2 Negligible Sets 15 2.1 Porosity
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Version of 21.8.15 Chapter 43 Topologies and Measures II The
Version of 21.8.15 Chapter 43 Topologies and measures II The first chapter of this volume was ‘general’ theory of topological measure spaces; I attempted to distinguish the most important properties a topological measure can have – inner regularity, τ-additivity – and describe their interactions at an abstract level. I now turn to rather more specialized investigations, looking for features which offer explanations of the behaviour of the most important spaces, radiating outwards from Lebesgue measure. In effect, this chapter consists of three distinguishable parts and two appendices. The first three sections are based on ideas from descriptive set theory, in particular Souslin’s operation (§431); the properties of this operation are the foundation for the theory of two classes of topological space of particular importance in measure theory, the K-analytic spaces (§432) and the analytic spaces (§433). The second part of the chapter, §§434-435, collects miscellaneous results on Borel and Baire measures, looking at the ways in which topological properties of a space determine properties of the measures it carries. In §436 I present the most important theorems on the representation of linear functionals by integrals; if you like, this is the inverse operation to the construction of integrals from measures in §122. The ideas continue into §437, where I discuss spaces of signed measures representing the duals of spaces of continuous functions, and topologies on spaces of measures. The first appendix, §438, looks at a special topic: the way in which the patterns in §§434-435 are affected if we assume that our spaces are not unreasonably complex in a rather special sense defined in terms of measures on discrete spaces. -
Interim Report IR-07-027 Adaptive Dynamics for Physiologically
International Institute for Tel: +43 2236 807 342 Applied Systems Analysis Fax: +43 2236 71313 Schlossplatz 1 E-mail: [email protected] A-2361 Laxenburg, Austria Web: www.iiasa.ac.at Interim Report IR-07-027 Adaptive dynamics for physiologically structured population models Michel Durinx ([email protected]) Johan A.J. Metz ([email protected]) Géza Meszéna ([email protected]) Approved by Ulf Dieckmann Leader, Evolution and Ecology Program October 2007 Interim Reports on work of the International Institute for Applied Systems Analysis receive only limited review. Views or opinions expressed herein do not necessarily represent those of the Institute, its National Member Organizations, or other organizations supporting the work. IIASA STUDIES IN ADAPTIVE DYNAMICS NO. 133 The Evolution and Ecology Program at IIASA fosters the devel- opment of new mathematical and conceptual techniques for un- derstanding the evolution of complex adaptive systems. Focusing on these long-term implications of adaptive processes in systems of limited growth, the Evolution and Ecology Program brings together scientists and institutions from around the world with IIASA acting as the central node. EEP Scientific progress within the network is collected in the IIASA Studies in Adaptive Dynamics series. No. 1 Metz JAJ, Geritz SAH, Meszéna G, Jacobs FJA, van No. 11 Geritz SAH, Metz JAJ, Kisdi É, Meszéna G: The Dy- Heerwaarden JS: Adaptive Dynamics: A Geometrical Study namics of Adaptation and Evolutionary Branching. IIASA of the Consequences of Nearly Faithful Reproduction. IIASA Working Paper WP-96-077 (1996). Physical Review Letters Working Paper WP-95-099 (1995). -
A Generalized Σ–Porous Set with a Small Complement
The Erwin Schr¨odinger International Boltzmanngasse 9 ESI Institute for Mathematical Physics A-1090 Wien, Austria A Generalized σ–porous Set with a Small Complement Jaroslav Tiˇser Vienna, Preprint ESI 1749 (2005) November 30, 2005 Supported by the Austrian Federal Ministry of Education, Science and Culture Available via http://www.esi.ac.at A generalized σ-porous set with a small complement Jaroslav Tiˇser To appear in Abstract and Applied Analysis. Abstract We show that in every Banach space there is a g-porous set the complement of which is of H1 measure zero on every C1 curve. Subject classification: 46B20 Key words: Porous set, Haussdorff measure. 1. Introduction The notion of porosity is one of the notions of smallness which had appeared in a natural way in the theory of differentiation of functions. Porous and σ-porous sets play the role of the exceptional sets in many contexts. A survey as well as further references on this topic can be found in [4]. In finite dimensional Banach spaces the family of all σ-porous sets is a proper subfamily of the sets of both 1-st category and Lebesgue measure zero. The question how big a porous or a σ-porous set can be in an infinite dimensional Banach space is closely related to the existence of a point of Fr´echet differentiability of a Lipschitz function. The simplest connection may be the easy observation that for a porous set M the distance function f(x) = dist(x, M) is a Lipschitz function which is not Fr´echet differentiable at any point of M. -
