A Measurement of the Parity-Violating Asymmetry in Aluminum and Its Contribution to a Measurement of the Proton’S Weak Charge

Total Page:16

File Type:pdf, Size:1020Kb

A Measurement of the Parity-Violating Asymmetry in Aluminum and Its Contribution to a Measurement of the Proton’S Weak Charge A Measurement of the Parity-Violating Asymmetry in Aluminum and its Contribution to a Measurement of the Proton's Weak Charge Joshua Allen Magee Bridgewater, MA MS Physics, College of William and Mary, 2010 BS Mechanical Engineering, University of Hartford, 2007 A Dissertation presented to the Graduate Faculty of the College of William and Mary in Candidacy for the Degree of Doctor of Philosophy Department of Physics The College of William and Mary May 2016 © 2016 Joshua Allen Magee All Rights Reserved APPROVAL PAGE This dissertation is submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy Joshua Allen Magee Approved by the Committee February 2016 Committee Chair Chancellor Professor David Armstrong, Physics The College of William and Mary Assistant Professor Wouter Deconinck, Physics The College of William and Mary Professor Keith Griffioen, Physics The College of William and Mary Professor Carl Carlson, Physics The College of William and Mary David Gaskell, Staff Scientist Thomas Jefferson National Accelerator Facility ABSTRACT The Qweak experiment, which ran at the Thomas Jefferson National Accelerator p Facility, made a precision measurement of the proton's weak charge, QW . The weak charge is extracted via a measurement of the parity-violating asymmetry in elastic electron-proton scattering from hydrogen at low momentum transfer (Q2=0.025 GeV2). This result is directly related to the electroweak mixing 2 angle, sin (θW ), a fundamental parameter in the Standard Model of particle physics. This provides a precision test sensitive to new, as yet unknown, fundamental physics. This dissertation focuses on two central corrections to the Qweak measurement: the target window contribution and sub-percent determination of the electron beam polarization. The aluminum target windows contribute approximately 30% of the measured asymmetry. Removal of this background requires precise measurements of both the elastic electron-aluminum scattering rate and its parity-violating asymmetry. The results reported here are the most precise measurement of the Qweak target dilution and asymmetry to date. The parity-violating asymmetry for the aluminum alloy was found to be 1.6174 ± 0.0704 (stat.) ± 0.0113 (sys.) parts-per-million. The first sub-percent precision polarization measurements made from the Hall C Møller polarimeter are also reported, with systematic uncertainties of 0.84%. Table of Contents Table of Contentsi Acknowledgements vi Dedication viii List of Tables ix List of Figures xi 1 The Electroweak Standard Model1 1.1 Introduction to the Standard Model.................... 2 1.2 Symmetries.................................. 4 1.2.1 Discrete symmetries......................... 5 1.3 Electroweak unification........................... 7 1.3.1 Electroweak gauge structure..................... 7 1.3.2 Spontaneous symmetry breaking and the Higgs mechanism... 9 1.3.3 Neutral current interactions..................... 11 1.3.4 Nucleon weak charges ........................ 12 1.4 Electroweak radiative corrections...................... 13 2 Parity-Violating Electron Scattering and the Qweak Experiment 18 2.1 Electromagnetic form factors........................ 18 2.1.1 Neutral weak form factors...................... 20 2.2 Cross sections for e + p and e + Al scattering............... 22 2.3 Parity-violating asymmetries and electron scattering........... 23 i 2.4 Qweak introduction.............................. 26 3 Experimental Setup 32 3.1 Experimental apparatus........................... 33 3.2 Beam delivery................................. 34 3.2.1 Photocathode and beam generation ................ 35 3.2.2 Injector and slow helicity reversals................. 38 3.2.3 Accelerator.............................. 39 3.3 Beam diagnostics............................... 39 3.3.1 Beam position monitors....................... 40 3.3.2 Beam current monitors ....................... 41 3.3.3 Beam energy determination..................... 42 3.3.4 Beam modulation .......................... 43 3.4 Polarimetry.................................. 45 3.4.1 Møller Polarimeter.......................... 