In-Flight Icing Encounter and Loss of Control, Simmons Airlines, D.B.A

Total Page:16

File Type:pdf, Size:1020Kb

In-Flight Icing Encounter and Loss of Control, Simmons Airlines, D.B.A F PB96-91040I NTSB/AAR-96/01 DCA95MA001 NATIONAL TRANSPORTATION SAFETY BOARD WASHINGTON, D.C. 20594 AIRCRAFT ACCIDENT REPORT IN-FLIGHT ICING ENCOUNTER AND LOSS OF CONTROL SIMMONS AIRLINES, d.b.a. AMERICAN EAGLE FLIGHT 4184 AVIONS de TRANSPORT REGIONAL (ATR) MODEL 72-212, N401AM ROSELAWN, INDIANA OCTOBER 31,1994 VOLUME 1: SAFETY BOARD REPORT 6486C The National Transportation Safety Board is an independent Federal agency dedicated to promoting aviation, railroad, highway, marine, pipeline, and hazardous materials safety. Established in 1967, the agency is mandated by Congress through the Independent Safety Board Act of 1974 to investigate transportation accidents, determine the probable causes of the accidents, issue safety recommendations, study transportation safety issues, and evaluate the safety effectiveness of government agencies involved in transportation. The Safety Board makes public its actions and decisions through accident reports, safety studies, special investigation reports, safety recommendations, and statistical reviews. Information about available publications may be obtained by contacting: National Transportation Safety Board Public Inquiries Section, RE-51 490 L’Enfant Plaza, S.W. Washington, D.C. 20594 (202)382-6735 (800)877-6799 Safety Board publications may be purchased, by individual copy or by subscription, from: National Technical Information Service 5285 Port Royal Road Springfield, Virginia 22161 (703)487-4600 NTSB/AAR-96/01 PB96-910401 NATIONAL TRANSPORTATION SAFETY BOARD WASHINGTON, D.C. 20594 AIRCRAFT ACCIDENT REPORT IN-FLIGHT ICING ENCOUNTER AND LOSS OF CONTROL SIMMONS AIRLINES, d.b.a. AMERICAN EAGLE FLIGHT 4184 AVIONS de TRANSPORT REGIONAL (ATR) MODEL 72-212, N401AM ROSELAWN, INDIANA OCTOBER 31, 1994 Adopted: July 9, 1996 Notation 6486C Abstract: Volume I of this report explains the crash of American Eagle flight 4184, an ATR 72 airplane during a rapid descent after an uncommanded roll excursion. The safety issues discussed in the report focused on communicating hazardous weather information to flightcrews, Federal regulations on aircraft icing and icing certification requirements, the monitoring of aircraft airworthiness, and flightcrew training for unusual events/attitudes. Safety recommendations concerning these issues were addressed to the Federal Aviation Administration, the National Oceanic and Atmospheric Administration, and AMR Eagle. Volume II contains the comments of the Bureau Enquetes-Accidents on the Safety Board's draft of the accident report. CONTENTS EXECUTIVE SUMMARY................................................................ vii 1. FACTUAL INFORMATION 1.1 History of Flight................................................................................... 1 1.2 Injuries to Persons................................................................................ 12 1.3 Damage to Airplane ............................................................................. 12 1.4 Other Damage ...................................................................................... 12 1.5 Personnel Information.......................................................................... 12 1.5.1 The Captain .......................................................................................... 12 1.5.2 The First Officer................................................................................... 13 1.5.3 The Flight Attendants .......................................................................... 14 1.5.4 Air Traffic Control Personnel.............................................................. 14 1.5.4.1 DANVILLE Sector Controller............................................................. 14 1.5.4.2 BOONE Sector Controller ................................................................... 15 1.5.4.3 BOONE Sector Developmental Controller ......................................... 15 1.6 Airplane Information ........................................................................... 15 1.6.1 Flight 4184 Dispatch Weight and Balance Information...................... 17 1.6.2 ATR 72 Wing Design History ............................................................. 17 1.6.3 ATR 72 Lateral Flight Control System Description ........................... 18 1.6.3.1 ATR 72 Directional Flight Control System......................................... 21 1.6.4 ATR 72 Stall Protection System.......................................................... 23 1.6.5 Autoflight System Description ............................................................ 24 1.6.6 ATR 72 Ice and Rain Protection Systems ........................................... 25 1.6.7 ATR 42/72 Type Certification History................................................ 