On the Generic Low-Rank Matrix Completion

Total Page:16

File Type:pdf, Size:1020Kb

On the Generic Low-Rank Matrix Completion On the Generic Low-Rank Matrix Completion Yuan Zhang, Yuanqing Xia∗, Hongwei Zhang, Gang Wang, and Li Dai Abstract—This paper investigates the low-rank matrix com- where the matrix to be completed consists of spatial coordi- pletion (LRMC) problem from a generic vantage point. Unlike nates and temporal (frame) indices [9, 10]. most existing work that has focused on recovering a low-rank matrix from a subset of the entries with specified values, the The holy grail of the LRMC is that, the essential information only information available here is just the pattern (i.e., positions) of a low-rank matrix could be contained in a small subset of of observed entries. To be precise, given is an n × m pattern matrix (n ≤ m) whose entries take fixed zero, unknown generic entries. Therefore, there is a chance to complete a matrix from values, and missing values that are free to be chosen from the a few observed entries [5, 11, 12]. complex field, the question of interest is whether there is a matrix completion with rank no more than n − k (k ≥ 1) for almost all Thanks to the widespread applications of LRMC in di- values of the unknown generic entries, which is called the generic verse fields, many LRMC techniques have been developed low-rank matrix completion (GLRMC) associated with (M,k), [4, 5, 8, 12–16]; see [11, 17] for related survey. Since the rank and abbreviated as GLRMC(M,k). Leveraging an elementary constraint is nonconvex, the minimum rank matrix completion tool from the theory on systems of polynomial equations, we give a simple proof for genericity of this problem, which was first (MRMC) problem which asks for the minimum rank over observed by Kirly et al., that is, depending on the pattern of the all possible matrix completions, is NP-hard [4]. A natural observed entries, the answer is either yes or no, for almost all surrogate of the MRMC problem is to relax the rank optimiza- realizations of the unknown generic entries. We provide necessary tion problem using the nuclear norm minimization (NNM), and sufficient conditions ensuring feasibility of GLRMC(M, 1). which can be solved efficiently by semi-definite programming Aso, we provide a sufficient condition and a necessary condition (which we conjecture to be sufficient too) for the general case (SDP) [4, 13, 18]. It has been proven that the NNM can (i.e., k ≥ 1). In the following, two randomized algorithms perfectly recover a low-rank matrix, provided that the number are presented to determine upper and lower bounds for the of observed entries, whose locations are uniformly sampled generic minimum completion rank. Our approaches are based at random, exceeds a certain threshold depending on the on the algebraic geometry theory, and a novel basis preservation rank and coherence of the low-rank matrix. A regularization principle discovered herein. Finally, numerical simulations are given to corroborate the theoretical findings and the effectiveness term was added to the NNM function, resulting in a singular of the proposed algorithms. value thresholding (SVT) algorithm of lower computational complexity than SDP [14]. Some algorithms targeted the Index Terms—Low-rank matrix completion, generic property, algebraic geometry, basis preservation principle, graph theory Frobenius norm minimization (FNM) subject to known rank constraints, which includes, to name a few, ADMiRA using greedy projection to identify a set of rank-one matrices to I. INTRODUCTION approximate the original matrix [19], LMaFit based on a Matrix completion, that is, the problem of completing a nonlinear successive over-relaxation technique [8], SVP using matrix and recovering the missing entries, has long been a singular value projection [15], and RKHS via reproducing Ker- research focus in different communities [1–6]. The key idea nel Hilbert space [16]. Inference and uncertainty quantification enabling the recovery is the “regularity” present in both the in noisy matrix completion has recently been addressed in [12]. arXiv:2102.11490v2 [cs.IT] 7 May 2021 missing as well as available entries. Low rank is an attribute characterizing such regularity, and it has been thoroughly ex- Despite the above achievements, in a more practical scenario ploited in the so-called low-rank matrix completion (LRMC). where the patterns of observed entries may not be random, or Low-rank matrices naturally arise in a variety of practical no prior knowledge about the rank or coherence of the low- scenarios, including collaborative filtering in recommendation rank matrix is available, there remains not much to claim for systems [7], image and video compression and recovery [8], these algorithms in terms of the exact recovery guarantees. reduced-order controller design [4], tensor decomposition in This is particularly the case when the observed entries are hyperspectral imaging [6], to name a few. In computer vision, corrupted by noise with unknown statistical characteristics, for