45 3.4.2 Compton polarimeter ........................ 48 3.5 Targets.................................... 49 3.5.1 Primary LH2 target ......................... 49 3.5.2 Aluminum targets .......................... 52 3.6 Collimators.................................. 53 3.7 Spectrometer magnet............................. 55 3.8 Detectors................................... 57 3.8.1 Main detectors............................ 57 3.8.2 Focal plane scanner ......................... 59 ii 3.8.3 Luminosity monitors......................... 60 3.9 Tracking system............................... 61 3.9.1 Horizontal drift chambers...................... 62 3.9.2 Vertical drift chambers........................ 62 3.9.3 Trigger scintillators.......................... 63 3.10 Data acquisition............................... 63 4 The Møller Polarimeter Analysis 65 4.1 Configuration during Qweak ......................... 65 4.2 Analyzing power determination and uncertainty.............. 69 4.2.1 Nominal target polarization..................... 70 4.2.2 Target temperature ......................... 71 4.2.3 Solenoid field uncertainty ...................... 72 4.2.4 Quadrupole currents......................... 74 4.2.5 Position and angle systematic uncertainty............. 75 4.2.6 Møller Run 1 optics effect...................... 78 4.3 Data and results............................... 82 4.3.1 Leakage corrections.......................... 82 4.3.2 Effect of the insertable half wave plate............... 85 4.4 Møller summary............................... 86 5 The Aluminum Window Contribution 90 5.1 Aluminum overview............................. 90 5.2 Dilution method............................... 93 5.2.1 Measurement conditions....................... 94 iii 5.2.2 Reference target normalization ...................104 5.3 Data and analysis............................... 106 5.4 Radiative corrections............................ 109 5.4.1 Simulation model uncertainties...................111 5.5 Dilution final results............................. 113 6 The Parity-Violating Asymmetry of Aluminum 115 6.1 Aluminum asymmetry overview....................... 115 6.2 Data quality.................................. 116 6.3 Asymmetry analysis............................. 122 6.3.1 Raw asymmetry and background corrections . 124 6.3.2 Extracting the Qweak correction................... 131 7 Concluding discussions 136 7.1 Summary of findings............................. 136 7.2 Current Run 2 Qweak Results........................ 137 7.3 Future work.................................. 142 Appendices 145 A Møller-Compton Cross Calibration 145 A.1 Systematics and method........................... 145 A.2 Data, analysis, and results.......................... 148 B Alternate Rate Determinations 152 B.1 Scaler based main detector deadtime determination............ 152 iv B.2 Event-mode technique............................ 155 B.2.1 Rates in event-mode.........................156 B.2.2 Detector deadtimes.......................... 158 B.2.3 Prescaling, DAQ deadtime, and time determination . 159 B.3 Data analysis................................. 160 Bibliography 162 v Acknowledgements This milestone was made possible in large-part due to the wonderful people surrounding me at William and Mary and Jefferson Lab. Without the generous gift of their time and help, this document would be, in some way, incomplete. More importantly, without them my life would be less colorful, rich, and fufilling. I will do my best to continue the grand tradition of naming everybody, but there is a near uncountable set, and I fear my attempts may be incomplete at points. First I should thank everyone at William and Mary, in particular Marc Sher, who encouraged my application and acceptance into the program. As an engineer with little previous formal physics training, it was often overwhelming, but worth it. Everybody was so supportive, and I am grateful for the nuturing environment provided. Thank you to Paula, Carol, Elle, and Bonnie for putting up with my antics and crazy sense of humor, and for making my time there so much more enjoyable (and for always sharing the best sandwich in town). I am indebted to my fellow Qweak graduate students. Many, many owl shifts (and late-night \shifts" at the bar) were spent with Manolis, Scott, Adesh, Wade, Anna, and Nur. Amrendra brought much needed joy and peace during many stressful times. The first Qweak graduate