30 1.6.7.1 General ................................................................................................. 30 1.6.7.2 ATR 72 Icing Certification Program ................................................... 30 1.6.7.3 Postaccident Certification Review....................................................... 35 1.7 Meteorological Information................................................................. 44 1.7.1 General ................................................................................................. 44 1.7.2 Flight 4184 Dispatch Weather Information......................................... 45 1.7.3 Weather Synopsis................................................................................. 48 1.7.4 Pilot Reports (PIREPs) and Other Weather Information .................... 53 1.7.4.1 Witness Descriptions of Weather Conditions ..................................... 54 1.7.5 Hazardous In-flight Weather Advisory Service (HIWAS) ................. 57 1.7.6 Information About Freezing Rain/Freezing Drizzle and General Icing Conditions .......................................................................................... 57 1.7.7 Classification of Icing Conditions ....................................................... 60 iii 1.7.8 Forecasting of In-flight Icing Conditions............................................ 61 1.8 Aids to Navigation ............................................................................... 63 1.9 Communications .................................................................................. 63 1.10 Aerodrome Information ....................................................................... 63 1.11 Flight Recorders................................................................................... 63 1.11.1 Cockpit Voice Recorder....................................................................... 63 1.11.2 Digital Flight Data Recorder................................................................ 64 1.12 Wreckage and Impact Information ...................................................... 64 1.12.1 General Wreckage Description............................................................ 64 1.12.2 The Wings ............................................................................................ 67 1.12.3 Empennage........................................................................................... 71 1.12.4 Engines and Propellers......................................................................... 72 1.13 Medical and Pathological Information ................................................ 73 1.14 Fire ....................................................................................................... 73 1.15 Survival Aspects .................................................................................. 73 1.16 Tests and Research............................................................................... 74 1.16.1 ATR 42/72 Lateral Control System Development History................. 74 1.16.2 Previous ATR 42/72 Incidents/Accidents ........................................... 75 1.16.3 Communication of Airworthiness Information Between FAA, DGAC and ATR................................................................................. 88 1.16.4 Investigation of Lateral Control System Behavior.............................. 91 1.16.5 Postaccident NASA Icing Research .................................................... 92 1.16.6 ATR 72 Icing Tanker Tests.................................................................. 94 1.16.7 Historical Aspects of Icing Research and Aircraft Icing Certification Requirements ..................................................................................... 97 1.17 Organizational and Management Information..................................... 100 1.17.1 Simmons Airlines................................................................................. 100 1.17.2 AMR Eagle Organization .................................................................... 101 1.17.3 FAA Oversight of Simmons Airlines/AMR Eagle.............................. 103 1.17.4 FAA Partnership in Safety Program.................................................... 103 1.17.5 Simmons Airlines/AMR Eagle Pilot Training .................................... 104 1.17.5.1 General Training Information.............................................................. 104 1.17.5.2 AMR Eagle Flight Training................................................................. 106 1.17.6 Flight and Airplane Operating Manual................................................ 107 1.17.7 Unusual Attitude and Advanced Maneuvers Training........................ 117 1.18 Additional Information ........................................................................ 118 1.18.1 Air Traffic Control..............................................................................
