10.1016/j.nuclphysb.2020.115158 0550-3213/© 2020 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3. 2 G. Arcadi et al. / Nuclear Physics B 959 (2020) 115158 1. Introduction For decades it was assumed that the laws of nature preserved parity, but the seminal paper of Lee and Yang in 1956 gave rise to a different perspective [1]. It was indeed confirmed in 1957 in the realm of weak interactions, via the beta decay in Cobalt [2] and muon decay [3]. In 1959 the possibility of observing parity violation in atomic physics and electron scattering was contemplated [4] and further investigated in the late 70’s [5–7]. Interestingly these ideas preceded the theory of electroweak interactions. The following decades were populated by experiments that aimed at probing parity violation [8]. For interesting reviews on APV see [9–14]. Our current understanding of parity and APV has greatly improved. Given the experimental precision acquired over the years, we may now test new physics models that feature parity- violating interactions. The main objects of study in this regard are the Weak Charge of the Cesium (Cs) and polarized electron scattering. Concerning the first observable, the weak charge of a nucleus, QW , is an analogous of the electromagnetic charge, where the Z boson is the key player of the atomic electron and nucleus interactions instead. QW is the sum of the weak charges of all constituents of the atomic nucleus, QW = (2Z + N)QW (u) + (Z + 2N)QW (d), where QW (u, d) accounts for the Z interactions 2 with up and down quarks and it depends on sin θW , with θW being Weinberg’s angle. To un- derstand how the Z boson can affect atomic transitions and QW is extracted from experiments, one needs to perform precise atomic physics calculations and measure the left-right asymmetry 2 2 2 ∼ −15 ALR, which is naively estimated to be ALR α me/mZ 10 . Despite atoms with a high atomic number be, in principle, better suited for experimental observation of APV [15], because of the enhancement in ALR by orders of magnitude, such high atomic number makes the theoret- ical determination of ALR extremely challenging. For this reason, Cesium has become a popular target because it offers a good compromise between high atomic number, necessary to have siz- able effects, and relatively simple atomic structure, required to make precise atomic calculations. Precise measurements of APV in Cesium have been presented in [16,17]. Based on them, de- exp =− ± tailed atomic physic computations yielded the following determination: QW 72.62 0.43 th =− ± [18,19], in slight disagreement with the SM prediction QW 73.23 0.01 [20,21]. Such pre- cise measurements of the Cs weak charge can be used to constraint new physics effects. The other parity violation observable, polarized electron scattering, also constitutes an impor- tant laboratory to new physics searches. Again, the left-right asymmetry is the key observable. For deep inelastic scattering processes of the type eL,RN → eX, the left-right asymmetry can be expressed, in the quark model and in the limit of zero nucleon mass, in the relatively simple form 2 1 A/Q = a1 + a2f(y). The coefficients a1, a2 depend on the axial-vector coupling between the 2 electron and quarks, which, in turns, depends on sin θW , θW being Weinberg’s angle. y and Q represent, respectively, the fraction of energy transferred from the electron to the hadrons and the momentum transfer. Detailed expressions for a1, a2 and f can be found, for example, in [8,22]. 2 Measurement of A translates into a measurement of sin θW at a given momentum Q. It is well- known that photon exchange diagrams conserve parity but processes mediated by the Z do not as it not interact with left-handed and right-handed fermions in the same way. In a similar vein, eventual additional massive vector bosons from new physics models might also contribute to the left-right asymmetry. This kind of contribution can be conveniently parametrized as a shift on 1 In the case of electron-positron scattering or the so-called Moeller scattering (scattering on electrons), the Q2 depen- dence of the asymmetry is more complicated and is parametrized by a form factor. G. Arcadi et al. / Nuclear Physics B 959 (2020) 115158 3 2 Fig. 1. Scale dependence (gray curve) of sin θW [27,28] compared with measurements (colored points) from APV [29] as well as the E158 [30], Qweak [31,32], P2 [33], Mesa [34], Moller [35], Solid [36]. (For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.) 