example, recovering or denoising a scene from a sequence rendering their exact values unavailable. This has indeed of images (frames) can be formulated as an LRMC problem, inspired us to ask a meaningful and fundamental question: Given only a pattern of the observed and missing entries, This work was supported in part by the China Postdoctoral Innova- whether matrix completion of a prescribed rank exists or not tive Talent Support Program under Grant BX20200055, the China Post- doctoral Science Foundation under Grant 2020M680016, the National for almost all values of the observed entries? Natural Science Foundation of China under Grant 62003042, and the State Key Program of National Natural Science Foundation of China To address this question, this paper inherits and devel- under Grant 61836001. The authors are with the School of Automa- ops the framework that is termed generic low-rank matrix tion, Beijing Institute of Technology, Beijing 100081, China (email: [email protected]; xia [email protected] [corresponding author]; completion (GLRMC). In the literature, ‘genericity’ means [email protected]; [email protected]; [email protected]). ‘typical behavior’ or ‘happens with probability 1’. In other words, a property is generic, if for almost all1 parameters in erations such as maximum matching computations and set the corresponding space, this property holds; the parameters unions/interactions, and does not involve the Jacobian matrix violating the property have zero measure. In fact, genericity or random matrices adopted in [24]. As the exact values of has attracted considerable attention in control theory [20– observed entries are no longer needed, the proposed approach 22], and rigidity theory [23]. Genericity in the LRMC was is robust against rounding errors and noise corruption. In initialized in the pioneering work [24], where the authors particular, in scenarios where exact values of the observed introduced an algebraic-combinatorial approach to study some entries are not available or corrupted by noise with unknown fundamental problems in the LRMC from a generic viewpoint. statistical characteristics, the GLRMC can provide information This approach was later developed to matrix completions in the beyond the scope of most existing LRMC approaches. Notably, real-field [25, 26], as well as to symmetric matrix completions for LRMC techniques that require a priori rank knowledge, [27]. However, except for some special cases, such as the rank- such as the LMaFit [8] and the SVP [15], our approach may one matrix completion or for a r r square matrix to have come handy providing reasonable prior bounds. × rank r 1 completion [24, 26], the above-mentioned question It is also worth stressing that, genericity does not rule remains− largely unresolved. out ‘exceptional’ cases. When additional knowledge on the In the GLRMC of this paper, given a pattern of observed observed entries is available, corresponding modifications of entries, the observed entries are classified into two types, the GLRMC approach might be due before it becomes valid. namely, fixed zero entries and unknown generic entries (the As a matter of fact, for a specific pattern, [28] has provided former does not necessarily exist), and the missing entries are conditions for the uniqueness of rank-r matrix completion, free to be chosen from the complex field. The introduction of but it may still require exact values of the observed entries. fixed zero entries is intended to fit a broader scenario where GLRMC also differs from the minimum rank problem of a the zero/nonzero information of the observed entries may be graph studied in [29, chap 46]. The latter seeks to find the available, which also makes the present work differ from the smallest possible rank over all matrices whose (i, j)th entry previous ones on this topic [24–27]. We show that the existence is nonzero whenever (i, j) is an edge of that graph and zero of a matrix completion with a prescribed rank r is generic. Put otherwise. differently, either for almost all realizations of the unknown The rest of this paper is organized as follows. Section generic entries, the LRMC with rank r is feasible, or for almost II presents the problem formulation. Section III establishes all realizations, the LRMC is infeasible. The genericity in genericity of the feasibility of the LRMC for a given pattern. LRMC without the fixed zero entries was first proved in [24], Section IV provides necessary and sufficient conditions for where the Jacobian of the masking operator was used. Here, we the feasibility of GLRMC under the constraint that the rank provide an alternatively simple proof based on an elementary of the completion reduces at least one, with proof is given in tool from the theory of systems of polynomial equations. For Section V. Section VI extends the results to the general case. an n m rectangular pattern (n m), we give necessary Numerical simulations are presented in Section VII to validate × ≤ and sufficient deterministic conditions for the feasibility of the theoretical findings.