Recommended publications
  • Climate Data Sources in Connecticut Patricia A
    University of Connecticut OpenCommons@UConn College of Agriculture, Health and Natural Storrs Agricultural Experiment Station Resources 1-1982 Climate Data Sources in Connecticut Patricia A. Palley University of Connecticut - Storrs David R. Miller University of Connecticut - Storrs Follow this and additional works at: https://opencommons.uconn.edu/saes Part of the Climate Commons, Environmental Monitoring Commons, and the Meteorology Commons Recommended Citation Palley, Patricia A. and Miller, David R., "Climate Data Sources in Connecticut" (1982). Storrs Agricultural Experiment Station. 80. https://opencommons.uconn.edu/saes/80 Storrs Agricultural Experiment Station Bulletin 461 Climate Data Sources in Connecticut By Patricia A Palley, Assistant State Climatologist and David R. Miller, Associate Professor of Natural Resources JAN 1982 STORRS AGRICULTURAL EXPERI MENT STATION COLLEGE OF AGRICULTURE AND NATURAL RESOURCES THE UNIVERSITY OF CONNECTICUT, STORRS. CT 06268 TABLE OF CONTENTS Int roduction . 1 Types of Weather Stations 2 Parameters Measur ed 3 Summary of Climate Observations in Connecticu t 5 How to Use the Maps and Site Reports • • • • • 7 Table I Record Lengths, by parameter, of all weather stat ions i n Conn., state summary 8 Table II Record Lengths , by parame ter, of all weather stations in Conn . , by county . 9 Table III Record Lengths, by paramet er, of Nationa l Wea ther Service operat ed and coope rative stations in Conn., by county . • . 10 Table IV Re cord Lengths , by par ameter , of pr ivate data collect ors i n Conn ., by county . • . 11 Figure I Distribution of stations t hat measure rainfall . 12 Figur e II Distribution of stations t hat meas ure s nowf all .
    [Show full text]
  • Handbook for the Meteorological Observation
    Handbook for the Meteorological Observation Koninklijk Nederlands Meteorologisch Instituut KNMI September 2000 Contents Chapter 1. Measuring stations – General 1 Introduction 2 Variables 3 Type of observing station 4 Conditions relating to the layout of the measurement site of a weather station 5 Spatial distribution of the measuring stations and the representativeness of the observations 6 Procedures relating to the inspection, maintenance and management of a weather station 6.1 Inspection 6.2 Technical maintenance 6.3 Supervision 1. MEASURING STATIONS - GENERAL 1.1 Introduction The mission statement of the KNMI1 (from their brochure “KNMI, more than just weather” of August 1999) reads: “The KNMI is an agency with approximately five hundred employees that is part of the Ministry of Transport, Public Works and Water Management. From its position as the national knowledge centre for weather, climate and seismology, the institute is targeted entirely at fulfilling public tasks: weather forecasts and warnings monitoring the climate acquisition and supply of meteorological data and infrastructure model development aviation meteorology scientific research public information services” The tasks mentioned above are split across a number of sectors within the KNMI. One of the sectors is WM (Waarnemingen en Modellen = Observations and Models). This particular sector’s mission has been formulated as follows: “The Observations and Models sector (WM) is responsible for making the basic meteorological data available and for provision of climatological information to both internal and external users. The basic meteorological data, both current and historical, contains: - observations made by measurement, visual observation, using remote sensing or acquired from external sources - output from atmospheric and oceanographic models, acquired by processing the sector’s own models of acquired from institutes abroad.
    [Show full text]
  • Lesson 6 Weather: Collecting Data GRADE 3-5 BACKGROUND Meteorologists Collect Weather Data Daily to Make Forecasts
    Lesson 6 Weather: Collecting Data GRADE 3-5 BACKGROUND Meteorologists collect weather data daily to make forecasts. With the aid of high altitude weather balloons, weather equipment and gauges, satellites, and computers, accurate daily forecasts can be made. Collecting weather data in just one location and making a forecast requires a great deal of skill. Since air travels from one location to another, it is helpful to know what the approaching weather will be. In this investigation, the students will collect data for two weeks. At this time they will start seeing patterns in each of the areas. They can predict what the weather will be like the next day and for the next few days. They will also write if their predictions were correct from the previous day. Collecting the data for this lesson can be done instead of collecting the data separately in lesson 1-4. BASIC LESSON Objective(s) Students will be able to… Collect data for two weeks and use the information to detect patterns and predict weather around their location. State Science Content Standard(s) Standard 4. Students through the inquiry process, demonstrate knowledge of the composition, structures, processes and interactions of Earth's systems and other objects in space. A. 4.4 Observe and describe the water cycle and the local weather and demonstrate how weather conditions are measured. A. Record temperature B. Display data on a graph C. Interpret trends and patterns of data D. Identify and explain the use of a barometer, weather vane, and anemometer E. Collect, record and chart data from each weather instrument F.