2 sin θW (see e.g. [23–26]for previous analyses along this line). If measurements of A translate 2 into a determination of sin θW compatible with the Standard Model (SM) prediction, one can obtain constraints on New Physics effects responsible for parity violation possibly contributing to the left-right asymmetry. 2 We show in Fig. 1 an illustration of the expected energy scale dependence of sin θW (see e.g. 2 [27,28]for details) together with different measurements of sin θW (see also [21]). The aforementioned observables depend on the couplings of the New Physics degrees of free- dom with electrons and quarks. Constraints on parity violation effects will be then translated into limits on such couplings. That has been the whole story up to now, but with the observa- tion of neutrino-nucleus coherent scattering new information came into light. Strictly speaking, neutrino-nucleus coherent scattering and parity violation probes are sensitive to different inter- actions, between electron and quarks in the former case, between neutrinos and quarks in the latter. However, due to SU(2) invariance, it is reasonable to assume that new degrees of free- dom can couple with both electrons and neutrinos (one notable exception is represented by the so-called dark photon though). In this work, we will revisit this scenario and explore the possible complementarity between parity violation observables and coherent neutrino scattering [23–26]. To be as general as possible, the first part of our analysis will be carried out adopting an EFT approach as well as a simplified model in which the SM spectrum is extended by a new light spin– 1 mediator. We will apply later on our findings to some more complete models already existing in the literature. While this approach is not new by itself, we stress again that our work makes an advance concerning the existing literature in light of the considered complementarity between neutrino-nucleus coherent scattering, APV, and polarized electron scattering. At the same time, it is worth pointing out that the models investigated here might be embedded in non-trivial neutrino sectors, e.g. with the presence of sterile neutrinos, which can weaken the correlations between neutrino coherent scattering and parity violation phenomena. We will not consider this possibility here. The paper is structured as follows. In Section 2, we will review the theoretical aspects of parity violation; in Section 3 we discuss APV; in Section 4 we address the complementary aspects with neutrino-nucleus coherent scattering using effective field theory; in Section 5 we study polarized electron scattering in terms of light mediators and put into perspective with neutrino-nucleus 4 G. Arcadi et al. / Nuclear Physics B 959 (2020) 115158 coherent scattering. Lastly in Section 6 we discuss our bounds using concrete models proposed in the literature.
Recommended publications
  • Frstfo O Ztif
    FRStfo o ztif * CONNISSARIAT A L'ENERGIE ATOMIQUE CENTRE D'ETUDES NUCLEAIRES DE SACLAY CEA-CONF -- 8070 Service de Documentation F9119! GIF SUR YVETTE CEDEX L2 \ PARTICLE PHYSICS AND GAUGE THEORIES MOREL, A. CEA CEN Socloy, IRF, SPh-T Communication présentée à : Court* on poxticlo phytic* Cargos* (Franc*) 15-28 Jul 1985 PARTICLE PHYSICS AND GAUGE THEORIES A. MOREL Service de Physique Théorique CEN SACLA Y 91191 Gif-sur-Yvette Cedex, France These notes are intended to help readers not familiar with parti­ cle physics in entering the domain of gauge field theory applied to the so-called standard model of strong and electroweak interactions. They are mainly based on previous notes written in common with A. Billoire. With re3pect to the latter ones, the introduction is considerably enlar­ ged in order to give non specialists a general overview of present days "elementary" particle physics. The Glashow-Salam-Weinberg model is then treated,with the details which its unquestioned successes deserve, most probably for a long time. Finally SU(5) is presented as a prototype of these developments of particle physics which aim at a unification of all forces. Although its intrinsic theoretical difficulties and the. non- observation of a sizable proton decay rate do not qualify this model as a realistic one, it has many of the properties expected from a "good" unified theory. In particular, it allows one to study interesting con­ nections between particle physics and cosmology. It is a pleasure to thank the organizing committee of the Cargèse school "Particules et Cosmologie", and especially J. Audouze, for the invitation to lecture on these subjects, and M.F.