Recommended publications
  • Generic Global Rigidity in Complex and Pseudo-Euclidean Spaces 3
    GENERIC GLOBAL RIGIDITY IN COMPLEX AND PSEUDO-EUCLIDEAN SPACES STEVEN J. GORTLER AND DYLAN P. THURSTON Abstract. In this paper we study the property of generic global rigidity for frameworks of graphs embedded in d-dimensional complex space and in a d-dimensional pseudo- Euclidean space (Rd with a metric of indefinite signature). We show that a graph is generically globally rigid in Euclidean space iff it is generically globally rigid in a complex or pseudo-Euclidean space. We also establish that global rigidity is always a generic property of a graph in complex space, and give a sufficient condition for it to be a generic property in a pseudo-Euclidean space. Extensions to hyperbolic space are also discussed. 1. Introduction The property of generic global rigidity of a graph in d-dimensional Euclidean space has recently been fully characterized [4, 7]. It is quite natural to study this property in other spaces as well. For example, recent work of Owen and Jackson [8] has studied the number of equivalent realizations of frameworks in C2. In this paper we study the property of generic global rigidity of graphs embedded in Cd as well as graphs embedded in a pseudo Euclidean space (Rd equipped with an indefinite metric signature). We show that a graph Γ is generically globally rigid (GGR) in d-dimensional Euclidean space iff Γ is GGR in d-dimensional complex space. Moreover, for any metric signature, s, We show that a graph Γ is GGR in d-dimensional Euclidean space iff Γ is GGR in d- dimensional real space under the signature s.
    [Show full text]
  • A New Mathematical Model for Tiling Finite Regions of the Plane with Polyominoes
    Volume 15, Number 2, Pages 95{131 ISSN 1715-0868 A NEW MATHEMATICAL MODEL FOR TILING FINITE REGIONS OF THE PLANE WITH POLYOMINOES MARCUS R. GARVIE AND JOHN BURKARDT Abstract. We present a new mathematical model for tiling finite sub- 2 sets of Z using an arbitrary, but finite, collection of polyominoes. Unlike previous approaches that employ backtracking and other refinements of `brute-force' techniques, our method is based on a systematic algebraic approach, leading in most cases to an underdetermined system of linear equations to solve. The resulting linear system is a binary linear pro- gramming problem, which can be solved via direct solution techniques, or using well-known optimization routines. We illustrate our model with some numerical examples computed in MATLAB. Users can download, edit, and run the codes from http://people.sc.fsu.edu/~jburkardt/ m_src/polyominoes/polyominoes.html. For larger problems we solve the resulting binary linear programming problem with an optimization package such as CPLEX, GUROBI, or SCIP, before plotting solutions in MATLAB. 1. Introduction and motivation 2 Consider a planar square lattice Z . We refer to each unit square in the lattice, namely [~j − 1; ~j] × [~i − 1;~i], as a cell.A polyomino is a union of 2 a finite number of edge-connected cells in the lattice Z . We assume that the polyominoes are simply-connected. The order (or area) of a polyomino is the number of cells forming it. The polyominoes of order n are called n-ominoes and the cases for n = 1; 2; 3; 4; 5; 6; 7; 8 are named monominoes, dominoes, triominoes, tetrominoes, pentominoes, hexominoes, heptominoes, and octominoes, respectively.