    [Show full text]
  • Soaring Weather
    Chapter 16 SOARING WEATHER While horse racing may be the "Sport of Kings," of the craft depends on the weather and the skill soaring may be considered the "King of Sports." of the pilot. Forward thrust comes from gliding Soaring bears the relationship to flying that sailing downward relative to the air the same as thrust bears to power boating. Soaring has made notable is developed in a power-off glide by a conven­ contributions to meteorology. For example, soar­ tional aircraft. Therefore, to gain or maintain ing pilots have probed thunderstorms and moun­ altitude, the soaring pilot must rely on upward tain waves with findings that have made flying motion of the air. safer for all pilots. However, soaring is primarily To a sailplane pilot, "lift" means the rate of recreational. climb he can achieve in an up-current, while "sink" A sailplane must have auxiliary power to be­ denotes his rate of descent in a downdraft or in come airborne such as a winch, a ground tow, or neutral air. "Zero sink" means that upward cur­ a tow by a powered aircraft. Once the sailcraft is rents are just strong enough to enable him to hold airborne and the tow cable released, performance altitude but not to climb. Sailplanes are highly 171 r efficient machines; a sink rate of a mere 2 feet per second. There is no point in trying to soar until second provides an airspeed of about 40 knots, and weather conditions favor vertical speeds greater a sink rate of 6 feet per second gives an airspeed than the minimum sink rate of the aircraft.
    [Show full text]
  • My Personal Callsign List This List Was Not Designed for Publication However Due to Several Requests I Have Decided to Make It Downloadable
    - www.egxwinfogroup.co.uk - The EGXWinfo Group of Twitter Accounts - @EGXWinfoGroup on Twitter - My Personal Callsign List This list was not designed for publication however due to several requests I have decided to make it downloadable. It is a mixture of listed callsigns and logged callsigns so some have numbers after the callsign as they were heard. Use CTL+F in Adobe Reader to search for your callsign Callsign ICAO/PRI IATA Unit Type Based Country Type ABG AAB W9 Abelag Aviation Belgium Civil ARMYAIR AAC Army Air Corps United Kingdom Civil AgustaWestland Lynx AH.9A/AW159 Wildcat ARMYAIR 200# AAC 2Regt | AAC AH.1 AAC Middle Wallop United Kingdom Military ARMYAIR 300# AAC 3Regt | AAC AgustaWestland AH-64 Apache AH.1 RAF Wattisham United Kingdom Military ARMYAIR 400# AAC 4Regt | AAC AgustaWestland AH-64 Apache AH.1 RAF Wattisham United Kingdom Military ARMYAIR 500# AAC 5Regt AAC/RAF Britten-Norman Islander/Defender JHCFS Aldergrove United Kingdom Military ARMYAIR 600# AAC 657Sqn | JSFAW | AAC Various RAF Odiham United Kingdom Military Ambassador AAD Mann Air Ltd United Kingdom Civil AIGLE AZUR AAF ZI Aigle Azur France Civil ATLANTIC AAG KI Air Atlantique United Kingdom Civil ATLANTIC AAG Atlantic Flight Training United Kingdom Civil ALOHA AAH KH Aloha Air Cargo United States Civil BOREALIS AAI Air Aurora United States Civil ALFA SUDAN AAJ Alfa Airlines Sudan Civil ALASKA ISLAND AAK Alaska Island Air United States Civil AMERICAN AAL AA American Airlines United States Civil AM CORP AAM Aviation Management Corporation United States Civil
    [Show full text]
  • Snow Nowcasting Using a Real-Time Correlation of Radar Reflectivity