    [Show full text]
  • Fundamental Physical Constants: Looking from Different Angles
    1 Fundamental Physical Constants: Looking from Different Angles Savely G. Karshenboim Abstract: We consider fundamental physical constants which are among a few of the most important pieces of information we have learned about Nature after its intensive centuries- long studies. We discuss their multifunctional role in modern physics including problems related to the art of measurement, natural and practical units, origin of the constants, their possible calculability and variability etc. PACS Nos.: 06.02.Jr, 06.02.Fn Resum´ e´ : Nous ... French version of abstract (supplied by CJP) arXiv:physics/0506173v2 [physics.atom-ph] 28 Jul 2005 [Traduit par la r´edaction] Received 2004. Accepted 2005. Savely G. Karshenboim. D. I. Mendeleev Institute for Metrology, St. Petersburg, 189620, Russia and Max- Planck-Institut f¨ur Quantenoptik, Garching, 85748, Germany; e-mail: [email protected] unknown 99: 1–46 (2005) 2005 NRC Canada 2 unknown Vol. 99, 2005 Contents 1 Introduction 3 2 Physical Constants, Units and Art of Measurement 4 3 Physical Constants and Precision Measurements 7 4 The International System of Units SI: Vacuum constant ǫ0, candela, kelvin, mole and other questions 10 4.1 ‘Unnecessary’units. .... .... ... .... .... .... ... ... ...... 10 4.2 ‘Human-related’units. ....... 11 4.3 Vacuum constant ǫ0 andGaussianunits ......................... 13 4.4 ‘Unnecessary’units,II . ....... 14 5 Physical Phenomena Governed by Fundamental Constants 15 5.1 Freeparticles ................................... .... 16 5.2 Simpleatomsandmolecules . .....
    [Show full text]
  • Threshold Corrections in Grand Unified Theories
    Threshold Corrections in Grand Unified Theories Zur Erlangung des akademischen Grades eines DOKTORS DER NATURWISSENSCHAFTEN von der Fakult¨at f¨ur Physik des Karlsruher Instituts f¨ur Technologie genehmigte DISSERTATION von Dipl.-Phys. Waldemar Martens aus Nowosibirsk Tag der m¨undlichen Pr¨ufung: 8. Juli 2011 Referent: Prof. Dr. M. Steinhauser Korreferent: Prof. Dr. U. Nierste Contents 1. Introduction 1 2. Supersymmetric Grand Unified Theories 5 2.1. The Standard Model and its Limitations . ....... 5 2.2. The Georgi-Glashow SU(5) Model . .... 6 2.3. Supersymmetry (SUSY) .............................. 9 2.4. SupersymmetricGrandUnification . ...... 10 2.4.1. MinimalSupersymmetricSU(5). 11 2.4.2. MissingDoubletModel . 12 2.5. RunningandDecoupling. 12 2.5.1. Renormalization Group Equations . 13 2.5.2. Decoupling of Heavy Particles . 14 2.5.3. One-Loop Decoupling Coefficients for Various GUT Models . 17 2.5.4. One-Loop Decoupling Coefficients for the Matching of the MSSM to the SM ...................................... 18 2.6. ProtonDecay .................................... 21 2.7. Schur’sLemma ................................... 22 3. Supersymmetric GUTs and Gauge Coupling Unification at Three Loops 25 3.1. RunningandDecoupling. 25 3.2. Predictions for MHc from Gauge Coupling Unification . 32 3.2.1. Dependence on the Decoupling Scales µSUSY and µGUT ........ 33 3.2.2. Dependence on the SUSY Spectrum ................... 36 3.2.3. Dependence on the Uncertainty on the Input Parameters ....... 36 3.2.4. Top-Down Approach and the Missing Doublet Model . ...... 39 3.2.5. Comparison with Proton Decay Constraints . ...... 43 3.3. Summary ...................................... 44 4. Field-Theoretical Framework for the Two-Loop Matching Calculation 45 4.1. TheLagrangian.................................. 45 4.1.1.