    [Show full text]
  • A Generic Property of the Bounded Syzygy Solutions Author(S): Florin N
    A Generic Property of the Bounded Syzygy Solutions Author(s): Florin N. Diacu Source: Proceedings of the American Mathematical Society, Vol. 116, No. 3 (Nov., 1992), pp. 809-812 Published by: American Mathematical Society Stable URL: http://www.jstor.org/stable/2159450 Accessed: 16/11/2009 21:52 Your use of the JSTOR archive indicates your acceptance of JSTOR's Terms and Conditions of Use, available at http://www.jstor.org/page/info/about/policies/terms.jsp. JSTOR's Terms and Conditions of Use provides, in part, that unless you have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and you may use content in the JSTOR archive only for your personal, non-commercial use. Please contact the publisher regarding any further use of this work. Publisher contact information may be obtained at http://www.jstor.org/action/showPublisher?publisherCode=ams. Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or printed page of such transmission. JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact [email protected]. American Mathematical Society is collaborating with JSTOR to digitize, preserve and extend access to Proceedings of the American Mathematical Society. http://www.jstor.org PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 116, Number 3, November 1992 A GENERIC PROPERTY OF THE BOUNDED SYZYGY SOLUTIONS FLORIN N.
    [Show full text]
  • Iterative Properties of Birational Rowmotion II: Rectangles and Triangles
    Iterative properties of birational rowmotion II: Rectangles and triangles The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Citation Grinberg, Darij, and Tom Roby. "Iterative properties of birational rowmotion II: Rectangles and triangles." Electronic Journal of Combinatorics 22(3) (2015). As Published http://www.combinatorics.org/ojs/index.php/eljc/article/view/ v22i3p40 Publisher European Mathematical Information Service (EMIS) Version Final published version Citable link http://hdl.handle.net/1721.1/100753 Terms of Use Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use. Iterative properties of birational rowmotion II: rectangles and triangles Darij Grinberg∗ Tom Robyy Department of Mathematics Department of Mathematics Massachusetts Institute of Technology University of Connecticut Massachusetts, U.S.A. Connecticut, U.S.A. [email protected] [email protected] Submitted: May 1, 2014; Accepted: Sep 8, 2015; Published: Sep 20, 2015 Mathematics Subject Classifications: 06A07, 05E99 Abstract Birational rowmotion { a birational map associated to any finite poset P { has been introduced by Einstein and Propp as a far-reaching generalization of the (well- studied) classical rowmotion map on the set of order ideals of P . Continuing our exploration of this birational rowmotion, we prove that it has order p+q on the (p; q)- rectangle poset (i.e., on the product of a p-element chain with a q-element chain); we also compute its orders on some triangle-shaped posets. In all cases mentioned, it turns out to have finite (and explicitly computable) order, a property it does not exhibit for general finite posets (unlike classical rowmotion, which is a permutation of a finite set).
    [Show full text]
  • Lids-R-904 Robust Stability of Linear Systems
    LIDS-R-904 ROBUST STABILITY OF LINEAR SYSTEMS - SOME COMPUTATIONAL CONSIDERATIONS* by Alan J. Laub** 1. INTRODUCTION In this paper we shall concentrate on some of the computational issues which arise in studying the robust stability of linear systems. Insofar as possible, we shall use notation consistent with Stein's paper [11 and we shall make frequent reference to that work. As we saw in [1] a basic stability question for a linear time-invariant system with transfer matrix G(s) is the following: given that a nominal closed-loop feedbadk system is stable, does the feedback system remain stable when subjected to perturbations and how large can those perturba- tions be? It turned out, through invocation of the Nyquist Criterion, that the size of the allowable perturbations was related to the "nearness to singularity" of the return difference matrix I + G(jW). Closed-loop stability was said to be "robust" if G could tolerate considerable perturbation before I + G became singular. Invited Paper presented at the Second Annual Workshop on the Informa- tion Linkage between Applied Mathematics and Industry held at Naval Postgraduate School, Monterey, California, Feb. 20-24, 1979; this research was partially supported by NASA under grant NGL-22-009-124 and the Department of Energy under grant ET-78-(01-3395). ** Laboratory for Information and Decision Systems, Pm. 35-331, M.I.T., Cambridge, MA 02139. -2- We shall now indulge in a modicum of abstraction and attempt to formalize the notion of robustness. The definition will employ some jargon from algebraic geometry and will be applicable to a variety of situations.