students to graduate, in particular John Leacock, Rakitha, and Buddhini, paved the way for the rest of us. Even though not a grad student, Jean-Francois deserves a shout-out for all of his cunning plans and willingness to share his wisdom. Everybody's hard work and clear descriptions made understanding this experiment fun and doable. My fellow William and Mary students spent more time with me than anybody should have to. John Leckey taught me much about project management and that I had to concentrate on what's important in my analysis - not every technique needs refinement. Valerie was always willing to help in my analysis and with the farm. Jim Dowd always brought quick wit, lively debate, and thoughtful discussion. Rachel brought much joy to our meetings and became a dear friend. Josh Hoskins needs to be thanked for the constant trouble I caused him - he has an uncanny ability to put with with my bad jokes about being my namesake. Without his guidance and friendship
Recommended publications
  • Estimation of Baryon Asymmetry of the Universe from Neutrino Physics
    ESTIMATION OF BARYON ASYMMETRY OF THE UNIVERSE FROM NEUTRINO PHYSICS Manorama Bora Department of Physics Gauhati University This thesis is submitted to Gauhati University as requirement for the degree of Doctor of Philosophy Faculty of Science March 2018 I would like to dedicate this thesis to my parents . Abstract The discovery of neutrino masses and mixing in neutrino oscillation experiments in 1998 has greatly increased the interest in a mechanism of baryogenesis through leptogenesis, a model of baryogenesis which is a cosmological consequence. The most popular way to explain why neutrinos are massive but at the same time much lighter than all other fermions, is the see-saw mechanism. Thus, leptogenesis realises a highly non-trivial link between two completely independent experimental observations: the absence of antimatter in the observable universe and the observation of neutrino mixings and masses. Therefore, leptogenesis has a built-in double sided nature.. The discovery of Higgs boson of mass 125GeV having properties consistent with the SM, further supports the leptogenesis mechanism. In this thesis we present a brief sketch on the phenomenological status of Standard Model (SM) and its extension to GUT with or without SUSY. Then we review on neutrino oscillation and its implication with latest experiments. We discuss baryogenesis via leptogenesis through the decay of heavy Majorana neutrinos. We also discuss formulation of thermal leptogenesis. At last we try to explore the possibilities for the discrimination of the six kinds of Quasi- degenerate neutrino(QDN)mass models in the light of baryogenesis via leptogenesis. We have seen that all the six QDN mass models are relevant in the context of flavoured leptogenesis.
    [Show full text]
  • Intrinsic Parity of Neutral Pion
    Intrinsic Parity of Neutral Pion Taushif Ahmed 13th September, 2012 1 2 Contents 1 Symmetry 4 2 Parity Transformation 5 2.1 Parity in CM . 5 2.2 Parity in QM . 6 2.2.1 Active viewpoint . 6 2.2.2 Passive viewpoint . 8 2.3 Parity in Relativistic QM . 9 2.4 Parity in QFT . 9 2.4.1 Parity in Photon field . 11 3 Decay of The Neutral Pion 14 4 Bibliography 17 3 1 Symmetry What does it mean by `a certain law of physics is symmetric under certain transfor- mations' ? To be specific, consider the statement `classical mechanics is symmetric under mirror inversion' which can be defined as follows: take any motion that satisfies the laws of classical mechanics. Then, reflect the motion into a mirror and imagine that the motion in the mirror is actually happening in front of your eyes, and check if the motion satisfies the same laws of clas- sical mechanics. If it does, then classical mechanics is said to be symmetric under mirror inversion. Or more precisely, if all motions that satisfy the laws of classical mechanics also satisfy them after being re- flected into a mirror, then classical mechanics is said to be symmetric under mirror inversion. In general, suppose one applies certain transformation to a motion that follows certain law of physics, if the resulting motion satisfies the same law, and if such is the case for all motion that satisfies the law, then the law of physics is said to be sym- metric under the given transformation. It is important to use exactly the same law of physics after the transfor- mation is applied.