    [Show full text]
  • Standard Model (SM)
    International School on Theory & Analysis in Particle Physics The Standard Model (SM) Main textbook: Modern Elementary Particle Physics, Kane Additional reading: SM: An Introduction, Novaes, arXiv:hep-ph/0001283 Symmetries of SM, Willenbrock, arXiv:hep-ph/0410370 Other advanced undergraduate / beginning graduate level textbooks: Quantum Field Theory, Ryder Introduction to Elementary Particles, Griffiths Quarks & Leptons, Halzen & Martin An Introduction to the SM of P.P., Cottingham & Greenwood Gauge Theories in Particle Physics, Aitchison & Hey Nefer Şenoğuz / Doğuş University Outline Lecture 1 Review: groups, spinors, gauge invariance The Standard Model: introduction and particle content Lecture 2 QCD: Quarks, confinement, mesons and baryons Electroweak Theory: Neutral and charged currents Lecture 3 Spontaneous symmetry breaking and Higgs mechanism Cross sections and decay widths: W and Z Lecture 4 Higgs Boson Quark mixing and CP violation Open questions, grand unification 2 What is the Standard Model (SM) of Particle Physics? • SM is the theory describing electromagnetic, weak & strong interactions • ~40 years old, spectacularly confirmed (except Higgs) • beyond the SM: neutrino masses, theoretical puzzles • whatever LHC finds, SM is valid as an effective theory for E < TeV • SM is a gauge theory based on review: groups, gauge invariance • matter content: quarks and leptons review: Dirac spinors 3 review: groups Rotation group O(n): [Orthogonal], n(n-1)/2 parameters SO(n): [Special] determinant = 1 Generators of rotation: SO(3): 3 parameter
    [Show full text]
  • The Running of Coupling Constants and Unitarity in a Finite Electroweak Model
    October 24, 2018 15:50 WSPC/INSTRUCTION FILE unitarity The running of coupling constants and unitarity in a finite electroweak model J. W. Moffat†∗ and V. T. Toth† †Perimeter Institute, 31 Caroline St North, Waterloo, Ontario N2L 2Y5, Canada ∗Department of Physics, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada We investigate the properties of a Finite Electroweak (FEW) Theory first proposed in 1991 [1–5]. The theory predicts a running of the electroweak coupling constants and a suppression of tree level amplitudes, ensuring unitarity without a Higgs particle. We demonstrate this explicitly by calculating W +W − W +W − and e+e− W +W − in L L → L L → L L both the electroweak Standard Model and the FEW model. 1. Introduction In the Standard Model (SM) of particle physics, the Higgs field, a spin zero field with a nonzero vacuum expectation value is proposed, leading to spontaneous sym- metry breaking and a generation of fermion and vector boson masses. Additionally, the Higgs field also resolves the issue of unitarity, by precisely canceling out badly behaved terms in the tree-level amplitude of processes involving longitudinally po- larized vector bosons, for instance W +W − W +W − or e+e− W +W −. The L L → L L → L L challenge to any theory that aims to compete with the SM without introducing a Higgs particle is to generate the correct fermion and boson masses on the one hand, and ensure unitary behavior for these types of scattering processes on the other. First proposed in 1991 [1], our Finite Electroweak (FEW) Theory employs three principal ideas [5]: Fermions acquire dynamically generated masses through self-energy [4]; arXiv:0812.1994v6 [hep-ph] 6 Apr 2011 • A non-local regularization scheme [6, 7] ensures that the theory is finite to • all orders and does not violate unitarity; A non-trivial choice of the path integral measure factor, consistent with • the regularization scheme, leads to spontaneous symmetry breaking and the generation of vector boson masses.