    [Show full text]
  • Generic Flatness for Strongly Noetherian Algebras
    Journal of Algebra 221, 579–610 (1999) Article ID jabr.1999.7997, available online at http://www.idealibrary.com on Generic Flatness for Strongly Noetherian Algebras M. Artin* Department of Mathematics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 View metadata, citation and similar papersE-mail: at core.ac.uk [email protected] brought to you by CORE provided by Elsevier - Publisher Connector L. W. Small Department of Mathematics, University of California at San Diego, La Jolla, California 92093 E-mail: [email protected] and J. J. Zhang Department of Mathematics, Box 354350, University of Washington, Seattle, Washington 98195 E-mail: [email protected] Communicated by J. T. Stafford Received November 18, 1999 Key Words: closed set; critically dense; generically flat; graded ring; Nullstellen- satz; strongly noetherian; universally noetherian. © 1999 Academic Press CONTENTS 0. Introduction. 1. Blowing up a critically dense sequence. 2. A characterization of closed sets. 3. Generic flatness. 4. Strongly noetherian and universally noetherian algebras. 5. A partial converse. *All three authors were supported in part by the NSF and the third author was also supported by a Sloan Research Fellowship. 579 0021-8693/99 $30.00 Copyright © 1999 by Academic Press All rights of reproduction in any form reserved. 580 artin, small, and zhang 0. INTRODUCTION In general, A will denote a right noetherian associative algebra over a commutative noetherian ring R.LetR0 be a commutative R-algebra. If R0 is finitely generated over R, then a version of the Hilbert basis theorem 0 asserts that A ⊗R R is right noetherian. We call an algebra A strongly right 0 0 noetherian if A ⊗R R is right noetherian whenever R is noetherian.
    [Show full text]
  • Generic Continuous Functions and Other Strange Functions in Classical Real Analysis
    Georgia State University ScholarWorks @ Georgia State University Mathematics Theses Department of Mathematics and Statistics 4-17-2008 Generic Continuous Functions and other Strange Functions in Classical Real Analysis Douglas Albert Woolley Follow this and additional works at: https://scholarworks.gsu.edu/math_theses Part of the Mathematics Commons Recommended Citation Woolley, Douglas Albert, "Generic Continuous Functions and other Strange Functions in Classical Real Analysis." Thesis, Georgia State University, 2008. https://scholarworks.gsu.edu/math_theses/44 This Thesis is brought to you for free and open access by the Department of Mathematics and Statistics at ScholarWorks @ Georgia State University. It has been accepted for inclusion in Mathematics Theses by an authorized administrator of ScholarWorks @ Georgia State University. For more information, please contact [email protected]. GENERIC CONTINUOUS FUNCTIONS AND OTHER STRANGE FUNCTIONS IN CLASSICAL REAL ANALYSIS by Douglas A. Woolley Under the direction of Mihaly Bakonyi ABSTRACT In this paper we examine continuous functions which on the surface seem to defy well-known mathematical principles. Before describing these functions, we introduce the Baire Cate- gory theorem and the Cantor set, which are critical in describing some of the functions and counterexamples. We then describe generic continuous functions, which are nowhere differ- entiable and monotone on no interval, and we include an example of such a function. We then construct a more conceptually challenging function, one which is everywhere differen- tiable but monotone on no interval. We also examine the Cantor function, a nonconstant continuous function with a zero derivative almost everywhere. The final section deals with products of derivatives. INDEX WORDS: Baire, Cantor, Generic Functions, Nowhere Differentiable GENERIC CONTINUOUS FUNCTIONS AND OTHER STRANGE FUNCTIONS IN CLASSICAL REAL ANALYSIS by Douglas A.