Beyond Lebesgue and Baire IV: Density Topologies and a Converse
Beyond Lebesgue and Baire IV: Density topologies and a converse Steinhaus-Weil Theorem by N. H. Bingham and A. J. Ostaszewski On the centenary of Hausdorff’s Mengenlehre (1914) and Denjoy’s Approximate continuity (1915) Abstract. The theme here is category-measure duality, in the context of a topological group. One can often handle the (Baire) category case and the (Lebesgue, or Haar) measure cases together, by working bi-topologically: switching between the original topology and a suitable refinement (a density topology). This prompts a systematic study of such density topologies, and the corresponding σ-ideals of negligibles. Such ideas go back to Weil’s classic book, and to Hashimoto’s ideal topologies. We make use of group norms, which cast light on the interplay between the group and measure structures. The Steinhaus- Weil interior-points theorem (‘on AA−1’) plays a crucial role here; so too does its converse, the Simmons-Mospan theorem. Key words. Steinhaus-Weil property, Weil topology, shift-compact, density topology, Hashimoto ideal topology, group norm Mathematics Subject Classification (2000): Primary 26A03; 39B62. 1 Introduction This paper originates from several sources. The first three are our earlier studies ‘Beyond Lebesgue and Baire I-III’ ([BinO1,2], [Ost3]), the general arXiv:1607.00031v2 [math.GN] 8 Nov 2017 theme of which is the similarity (indeed, duality) between measure and ca- tegory, and the primacy of category/topology over measure in many areas. The second three are recent studies by the second author on the Effros Open Mapping Principle ([Ost4,5,6]; §6.4 below). The Steinhaus-Weil property (critical for regular variation: see [BinGT, Th. -
NEGLIGIBLE SETS for REAL CONNECTIVITY FUNCTIONS Jack B
NEGLIGIBLE SETS FOR REAL CONNECTIVITY FUNCTIONS jack b. brown Introduction. Only functions from the interval 1= [0, l] into I will be considered in this paper, and no distinction will be made be- tween a function and its graph. For real functions / from / into I, the property of connectivity is intermediate to that of continuity and the Darboux property, and is equivalent to the property of / being a connected set in the plane. For some connectivity functions g from I into I, it can be observed that there is a subset Af of / such that every function from / into I which agrees with g on 7 —Af is a connectivity function (in this case, M will be said to be g-negli- gible). For example, if Af is a Cantor subset of I and g is a function from I into I such that if x belongs to some component (a, b) of I— M, g (x) = | si n {cot [tr (x —a) / (b —a ]} |, then M is g-negligible. The following theorems will be proved: Theorem 1. If M is a subset of I, then the following statements are equivalent: (i) there is a connectivity function g from I into I such that M is g-negligible, and (ii) every subinterval of I contains c-many points of I—M (c denotes the cardinality of the continuum). Theorem 2. If g is a connectivity function from I into I, then the following statements are equivalent: (i) g is dense in I2, (ii) every nowhere dense subset of I is g-negligible, and (iii) there exists a dense subset of I which is g-negligible. -
Generic Global Rigidity in Complex and Pseudo-Euclidean Spaces 3
GENERIC GLOBAL RIGIDITY IN COMPLEX AND PSEUDO-EUCLIDEAN SPACES STEVEN J. GORTLER AND DYLAN P. THURSTON Abstract. In this paper we study the property of generic global rigidity for frameworks of graphs embedded in d-dimensional complex space and in a d-dimensional pseudo- Euclidean space (Rd with a metric of indefinite signature). We show that a graph is generically globally rigid in Euclidean space iff it is generically globally rigid in a complex or pseudo-Euclidean space. We also establish that global rigidity is always a generic property of a graph in complex space, and give a sufficient condition for it to be a generic property in a pseudo-Euclidean space. Extensions to hyperbolic space are also discussed. 1. Introduction The property of generic global rigidity of a graph in d-dimensional Euclidean space has recently been fully characterized [4, 7]. It is quite natural to study this property in other spaces as well. For example, recent work of Owen and Jackson [8] has studied the number of equivalent realizations of frameworks in C2. In this paper we study the property of generic global rigidity of graphs embedded in Cd as well as graphs embedded in a pseudo Euclidean space (Rd equipped with an indefinite metric signature). We show that a graph Γ is generically globally rigid (GGR) in d-dimensional Euclidean space iff Γ is GGR in d-dimensional complex space. Moreover, for any metric signature, s, We show that a graph Γ is GGR in d-dimensional Euclidean space iff Γ is GGR in d- dimensional real space under the signature s. -