    20 JOURNAL OF APPLIED METEOROLOGY VOLUME 42 Snow Nowcasting Using a Real-Time Correlation of Radar Re¯ectivity with Snow Gauge Accumulation ROY RASMUSSEN AND MICHAEL DIXON National Center for Atmospheric Research, Boulder, Colorado STEVE VASILOFF National Severe Storms Laboratory, Norman, Oklahoma FRANK HAGE,SHELLY KNIGHT,J.VIVEKANANDAN, AND MEI XU National Center for Atmospheric Research, Boulder, Colorado (Manuscript received 21 November 2001, in ®nal form 13 June 2002) ABSTRACT This paper describes and evaluates an algorithm for nowcasting snow water equivalent (SWE) at a point on the surface based on a real-time correlation of equivalent radar re¯ectivity (Ze) with snow gauge rate (S). It is shown from both theory and previous results that Ze±S relationships vary signi®cantly during a storm and from storm to storm, requiring a real-time correlation of Ze and S. A key element of the algorithm is taking into account snow drift and distance of the radar volume from the snow gauge. The algorithm was applied to a number of New York City snowstorms and was shown to have skill in nowcasting SWE out to at least 1 h when compared with persistence. The algorithm is currently being used in a real-time winter weather nowcasting system, called Weather Support to Deicing Decision Making (WSDDM), to improve decision making regarding the deicing of aircraft and runway clearing. The algorithm can also be used to provide a real-time Z±S relationship for Weather Surveillance Radar-1988 Doppler (WSR-88D) if a well-shielded snow gauge is available to measure real-time SWE rate and appropriate range corrections are made.
    [Show full text]
  • Quantitative Interpretation of Laser Ceilometer Intensity Profiles
    396 JOURNAL OF ATMOSPHERIC AND OCEANIC TECHNOLOGY VOLUME 14 Quantitative Interpretation of Laser Ceilometer Intensity Pro®les R. R. ROGERS AND M.-F. LAMOUREUX Atmospheric and Oceanic Sciences, McGill University, Montreal, Quebec, Canada L. R. BISSONNETTE Defence Research Establishment Valcartier, Courcelette, Quebec, Canada R. M. PETERS Department of Meteorology, The Pennsylvania State University, University Park, Pennsylvania (Manuscript received 23 July 1996, in ®nal form 28 October 1996) ABSTRACT The authors have used a commercially available laser ceilometer to measure vertical pro®les of the optical extinction in rain. This application requires special signal processing to correct the raw data for the effects of receiver noise, high-pass ®ltering, and the incomplete overlap of the transmitted beam with the receiver ®eld of view at close range. The calibration constant of the ceilometer, denoted by C, is determined from the pro®le of the corrected returned power in conditions of moderate attenuation in which the power is completely extin- guished over a distance on the order of 1 km. In this determination, the value of the backscatter-to-extinction ratio k of the scattering medium must be speci®ed and an allowance made for the effects of multiple scattering. These requirements impose an uncertainty on C that can amount to 650%. An alternative to determining the calibration constant is explained, which does not require specifying k, although it assumes that k is constant with height. Using this alternative approach, the authors have estimated many extinction pro®les in rain and compared them with radar re¯ectivity pro®les measured with a UHF boundary layer wind pro®ler.