    [Show full text]
  • Non-Commutative Cryptography and Complexity of Group-Theoretic Problems
    Mathematical Surveys and Monographs Volume 177 Non-commutative Cryptography and Complexity of Group-theoretic Problems Alexei Myasnikov Vladimir Shpilrain Alexander Ushakov With an appendix by Natalia Mosina American Mathematical Society http://dx.doi.org/10.1090/surv/177 Mathematical Surveys and Monographs Volume 177 Non-commutative Cryptography and Complexity of Group-theoretic Problems Alexei Myasnikov Vladimir Shpilrain Alexander Ushakov With an appendix by Natalia Mosina American Mathematical Society Providence, Rhode Island EDITORIAL COMMITTEE Ralph L. Cohen, Chair MichaelA.Singer Jordan S. Ellenberg Benjamin Sudakov MichaelI.Weinstein 2010 Mathematics Subject Classification. Primary 94A60, 20F10, 68Q25, 94A62, 11T71. For additional information and updates on this book, visit www.ams.org/bookpages/surv-177 Library of Congress Cataloging-in-Publication Data Myasnikov, Alexei G., 1955– Non-commutative cryptography and complexity of group-theoretic problems / Alexei Myas- nikov, Vladimir Shpilrain, Alexander Ushakov ; with an appendix by Natalia Mosina. p. cm. – (Mathematical surveys and monographs ; v. 177) Includes bibliographical references and index. ISBN 978-0-8218-5360-3 (alk. paper) 1. Combinatorial group theory. 2. Cryptography. 3. Computer algorithms. 4. Number theory. I. Shpilrain, Vladimir, 1960– II. Ushakov, Alexander. III. Title. QA182.5.M934 2011 005.82–dc23 2011020554 Copying and reprinting. Individual readers of this publication, and nonprofit libraries acting for them, are permitted to make fair use of the material, such as to copy a chapter for use in teaching or research. Permission is granted to quote brief passages from this publication in reviews, provided the customary acknowledgment of the source is given. Republication, systematic copying, or multiple reproduction of any material in this publication is permitted only under license from the American Mathematical Society.
    [Show full text]
  • Arxiv:1806.05346V4 [Math.AG]
    How many zeroes? Counting the number of solutions of systems of polynomials via geometry at infinity Part I: Toric theory Pinaki Mondal arXiv:1806.05346v4 [math.AG] 26 Mar 2020 Preface In this book we describe an approach through toric geometry to the following problem: “estimate the number (counted with appropriate multiplicity) of isolated solutions of n polynomial equations in n variables over an algebraically closed field k.” The outcome of this approach is the number of solutions for “generic” systems in terms of their Newton polytopes, and an explicit characterization of what makes a system “generic.” The pioneering work in this field was done in the 1970s by Kushnirenko, Bernstein and Khovanskii, who completely solved the problem of counting solutions of generic systems on the “torus” n (k 0 ) . In the context of our problem, however, the natural domain of solutions is not the torus, but the \{ } n affine space k . There were a number of works on extension of Bernstein’s theorem to the case of affine space, and recently it has been completely resolved, the final steps having been carried out by the author. The aim of this book is to present these results in a coherent way. We start from the beginning, namely Bernstein’s beautiful theorem which expresses the number of solutions of generic systems in terms of the mixed volume of their Newton polytopes. We give complete proofs, over arbitrary algebraically closed fields, of Bernstein’s theorem and its recent extension to the affine space, and describe some open problems. We also apply the developed techniques to derive and generalize Kushnirenko’s results on Milnor numbers of hypersurface singularities which in 1970s served as a precursor to the development of toric geometry.
    [Show full text]
  • 2 Negligible Sets 15 2.1 Porosity
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by idUS. Depósito de Investigación Universidad de Sevilla FACULTAD DE MATEMATICAS´ DEPARTAMENTO DE ANALISIS´ MATEMATICO´ GENERICITY OF THE FIXED POINT PROPERTY UNDER RENORMING Ph. D. Thesis presented by Supaluk Phothi UNIVERSIDAD DE SEVILLA FACULTAD DE MATEMATICAS´ DEPARTAMENTO DE ANALISIS´ MATEMATICO´ GENERICITY OF THE FIXED POINT PROPERTY UNDER RENORMING Memoria presentada por Supaluk Phothi para optar al grado de Doctora en Matemticas por la Universidad de Sevilla Fdo. Supaluk Phothi V◦.B◦.: Director del trabajo Fdo. Tom´asDom´ınguezBenavides Catedr´aticodel Departamento de An´alisisMatem´atico de la Universidad de Sevilla Sevilla, Julio de 2010 RESUMEN Una aplicaci´on T definida de un espacio m´etrico M en M se dice no expan- siva si d(T x; T y) ≤ d(x; y) para todo x; y 2 M. Diremos que un espacio de Banach X tiene la Propiedad D´ebildel Punto Fijo (w-FPP) si para toda aplicaci´onno expansiva T definida de un subconjunto d´ebilmente compacto convexo C de X en C tiene un punto fijo. En esta disertaci´on,estudiamos principalmente la w-FPP como una propiedad gen´ericaen el conjunto de todas las normas equivalentes de un espacio de Banach reflexivo dado. Una propiedad P se dice gen´ericaen un conjunto A si todos los elementos de A sat- isfacen P excepto aquellos pertenecientes a un conjunto de tama~nopeque~no. Con el fin de establecer los resultados de este trabajo, consideraremos varias nociones de conjuntos peque~nos,como por ejemplo los conjuntos de Baire de primera categor´ıa,conjuntos porosos, conjuntos nulos Gausianos o conjuntos direccionalmente porosos.