    [Show full text]
  • An Interpreter's Glossary at a Conference on Recent Developments in the ATLAS Project at CERN
    Faculteit Letteren & Wijsbegeerte Jef Galle An interpreter’s glossary at a conference on recent developments in the ATLAS project at CERN Masterproef voorgedragen tot het behalen van de graad van Master in het Tolken 2015 Promotor Prof. Dr. Joost Buysschaert Vakgroep Vertalen Tolken Communicatie 2 ACKNOWLEDGEMENTS First of all, I would like to express my sincere gratitude towards prof. dr. Joost Buysschaert, my supervisor, for his guidance and patience throughout this entire project. Furthermore, I wanted to thank my parents for their patience and support. I would like to express my utmost appreciation towards Sander Myngheer, whose time and insights in the field of physics were indispensable for this dissertation. Last but not least, I wish to convey my gratitude towards prof. dr. Ryckbosch for his time and professional advice concerning the quality of the suggested translations into Dutch. ABSTRACT The goal of this Master’s thesis is to provide a model glossary for conference interpreters on assignments in the domain of particle physics. It was based on criteria related to quality, role, cognition and conference interpreters’ preparatory methodology. This dissertation focuses on terminology used in scientific discourse on the ATLAS experiment at the European Organisation for Nuclear Research. Using automated terminology extraction software (MultiTerm Extract) 15 terms were selected and analysed in-depth in this dissertation to draft a glossary that meets the standards of modern day conference interpreting. The terms were extracted from a corpus which consists of the 50 most recent research papers that were publicly available on the official CERN document server. The glossary contains information I considered to be of vital importance based on relevant literature: collocations in both languages, a Dutch translation, synonyms whenever they were available, English pronunciation and a definition in Dutch for the concepts that are dealt with.
    [Show full text]
  • Frstfo O Ztif
    FRStfo o ztif * CONNISSARIAT A L'ENERGIE ATOMIQUE CENTRE D'ETUDES NUCLEAIRES DE SACLAY CEA-CONF -- 8070 Service de Documentation F9119! GIF SUR YVETTE CEDEX L2 \ PARTICLE PHYSICS AND GAUGE THEORIES MOREL, A. CEA CEN Socloy, IRF, SPh-T Communication présentée à : Court* on poxticlo phytic* Cargos* (Franc*) 15-28 Jul 1985 PARTICLE PHYSICS AND GAUGE THEORIES A. MOREL Service de Physique Théorique CEN SACLA Y 91191 Gif-sur-Yvette Cedex, France These notes are intended to help readers not familiar with parti­ cle physics in entering the domain of gauge field theory applied to the so-called standard model of strong and electroweak interactions. They are mainly based on previous notes written in common with A. Billoire. With re3pect to the latter ones, the introduction is considerably enlar­ ged in order to give non specialists a general overview of present days "elementary" particle physics. The Glashow-Salam-Weinberg model is then treated,with the details which its unquestioned successes deserve, most probably for a long time. Finally SU(5) is presented as a prototype of these developments of particle physics which aim at a unification of all forces. Although its intrinsic theoretical difficulties and the. non- observation of a sizable proton decay rate do not qualify this model as a realistic one, it has many of the properties expected from a "good" unified theory. In particular, it allows one to study interesting con­ nections between particle physics and cosmology. It is a pleasure to thank the organizing committee of the Cargèse school "Particules et Cosmologie", and especially J. Audouze, for the invitation to lecture on these subjects, and M.F.
    [Show full text]
  • The Matter – Antimatter Asymmetry of the Universe and Baryogenesis
    The matter – antimatter asymmetry of the universe and baryogenesis Andrew Long Lecture for KICP Cosmology Class Feb 16, 2017 Baryogenesis Reviews in General • Kolb & Wolfram’s Baryon Number Genera.on in the Early Universe (1979) • Rio5o's Theories of Baryogenesis [hep-ph/9807454]} (emphasis on GUT-BG and EW-BG) • Rio5o & Trodden's Recent Progress in Baryogenesis [hep-ph/9901362] (touches on EWBG, GUTBG, and ADBG) • Dine & Kusenko The Origin of the Ma?er-An.ma?er Asymmetry [hep-ph/ 0303065] (emphasis on Affleck-Dine BG) • Cline's Baryogenesis [hep-ph/0609145] (emphasis on EW-BG; cartoons!) Leptogenesis Reviews • Buchmuller, Di Bari, & Plumacher’s Leptogenesis for PeDestrians, [hep-ph/ 0401240] • Buchmulcer, Peccei, & Yanagida's Leptogenesis as the Origin of Ma?er, [hep-ph/ 0502169] Electroweak Baryogenesis Reviews • Cohen, Kaplan, & Nelson's Progress in Electroweak Baryogenesis, [hep-ph/ 9302210] • Trodden's Electroweak Baryogenesis, [hep-ph/9803479] • Petropoulos's Baryogenesis at the Electroweak Phase Transi.on, [hep-ph/ 0304275] • Morrissey & Ramsey-Musolf Electroweak Baryogenesis, [hep-ph/1206.2942] • Konstandin's Quantum Transport anD Electroweak Baryogenesis, [hep-ph/ 1302.6713] Constituents of the Universe formaon of large scale structure (galaxy clusters) stars, planets, dust, people late ame accelerated expansion Image stolen from the Planck website What does “ordinary matter” refer to? Let’s break it down to elementary particles & compare number densities … electron equal, universe is neutral proton x10 billion 3⇣(3) 3 3 n =3 T 168 cm− neutron x7 ⌫ ⇥ 4⇡2 ⌫ ' matter neutrinos photon positron =0 2⇣(3) 3 3 n = T 413 cm− γ ⇡2 CMB ' anti-proton =0 3⇣(3) 3 3 anti-neutron =0 n =3 T 168 cm− ⌫¯ ⇥ 4⇡2 ⌫ ' anti-neutrinos antimatter What is antimatter? First predicted by Dirac (1928).