    [Show full text]
  • Appendix 25 Box 31/3 Airline Codes
    March 2021 APPENDIX 25 BOX 31/3 AIRLINE CODES The information in this document is provided as a guide only and is not professional advice, including legal advice. It should not be assumed that the guidance is comprehensive or that it provides a definitive answer in every case. Appendix 25 - SAD Box 31/3 Airline Codes March 2021 Airline code Code description 000 ANTONOV DESIGN BUREAU 001 AMERICAN AIRLINES 005 CONTINENTAL AIRLINES 006 DELTA AIR LINES 012 NORTHWEST AIRLINES 014 AIR CANADA 015 TRANS WORLD AIRLINES 016 UNITED AIRLINES 018 CANADIAN AIRLINES INT 020 LUFTHANSA 023 FEDERAL EXPRESS CORP. (CARGO) 027 ALASKA AIRLINES 029 LINEAS AER DEL CARIBE (CARGO) 034 MILLON AIR (CARGO) 037 USAIR 042 VARIG BRAZILIAN AIRLINES 043 DRAGONAIR 044 AEROLINEAS ARGENTINAS 045 LAN-CHILE 046 LAV LINEA AERO VENEZOLANA 047 TAP AIR PORTUGAL 048 CYPRUS AIRWAYS 049 CRUZEIRO DO SUL 050 OLYMPIC AIRWAYS 051 LLOYD AEREO BOLIVIANO 053 AER LINGUS 055 ALITALIA 056 CYPRUS TURKISH AIRLINES 057 AIR FRANCE 058 INDIAN AIRLINES 060 FLIGHT WEST AIRLINES 061 AIR SEYCHELLES 062 DAN-AIR SERVICES 063 AIR CALEDONIE INTERNATIONAL 064 CSA CZECHOSLOVAK AIRLINES 065 SAUDI ARABIAN 066 NORONTAIR 067 AIR MOOREA 068 LAM-LINHAS AEREAS MOCAMBIQUE Page 2 of 19 Appendix 25 - SAD Box 31/3 Airline Codes March 2021 Airline code Code description 069 LAPA 070 SYRIAN ARAB AIRLINES 071 ETHIOPIAN AIRLINES 072 GULF AIR 073 IRAQI AIRWAYS 074 KLM ROYAL DUTCH AIRLINES 075 IBERIA 076 MIDDLE EAST AIRLINES 077 EGYPTAIR 078 AERO CALIFORNIA 079 PHILIPPINE AIRLINES 080 LOT POLISH AIRLINES 081 QANTAS AIRWAYS
    [Show full text]
  • FAA Advisory Circular AC 91-74B
    U.S. Department Advisory of Transportation Federal Aviation Administration Circular Subject: Pilot Guide: Flight in Icing Conditions Date:10/8/15 AC No: 91-74B Initiated by: AFS-800 Change: This advisory circular (AC) contains updated and additional information for the pilots of airplanes under Title 14 of the Code of Federal Regulations (14 CFR) parts 91, 121, 125, and 135. The purpose of this AC is to provide pilots with a convenient reference guide on the principal factors related to flight in icing conditions and the location of additional information in related publications. As a result of these updates and consolidating of information, AC 91-74A, Pilot Guide: Flight in Icing Conditions, dated December 31, 2007, and AC 91-51A, Effect of Icing on Aircraft Control and Airplane Deice and Anti-Ice Systems, dated July 19, 1996, are cancelled. This AC does not authorize deviations from established company procedures or regulatory requirements. John Barbagallo Deputy Director, Flight Standards Service 10/8/15 AC 91-74B CONTENTS Paragraph Page CHAPTER 1. INTRODUCTION 1-1. Purpose ..............................................................................................................................1 1-2. Cancellation ......................................................................................................................1 1-3. Definitions.........................................................................................................................1 1-4. Discussion .........................................................................................................................6
    [Show full text]
  • Electrically Heated Composite Leading Edges for Aircraft Anti-Icing Applications”
    UNIVERSITY OF NAPLES “FEDERICO II” PhD course in Aerospace, Naval and Quality Engineering PhD Thesis in Aerospace Engineering “ELECTRICALLY HEATED COMPOSITE LEADING EDGES FOR AIRCRAFT ANTI-ICING APPLICATIONS” by Francesco De Rosa 2010 To my girlfriend Tiziana for her patience and understanding precious and rare human virtues University of Naples Federico II Department of Aerospace Engineering DIAS PhD Thesis in Aerospace Engineering Author: F. De Rosa Tutor: Prof. G.P. Russo PhD course in Aerospace, Naval and Quality Engineering XXIII PhD course in Aerospace Engineering, 2008-2010 PhD course coordinator: Prof. A. Moccia ___________________________________________________________________________ Francesco De Rosa - Electrically Heated Composite Leading Edges for Aircraft Anti-Icing Applications 2 Abstract An investigation was conducted in the Aerospace Engineering Department (DIAS) at Federico II University of Naples aiming to evaluate the feasibility and the performance of an electrically heated composite leading edge for anti-icing and de-icing applications. A 283 [mm] chord NACA0012 airfoil prototype was designed, manufactured and equipped with an High Temperature composite leading edge with embedded Ni-Cr heating element. The heating element was fed by a DC power supply unit and the average power densities supplied to the leading edge were ranging 1.0 to 30.0 [kW m-2]. The present investigation focused on thermal tests experimentally performed under fixed icing conditions with zero AOA, Mach=0.2, total temperature of -20 [°C], liquid water content LWC=0.6 [g m-3] and average mean volume droplet diameter MVD=35 [µm]. These fixed conditions represented the top icing performance of the Icing Flow Facility (IFF) available at DIAS and therefore it has represented the “sizing design case” for the tested prototype.