    [Show full text]
  • Higher Dimensional Trichotomy Conjectures in Model Theory By
    Higher Dimensional Trichotomy Conjectures in Model Theory by Benjamin Castle A dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Mathematics in the Graduate Division of the University of California, Berkeley Committee in charge: Professor Thomas Scanlon, Chair Associate Professor Pierre Simon Associate Professor Adityanand Guntuboyina Spring 2021 Higher Dimensional Trichotomy Conjectures in Model Theory Copyright 2021 by Benjamin Castle 1 Abstract Higher Dimensional Trichotomy Conjectures in Model Theory by Benjamin Castle Doctor of Philosophy in Mathematics University of California, Berkeley Professor Thomas Scanlon, Chair In this thesis we study the Restricted Trichotomy Conjectures for algebraically closed and o-minimal fields. These conjectures predict a classification of all sufficiently complex, that is, non-locally modular, strongly minimal structures which can be interpreted from such fields. Such problems have been historically divided into `lower dimensional' and `higher dimen- sional' cases; this thesis is devoted to a number of partial results in the higher dimensional cases. In particular, in ACF0 and over o-minimal fields, we prove that all higher dimensional strongly minimal structures whose definable sets satisfy certain geometric restrictions are locally modular. We also make progress toward verifying these geometric restrictions in any counterexample. Finally, in the last chapter we give a full proof of local modularity for strongly minimal expansions of higher dimensional groups in ACF0. i To Katrina and Justin ii Contents Contents ii 1 Introduction 1 1.1 Historical Background . 1 1.2 The Challenge of Working in Higher Dimensions . 3 1.3 Outline of Results . 5 2 Preliminaries on Strongly Minimal Sets 7 2.1 Strong Minimality and Dimension .
    [Show full text]
  • System of Linear Equations - Wikipedia, the Free Encyclopedia
    System of linear equations - Wikipedia, the free encyclopedia http://en.wikipedia.org/wiki/System_of_linear_equations System of linear equations From Wikipedia, the free encyclopedia In mathematics, a system of linear equations (or linear system) is a collection of linear equations involving the same set of variables. For example, is a system of three equations in the three variables x, y, z. A solution to a linear system is an assignment of numbers to the variables such that all the equations are simultaneously satisfied. A solution to the system above is given by A linear system in three variables determines a collection of planes. The intersection point is the solution. since it makes all three equations valid.[1] In mathematics, the theory of linear systems is the basis and a fundamental part of linear algebra, a subject which is used in most parts of modern mathematics. Computational algorithms for finding the solutions are an important part of numerical linear algebra, and play a prominent role in engineering, physics, chemistry, computer science, and economics. A system of non-linear equations can often be approximated by a linear system (see linearization), a helpful technique when making a mathematical model or computer simulation of a relatively complex system. Very often, the coefficients of the equations are real or complex numbers and the solutions are searched in the same set of numbers, but the theory and the algorithms apply for coefficients and solutions in any field. For solutions in an integral domain like the ring of the integers, or in other algebraic structures, other theories have been developed.
    [Show full text]