    [Show full text]
  • A Measurement of the Parity-Violating Asymmetry in Aluminum and Its Contribution to a Measurement of the Proton’S Weak Charge
    A Measurement of the Parity-Violating Asymmetry in Aluminum and its Contribution to a Measurement of the Proton's Weak Charge Joshua Allen Magee Bridgewater, MA MS Physics, College of William and Mary, 2010 BS Mechanical Engineering, University of Hartford, 2007 A Dissertation presented to the Graduate Faculty of the College of William and Mary in Candidacy for the Degree of Doctor of Philosophy Department of Physics The College of William and Mary May 2016 © 2016 Joshua Allen Magee All Rights Reserved APPROVAL PAGE This dissertation is submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy Joshua Allen Magee Approved by the Committee February 2016 Committee Chair Chancellor Professor David Armstrong, Physics The College of William and Mary Assistant Professor Wouter Deconinck, Physics The College of William and Mary Professor Keith Griffioen, Physics The College of William and Mary Professor Carl Carlson, Physics The College of William and Mary David Gaskell, Staff Scientist Thomas Jefferson National Accelerator Facility ABSTRACT The Qweak experiment, which ran at the Thomas Jefferson National Accelerator p Facility, made a precision measurement of the proton's weak charge, QW . The weak charge is extracted via a measurement of the parity-violating asymmetry in elastic electron-proton scattering from hydrogen at low momentum transfer (Q2=0.025 GeV2). This result is directly related to the electroweak mixing 2 angle, sin (θW ), a fundamental parameter in the Standard Model of particle physics. This provides a precision test sensitive to new, as yet unknown, fundamental physics. This dissertation focuses on two central corrections to the Qweak measurement: the target window contribution and sub-percent determination of the electron beam polarization.
    [Show full text]
  • 1 [Accepted for Publication in Studies in History and Philosophy of Modern Physics] the Construction of the Higgs Mechanism
    [Accepted for Publication in Studies in History and Philosophy of Modern Physics] The Construction of the Higgs Mechanism and the Emergence of the Electroweak Theory Interdisciplinary Centre for Science and Technology Studies (IZWT) University of Wuppertal Gaußstr. 20 42119 Wuppertal, Germany [email protected] Abstract I examine the construction process of the Higgs mechanism and its subsequent use by Steven Weinberg to formulate the electroweak theory in particle physics. I characterize the development of the Higgs mechanism to be a historical process that is guided through analogies drawn to the theories of solid-state physics and that is progressive through diverse contributions from a number of physicists working independently. I also offer a detailed comparative study that analyzes the similarities and differences in these contributions. 1. Introduction The concept of “spontaneous symmetry breaking” (SSB) as used in (relativistic) quantum field theory was inspired from the vacuum-structure of the Bardeen-Cooper-Schrieffer(BCS) theory of superconductivity in solid-state physics.1 As physicists Yoichiro Nambu2 and Giovanni Jona- Lasinio3 once remarked, the integration of SSB into the theoretical framework of quantum field theory illustrates a case of “cross-fertilization” between solid-state physics and particle physics through the sharing of a physical concept. The integration process of SSB has been discussed in 1 Barden et al. 1957; see also Bogoliubov 1958 for its re-formulation. 2 Nambu 2009. 3 Jona-Lasinio 2002. 1 a joint paper4 by Laurie Brown and Tian Yu Cao, which has also accounted for the emergence of SSB as a physical concept and its early use in solid-state physics.