    [Show full text]
  • Pilots Can Minimize the Likelihood of Aircraft Roll Upset in Severe Icing
    FLIGHT SAFETY FOUNDATION JANUARY 1996 FLIGHT SAFETY DIGEST Pilots Can Minimize the Likelihood of Roll Upset in Severe Icing FLIGHT SAFETY FOUNDATION For Everyone Concerned Flight Safety Digest With the Safety of Flight Vol. 15 No. 1 January 1996 Officers/Staff In This Issue Stuart Matthews Chairman, President and CEO Pilots Can Minimize the Likelihood of Board of Governors Roll Upset in Severe Icing 1 Robert Reed Gray, Esq. Under unusual conditions associated with General Counsel and Secretary Board of Governors supercooled large droplets, roll upset can result from ice accretion on a sensitive area of the wing, ADMINISTRATIVE aft of the deicing boots. Pilots must be sensitive Nancy Richards to cues — visual, audible and tactile — that Executive Secretary identify severe icing conditions, and then promptly exit the icing conditions before control FINANCIAL of the airplane is degraded to a hazardous level. Brigette Adkins Accountant Approach-and-landing Accidents TECHNICAL Accounted for Majority of Commercial 10 Robert H. Vandel Director of Technical Projects Jet Hull Losses, 1959–1994 MEMBERSHIP The flight crew was the primary causal factor in the largest number of commercial jet hull-loss J. Edward Peery Director of Membership and Development accidents, according to Boeing statistics. Ahlam Wahdan Assistant to the Director of Membership and Development Report Disputes Commission’s Findings on Mt. Erebus Accident 14 PUBLICATIONS Book offers guidance on successful corporate Roger Rozelle aviation management. Director of Publications Girard Steichen Assistant Director of Publications Airbus A300 Crew Anticipates Clearance, Rick Darby Makes Unauthorized Takeoff 18 Senior Editor Helicopter strikes electrical wires, with two Karen K.
    [Show full text]
  • A “Short Course” on Ice and the TBM
    A “Short Course” on Ice and the TBM. Icing is topical at the present time as a result of a recent accident in a TBM. I have had a number of conversations with pilots who I would consider knowledgeable and it is apparent that there is a lot of confusion surrounding this subject. Also noting on line posts this confusion is not limited to owner pilots. I have had occasion to be a victim of my own stupidity in a serious icing condition years ago and I can vouch that icing is a deadly serious situation in more ways than one. Before going on with the subject we want to stipulate that the data we are about to provide is a summary of information that is to be found on line, along with narrative and data provided from knowledgeable instructors, if any of the data provided conflicts with anything you have been taught we urge you to satisfy yourself as to which data is correct. TBM operators fly in the same airspace where we find Part 25 aircraft (Commercial Category) aircraft. There is a big difference in how these two categories of aircraft are affected by icing conditions. A 767 will often be climbing at over 300 kts and 4000+ ft/min at typical icing altitudes. This creates two very distinct advantages for the 767: first, their icing exposure time may be less than 1/3 of ours. Second, icing conditions are a function of TAT (Total Air Temperature), not SAT (static air temp). TAT is warmer than SAT because of the effects of compressibility as the airplane operates at faster and faster speeds.
    [Show full text]