    [Show full text]
  • Helicity of the Neutrino Determination of the Nature of Weak Interaction
    GENERAL ¨ ARTICLE Helicity of the Neutrino Determination of the Nature of Weak Interaction Amit Roy Measurement of the helicity of the neutrino was crucial in identifying the nature of weak interac- tion. The measurement is an example of great ingenuity in choosing, (i) the right nucleus with a specific type of decay, (ii) the technique of res- onant fluorescence scattering for determining di- rection of neutrino and (iii) transmission through Amit Roy is currently at magnetised iron for measuring polarisation of γ- the Variable Energy rays. Cyclotron Centre after working at Tata Institute In the field of art and sculpture, we sometimes come of Fundamental Research across a piece of work of rare beauty, which arrests our and Inter-University attention as soon as we focus our gaze on it. The ex- Accelerator Centre. His research interests are in periment on the determination of helicity of the neutrino nuclear, atomic and falls in a similar category among experiments in the field accelerator physics. of modern physics. The experiments on the discovery of parity violation in 1957 [1] had established that the vi- olation parity was maximal in beta decay and that the polarisation of the emitted electron was 100%. This im- plies that its helicity was −1. The helicity of a particle is a measure of the angle (co- sine) between the spin direction of the particle and its momentum direction. H = σ.p,whereσ and p are unit vectors in the direction of the spin and the momentum, respectively. The spin direction of a particle of posi- tive helicity is parallel to its momentum direction, and for that of negative helicity, the directions are opposite (Box 1).
    [Show full text]
  • Title: Parity Non-Conservation in Β-Decay of Nuclei: Revisiting Experiment and Theory Fifty Years After
    Title: Parity non-conservation in β-decay of nuclei: revisiting experiment and theory fifty years after. IV. Parity breaking models. Author: Mladen Georgiev (ISSP, Bulg. Acad. Sci., Sofia) Comments: some 26 pdf pages with 4 figures. In memoriam: Prof. R.G. Zaykoff Subj-class: physics This final part offers a survey of models proposed to cope with the symmetry-breaking challenge. Among them are the two-component neutrinos, the neutrino twins, the universal Fermi interaction, etc. Moreover, the broken discrete symmetries in physics are very much on the agenda and may occupy considerable time for LHC experiments aimed at revealing the symmetry-breaking mechanisms. Finally, an account of the achievements of dual-component theories in explaining parity-breaking phenomena is added. 7. Two-component neutrino In the previous parts I through III of the paper we described the theoretical background as well as the bulk experimental evidence that discrete group symmetries break up in weak interactions, such as the β−decay. This last part IV will be devoted to the theoretical models designed to cope with the parity-breaking challenge. The quality of the proposed theories and the accuracy of the experiments made to check them underline the place occupied by papers such as ours in the dissemination of symmetry-related matter of modern science. 7.1. Neutrino gauge In the general form of β-interaction (5.6) the case Ck' = ±Ck (7.1) is of particular interest. It corresponds to interchanging the neutrino wave function in the parity-conserving Hamiltonian ( Ck' = 0 ) with the function ψν' = (! ± γs )ψν (7.2) In as much as parity is not conserved with this transformation, it is natural to put the blame on the neutrino.