    [Show full text]
  • The Five Instructions
    The Five Instructions Pierre Ramond Institute for Fundamental Theory, Department of Physics, University of Florida Gainesville FL 32611, USA Abstract Five elementary lectures delivered at TASI 2011on the Standard Model, its extensions to neutrino masses, flavor symmetries, and Grand-Unification. 1 Introduction In the once fast moving field of Particle Physics, the basic ingredients of the Standard Model were in place well before any of you were born! In 1976 (any of you 35 years old?), an epochal experiment (Prescott et al) provided the definitive evidence that all neutral current effects stemmed from one parameter, the Weinberg angle. Since then, experiments have confirmed the validity of the Standard Model without challenging its fundamental structure: it is a relativistic local quantum field theory in four space-time dimensions. Experiments have found all but one of its predicted particles: in 1983, the W ± and Z gauge bosons are discovered at CERN; the Z width suggests at most three “normal” neutrinos. In 1995 the top quark is discovered, and the ντ neutrino in 2000, both at FermiLab. The Higgs particle, a spinless particle predicted by the Standard Model remains beyond the grasp of experimentalists. There is more in Nature than the Standard Model: - The first evidence is Dark Matter in the Universe, which suggests (a) new arXiv:1201.0396v1 [hep-ph] 1 Jan 2012 particle(s), stable enough to be fourteen billion years old, not predicted by the Standard Model. - The second chink in the armor of the Standard Model appears in 1998, when the SuperKamiokande collaboration presents definitive evidence for neutrino oscillations, implying at least two massive neutrinos which also require new particle(s) not predicted by the Standard Model.
    [Show full text]
  • Grand Unified Theories
    Licentiate Thesis Phenomenology of SO(10) Grand Unified Theories Marcus Pernow Particle and Astroparticle Physics, Department of Physics, School of Engineering Sciences, KTH Royal Institute of Technology, SE-106 91 Stockholm, Sweden Stockholm, Sweden 2019 Typeset in LATEX Vetenskaplig uppsats f¨or avl¨aggande av teknologie licentiatexamen (TeknL) inom ¨amnesomr˚adetfysik. Scientific thesis for the degree of Licentiate of Engineering (Lic Eng) in the subject area of Physics. ISBN 978-91-7873-269-2 TRITA-SCI-FOU 2019:38 c Marcus Pernow, September 2019 Printed in Sweden by Universitetsservice US AB Abstract Although the Standard Model (SM) of particle physics describes observations well, there are several shortcomings of it. The most crucial of these are that the SM cannot explain the origin of neutrino masses and the existence of dark matter. Furthermore, there are several aspects of it that are seemingly ad hoc, such as the choice of gauge group and the cancellation of gauge anomalies. These shortcomings point to a theory beyond the SM. Although there are many proposed models for physics beyond the SM, in this thesis, we focus on grand unified theories based on the SO(10) gauge group. It predicts that the three gauge groups in the SM unify at a higher energy into one, which contains the SM as a subgroup. We focus on the Yukawa sector of these models and investigate the extent to which the observables such as fermion masses and mixing parameters can be accommodated into different models based on the SO(10) gauge group. Neutrino masses and leptonic mixing parameters are particularly interesting, since SO(10) models naturally embed the seesaw mechanism.
    [Show full text]
  • Prediction of Weinberg Angle in Discretized Kaluza-Klein Theory
    VNU Journal of Science: Mathematics – Physics, Vol. 35, No. 3 (2019) 110-120 Original Article Prediction of Weinberg Angle in Discretized Kaluza-Klein Theory Nguyen Van Dat* Faculty of Physics, VNU University of Science, 334 Nguyen Trai, Hanoi, Vietnam Received 09 May 2019 Accepted 28 May 2019 Abstract: In the discretized Kaluza-Klein theory (DKKT), the gauge fields emerge as components of gravity with a single coupling constant. Therefore, it provides a new approach to fix the parameters of the Standard Model, and in particular the Weinberg angle. The study results show that in the approach using DKKT, the predicted value of Weinberg angle is exactly the one measured in the electron-positron collider experiment at Q = 91.2 GeV/c. The result is compared to the one predicted by the group theoretic methods. Keywords: Weinberg angle, discretized Kaluza-Klein theory, DKKT. 1. Introduction The Weinberg angel W [1-3] is the most important parameter of the Standard model, which relates the two coupling constant g and g’ corresponding to the two underlying gauge groups SU 2 L and U 1 . It can be introduced by the following mixing of the gauge field W 3 and B to form the Y physical photon and Z 0 fields AB cos sin WW (1) ZW03 sinWW cos In terms of the coupling constants g and g’, the Weinberg angle can be expressed as ________ Corresponding author. Email address: [email protected] https//doi.org/ 10.25073/2588-1124/vnumap.4350 110 N.V. Dat / VNU Journal of Science: Mathematics – Physics, Vol. 35, No.