A Generic Property of the Bounded Syzygy Solutions Author(S): Florin N
A Generic Property of the Bounded Syzygy Solutions Author(s): Florin N. Diacu Source: Proceedings of the American Mathematical Society, Vol. 116, No. 3 (Nov., 1992), pp. 809-812 Published by: American Mathematical Society Stable URL: http://www.jstor.org/stable/2159450 Accessed: 16/11/2009 21:52 Your use of the JSTOR archive indicates your acceptance of JSTOR's Terms and Conditions of Use, available at http://www.jstor.org/page/info/about/policies/terms.jsp. JSTOR's Terms and Conditions of Use provides, in part, that unless you have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and you may use content in the JSTOR archive only for your personal, non-commercial use. Please contact the publisher regarding any further use of this work. Publisher contact information may be obtained at http://www.jstor.org/action/showPublisher?publisherCode=ams. Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or printed page of such transmission. JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact [email protected]. American Mathematical Society is collaborating with JSTOR to digitize, preserve and extend access to Proceedings of the American Mathematical Society. http://www.jstor.org PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 116, Number 3, November 1992 A GENERIC PROPERTY OF THE BOUNDED SYZYGY SOLUTIONS FLORIN N. -
One Concrete Application of Bernstein Sets in Measure Theory
One Concrete Application of Bernstein Sets in Measure Theory Mariam Beriashvili I. Vekua Institute of Applied Mathematics Tbilisi State Univeristy mariam [email protected] February 4, 2016 Mariam Beriashvili (Tbilisi State University) Short title February 4, 2016 1 / 16 Paradoxical Subsets of R Vitali Set Hamel Bases Bernstein Set Luzini Set Sierpinski Set Mariam Beriashvili (Tbilisi State University) Short title February 4, 2016 2 / 16 Bernstein Sets Definition Let X be a subset of the real line R. We say that X is a Bernstein set in R if, for every non-empty perfect set P ⊂ R, both intersections P \ X and P \ (R n X ) are nonempty. Mariam Beriashvili (Tbilisi State University) Short title February 4, 2016 3 / 16 Relationships between some Paradoxical Sets Theorem There exists a subset X of R such that X is simultaneously a Vitali set and a Bernstein set. Theorem There exists a Hamel basis of R which simultaneously is a Bernstein set. Mariam Beriashvili (Tbilisi State University) Short title February 4, 2016 4 / 16 General Measure Extension Problem Problem of measure extension has a three aspects: Pure set-theoretical Algebraic Topological Mariam Beriashvili (Tbilisi State University) Short title February 4, 2016 5 / 16 The Role of Bernstein Sets In particular, we envisage Bernstein subsets of the real line R from the point of view of their measurability with respect to certain classes of measures on R. The importance of Bernstein sets in various questions of general topology, measure theory an the theory of Boolean algebras is well known. Mariam Beriashvili (Tbilisi State University) Short title February 4, 2016 6 / 16 We shall say that a set Y ⊂ E is relatively measurable with respect to the class M if there exists at least one measure µ 2 M such that Y is measurable with respect to µ. -
Pdf/Math/ 0307008V4.Pdf
Version of 17.11.04 Chapter 23 The Radon-Nikod´ym Theorem In Chapter 22, I discussed the indefinite integrals of integrable functions on R, and gave what I hope you feel are satisfying descriptions both of the functions which are indefinite integrals (the absolutely continuous functions) and of how to find which functions they are indefinite integrals of (you differentiate them). For general measure spaces, we have no structure present which can give such simple formulations; but nevertheless the same questions can be asked and, up to a point, answered. The first section of this chapter introduces the basic machinery needed, the concept of ‘countably additive’ functional and its decomposition into positive and negative parts. The main theorem takes up the second section: indefinite integrals are the ‘truly continuous’ additive functionals; on σ-finite spaces, these are the ‘absolutely continuous’ countably additive functionals. In §233 I discuss the most important single application of the theorem, its use in providing a concept of ‘conditional expectation’. This is one of the central concepts of probability theory – as you very likely know; but the form here is a dramatic generalization of the elementary concept of the conditional probability of one event given another, and needs the whole strength of the general theory of measure and integration as developed in Volume 1 and this chapter. I include some notes on convex functions, up to and including versions of Jensen’s inequality (233I-233J). While we are in the area of ‘pure’ measure theory, I take the opportunity to discuss some further topics. I begin with some essentially elementary constructions, image measures, sums of measures and indefinite- integral measures; I think the details need a little attention, and I work through them in §234. -