    [Show full text]
  • MHPAEA-Faqs-Part-45.Pdf
    CCIIO OG MWRD 1295 FAQS ABOUT MENTAL HEALTH AND SUBSTANCE USE DISORDER PARITY IMPLEMENTATION AND THE CONSOLIDATED APPROPRIATIONS ACT, 2021 PART 45 April 2, 2021 The Consolidated Appropriations Act, 2021 (the Appropriations Act) amended the Mental Health Parity and Addiction Equity Act of 2008 (MHPAEA) to provide important new protections. The Departments of Labor (DOL), Health and Human Services (HHS), and the Treasury (collectively, “the Departments”) have jointly prepared this document to help stakeholders understand these amendments. Previously issued Frequently Asked Questions (FAQs) related to MHPAEA are available at https://www.dol.gov/agencies/ebsa/laws-and- regulations/laws/mental-health-and-substance-use-disorder-parity and https://www.cms.gov/cciio/resources/fact-sheets-and-faqs#Mental_Health_Parity. Mental Health Parity and Addiction Equity Act of 2008 MHPAEA generally provides that financial requirements (such as coinsurance and copays) and treatment limitations (such as visit limits) imposed on mental health or substance use disorder (MH/SUD) benefits cannot be more restrictive than the predominant financial requirements and treatment limitations that apply to substantially all medical/surgical benefits in a classification.1 In addition, MHPAEA prohibits separate treatment limitations that apply only to MH/SUD benefits. MHPAEA also imposes several important disclosure requirements on group health plans and health insurance issuers. The MHPAEA final regulations require that a group health plan or health insurance issuer may
    [Show full text]
  • Relativistic Quantum Mechanics 1
    Relativistic Quantum Mechanics 1 The aim of this chapter is to introduce a relativistic formalism which can be used to describe particles and their interactions. The emphasis 1.1 SpecialRelativity 1 is given to those elements of the formalism which can be carried on 1.2 One-particle states 7 to Relativistic Quantum Fields (RQF), which underpins the theoretical 1.3 The Klein–Gordon equation 9 framework of high energy particle physics. We begin with a brief summary of special relativity, concentrating on 1.4 The Diracequation 14 4-vectors and spinors. One-particle states and their Lorentz transforma- 1.5 Gaugesymmetry 30 tions follow, leading to the Klein–Gordon and the Dirac equations for Chaptersummary 36 probability amplitudes; i.e. Relativistic Quantum Mechanics (RQM). Readers who want to get to RQM quickly, without studying its foun- dation in special relativity can skip the first sections and start reading from the section 1.3. Intrinsic problems of RQM are discussed and a region of applicability of RQM is defined. Free particle wave functions are constructed and particle interactions are described using their probability currents. A gauge symmetry is introduced to derive a particle interaction with a classical gauge field. 1.1 Special Relativity Einstein’s special relativity is a necessary and fundamental part of any Albert Einstein 1879 - 1955 formalism of particle physics. We begin with its brief summary. For a full account, refer to specialized books, for example (1) or (2). The- ory oriented students with good mathematical background might want to consult books on groups and their representations, for example (3), followed by introductory books on RQM/RQF, for example (4).