    [Show full text]
  • Electroweak Theory, Spontaneous Symmetry Breaking, and the Higgs Mechanism PHYS 461
    Electroweak Theory, Spontaneous Symmetry Breaking, and the Higgs Mechanism PHYS 461 The generation of mass for the weak gauge bosons in the Standard Model comes from a process known as spontaneous symmetry breaking, also known more popularly as the Higgs mechanism. Just like the example in class, a constant shift in the value of a scalar boson field interacting with the gauge particles causes the Lagrangian symmetry to be destroyed, with the net result being the appearance of new mass terms. In the following few pages, we'll see exactly how this happens. 1 Nuclear Decays and Fermi's Four Fermion In- teraction The earliest evidence of a fundamental force beyond electromagnetism and gravitation came in the early 1900s, with the study of nuclear decay processes. It was known that certain radioactive elements could undergo \beta decay", a process whereby the nucleus emits (or absorbs) a beta particle. Without going too much into the specifics, suffice it to say that a beta particle was nothing more than a lepton { the electron, or its antiparticle the positron. The two possible modes included negative beta decay, in which a neutron decays into a proton and an electron, n −! p+ + e− + Energy and positive beta decay, where the proton decays into a neutron and a positron: p+ −! n + e+ + Energy Note that electric charge is conserved in each case { but spin is not! Protons, neu- trons, electrons, and positrons are all fermions, so the spin before the decay must 1 be ± 2 , but clearly the total spin after can either by 0 or 1.
    [Show full text]
  • A Preliminary Measurement of the Left-Right Parity-Violating Ep Asymmetry at E158
    SLAC-R-756 A Preliminary Measurement of the Left-Right Parity-Violating ep Asymmetry at E158 Jed Biesiada Undergraduate Honors Thesis at UC Berkeley Stanford Linear Accelerator Center, Stanford University, Stanford, CA 94309 Work supported by Department of Energy contract DE–AC02–76SF00515. A Preliminary Measurement of the Left−Right Parity− Violating ep Asymmetry at E158 Jedrzej Biesiada UC Berkeley Advisor: Yury Kolomensky UC Berkeley August 16, 2002 Submitted in Fulfillment of the Honors Graduation Requirement of the Physics Department at UC Berkeley and as a Technical Note for the E158 experiment 1 Abstract This thesis investigates the parity−violating ep asymmetry based on the Run I data produced in Spring of 2002 by the E158 experiment , located at the Stanford Linear Accelerator Center. The main scientific objective of the experiment is the precision measurement of the weak mixing angle of the Standard Model. The ep asymmetry is an important background in the experiment and theoretically interesting in its own right, providing insights into the structure of the proton. The analysis centers upon identifying systematic error and consistency. The definite measurement of the ep asymmetry will await the final reprocessing of the data set during the Fall of 2002. A preliminary estimate of the ep asymmetry is PV Aep 45GeV = B1.66G0.07 stat G0.14 syst ppm PV Aep 48GeV = B2.07 G0.10 stat G0.17 syst ppm PV Aep 48GeV PV =1.25G0.08 stat G0.03 syst Aep 45GeV 2 1. Theoretical Introduction 1.1 Electroweak force The electroweak force is a fundamental interaction of nature.
    [Show full text]