UCLA Previously Published Works
UCLA UCLA Previously Published Works Title On Total Variation Minimization and Surface Evolution Using Parametric Maximum Flows Permalink https://escholarship.org/uc/item/5sd211v1 Journal International Journal of Computer Vision, 84(3) ISSN 1573-1405 Authors Chambolle, Antonin Darbon, Jérôme Publication Date 2009-09-01 DOI 10.1007/s11263-009-0238-9 Peer reviewed eScholarship.org Powered by the California Digital Library University of California Int J Comput Vis (2009) 84: 288–307 DOI 10.1007/s11263-009-0238-9 On Total Variation Minimization and Surface Evolution Using Parametric Maximum Flows Antonin Chambolle · Jérôme Darbon Received: 23 June 2005 / Accepted: 8 April 2009 / Published online: 23 April 2009 © The Author(s) 2009. This article is published with open access at Springerlink.com Abstract In a recent paper Boykov et al. (LNCS, Vol. 3953, a discrete minimal surface problem, using a maximum pp. 409–422, 2006) propose an approach for computing flow/graph-cut algorithm (Ahuja et al. 1993). This kind of curve and surface evolution using a variational approach and technique has become very popular in the past year in im- the geo-cuts method of Boykov and Kolmogorov (Interna- age processing, for segmentation problems but also stereo tional conference on computer vision, pp. 26–33, 2003). We correspondence, etc., in particular since the apparition of recall in this paper how this is related to well-known ap- quite efficient algorithms (Boykov and Kolmogorov 2004) proaches for mean curvature motion, introduced by Alm- for graphs with low-connectivity, typically in use in this kind gren et al. (SIAM Journal on Control and Optimization of applications. -
Lids-R-904 Robust Stability of Linear Systems
LIDS-R-904 ROBUST STABILITY OF LINEAR SYSTEMS - SOME COMPUTATIONAL CONSIDERATIONS* by Alan J. Laub** 1. INTRODUCTION In this paper we shall concentrate on some of the computational issues which arise in studying the robust stability of linear systems. Insofar as possible, we shall use notation consistent with Stein's paper [11 and we shall make frequent reference to that work. As we saw in [1] a basic stability question for a linear time-invariant system with transfer matrix G(s) is the following: given that a nominal closed-loop feedbadk system is stable, does the feedback system remain stable when subjected to perturbations and how large can those perturba- tions be? It turned out, through invocation of the Nyquist Criterion, that the size of the allowable perturbations was related to the "nearness to singularity" of the return difference matrix I + G(jW). Closed-loop stability was said to be "robust" if G could tolerate considerable perturbation before I + G became singular. Invited Paper presented at the Second Annual Workshop on the Informa- tion Linkage between Applied Mathematics and Industry held at Naval Postgraduate School, Monterey, California, Feb. 20-24, 1979; this research was partially supported by NASA under grant NGL-22-009-124 and the Department of Energy under grant ET-78-(01-3395). ** Laboratory for Information and Decision Systems, Pm. 35-331, M.I.T., Cambridge, MA 02139. -2- We shall now indulge in a modicum of abstraction and attempt to formalize the notion of robustness. The definition will employ some jargon from algebraic geometry and will be applicable to a variety of situations. -
On Σ-Porous Sets in Abstract Spaces
ON σ-POROUS SETS IN ABSTRACT SPACES L. ZAJI´CEKˇ Received 18 December 2003 The main aim of this survey paper is to give basic information about properties and ap- plications of σ-poroussetsinBanachspaces(and some other infinite-dimensional spaces). This paper can be considered a partial continuation of the author’s 1987 survey on poros- ity and σ-porosity and therefore only some results, remarks, and references (important for infinite-dimensional spaces) are repeated. However, this paper can be used without any knowledge of the previous survey. Some new results concerning σ-porosity in finite- dimensional spaces are also briefly mentioned. However, results concerning porosity (but not σ-porosity) are mentioned only exceptionally. Contents 1. Introduction 510 2. Basic properties of σ-upper porous sets and of σ-lower porous sets 511 3. Subsystems of the system of σ-upper porous sets 515 3.1. σ-directionally porous sets 515 3.2. σ-strongly porous sets 515 3.3. σ-closure porous sets 515 3.4. Other systems 515 4. Subsystems of the system of σ-lower porous sets 515 4.1. σ-c-lower porous sets 515 4.2. Cone (angle) small sets and ball small sets 516 4.3. Sets covered by surfaces of finite codimension and σ-cone-supported sets 516 4.4. σ-porous sets in bimetric spaces 517 4.5. HP-small sets 518 5. Further properties of the above systems 518 5.1. Smallness in the sense of measure 518 5.2. Descriptive properties 519 5.3. Other properties 520 6. Applications 520 6.1.