    [Show full text]
  • Fundamental Physical Constants: Looking from Different Angles
    1 Fundamental Physical Constants: Looking from Different Angles Savely G. Karshenboim Abstract: We consider fundamental physical constants which are among a few of the most important pieces of information we have learned about Nature after its intensive centuries- long studies. We discuss their multifunctional role in modern physics including problems related to the art of measurement, natural and practical units, origin of the constants, their possible calculability and variability etc. PACS Nos.: 06.02.Jr, 06.02.Fn Resum´ e´ : Nous ... French version of abstract (supplied by CJP) arXiv:physics/0506173v2 [physics.atom-ph] 28 Jul 2005 [Traduit par la r´edaction] Received 2004. Accepted 2005. Savely G. Karshenboim. D. I. Mendeleev Institute for Metrology, St. Petersburg, 189620, Russia and Max- Planck-Institut f¨ur Quantenoptik, Garching, 85748, Germany; e-mail: [email protected] unknown 99: 1–46 (2005) 2005 NRC Canada 2 unknown Vol. 99, 2005 Contents 1 Introduction 3 2 Physical Constants, Units and Art of Measurement 4 3 Physical Constants and Precision Measurements 7 4 The International System of Units SI: Vacuum constant ǫ0, candela, kelvin, mole and other questions 10 4.1 ‘Unnecessary’units. .... .... ... .... .... .... ... ... ...... 10 4.2 ‘Human-related’units. ....... 11 4.3 Vacuum constant ǫ0 andGaussianunits ......................... 13 4.4 ‘Unnecessary’units,II . ....... 14 5 Physical Phenomena Governed by Fundamental Constants 15 5.1 Freeparticles ................................... .... 16 5.2 Simpleatomsandmolecules . .....
    [Show full text]
  • Introduction to Flavour Physics
    Introduction to flavour physics Y. Grossman Cornell University, Ithaca, NY 14853, USA Abstract In this set of lectures we cover the very basics of flavour physics. The lec- tures are aimed to be an entry point to the subject of flavour physics. A lot of problems are provided in the hope of making the manuscript a self-study guide. 1 Welcome statement My plan for these lectures is to introduce you to the very basics of flavour physics. After the lectures I hope you will have enough knowledge and, more importantly, enough curiosity, and you will go on and learn more about the subject. These are lecture notes and are not meant to be a review. In the lectures, I try to talk about the basic ideas, hoping to give a clear picture of the physics. Thus many details are omitted, implicit assumptions are made, and no references are given. Yet details are important: after you go over the current lecture notes once or twice, I hope you will feel the need for more. Then it will be the time to turn to the many reviews [1–10] and books [11, 12] on the subject. I try to include many homework problems for the reader to solve, much more than what I gave in the actual lectures. If you would like to learn the material, I think that the problems provided are the way to start. They force you to fully understand the issues and apply your knowledge to new situations. The problems are given at the end of each section.
    [Show full text]
  • Outline of Lecture 2 Baryon Asymmetry of the Universe. What's
    Outline of Lecture 2 Baryon asymmetry of the Universe. What’s the problem? Electroweak baryogenesis. Electroweak baryon number violation Electroweak transition What can make electroweak mechanism work? Dark energy Baryon asymmetry of the Universe There is matter and no antimatter in the present Universe. Baryon-to-photon ratio, almost constant in time: nB 10 ηB = 6 10− ≡ nγ · Baryon-to-entropy, constant in time: n /s = 0.9 10 10 B · − What’s the problem? Early Universe (T > 1012 K = 100 MeV): creation and annihilation of quark-antiquark pairs ⇒ n ,n n q q¯ ≈ γ Hence nq nq¯ 9 − 10− nq + nq¯ ∼ How was this excess generated in the course of the cosmological evolution? Sakharov conditions To generate baryon asymmetry, three necessary conditions should be met at the same cosmological epoch: B-violation C-andCP-violation Thermal inequilibrium NB. Reservation: L-violation with B-conservation at T 100 GeV would do as well = Leptogenesis. & ⇒ Can baryon asymmetry be due to electroweak physics? Baryon number is violated in electroweak interactions. Non-perturbative effect Hint: triangle anomaly in baryonic current Bµ : 2 µ 1 gW µνλρ a a ∂ B = 3colors 3generations ε F F µ 3 · · · 32π2 µν λρ ! "Bq a Fµν: SU(2)W field strength; gW : SU(2)W coupling Likewise, each leptonic current (n = e, µ,τ) g2 ∂ Lµ = W ε µνλρFa Fa µ n 32π2 · µν λρ a 1 Large field fluctuations, Fµν ∝ gW− may have g2 Q d3xdt W ε µνλρFa Fa = 0 ≡ 32 2 · µν λρ ' # π Then B B = d3xdt ∂ Bµ =3Q fin− in µ # Likewise L L =Q n, fin− n, in B is violated, B L is not.
    [Show full text]