Snow Nowcasting Using a Real-Time Correlation of Radar Reflectivity

Total Page:16

File Type:pdf, Size:1020Kb

Snow Nowcasting Using a Real-Time Correlation of Radar Reflectivity 20 JOURNAL OF APPLIED METEOROLOGY VOLUME 42 Snow Nowcasting Using a Real-Time Correlation of Radar Re¯ectivity with Snow Gauge Accumulation ROY RASMUSSEN AND MICHAEL DIXON National Center for Atmospheric Research, Boulder, Colorado STEVE VASILOFF National Severe Storms Laboratory, Norman, Oklahoma FRANK HAGE,SHELLY KNIGHT,J.VIVEKANANDAN, AND MEI XU National Center for Atmospheric Research, Boulder, Colorado (Manuscript received 21 November 2001, in ®nal form 13 June 2002) ABSTRACT This paper describes and evaluates an algorithm for nowcasting snow water equivalent (SWE) at a point on the surface based on a real-time correlation of equivalent radar re¯ectivity (Ze) with snow gauge rate (S). It is shown from both theory and previous results that Ze±S relationships vary signi®cantly during a storm and from storm to storm, requiring a real-time correlation of Ze and S. A key element of the algorithm is taking into account snow drift and distance of the radar volume from the snow gauge. The algorithm was applied to a number of New York City snowstorms and was shown to have skill in nowcasting SWE out to at least 1 h when compared with persistence. The algorithm is currently being used in a real-time winter weather nowcasting system, called Weather Support to Deicing Decision Making (WSDDM), to improve decision making regarding the deicing of aircraft and runway clearing. The algorithm can also be used to provide a real-time Z±S relationship for Weather Surveillance Radar-1988 Doppler (WSR-88D) if a well-shielded snow gauge is available to measure real-time SWE rate and appropriate range corrections are made. 1. Introduction and runway deicing ¯uids is signi®cantly affected by dilution from the water content of snow (Bernadin et Snowstorms affect a variety of human activities such al. 1997; Rasmussen 1999a). In the case of aircraft de- as transportation (aviation and highways), commerce, energy, and communications. Snow accumulating on icing (or anti-icing), accurately measured SWE is need- highways and runways must be cleared to ensure safe ed by pilots and ground personnel to assess whether the operation of surface vehicles and aircraft. The operation snow accumulation on an aircraft wing since deicing/ of aircraft during snowy conditions is a signi®cant safety anti-icing has exceeded the capability of the deicing/ issue because of the rapid loss of lift and increase in anti-icing ¯uid to keep the surface ice free. The Society drag for relatively thin coatings of snow on a wing (25% of Automotive Engineering (SAE) Ground Deicing loss of lift and increase in drag for rough ice coatings Committee produces Holdover Tables that indicate the of only 0.8-mm thickness on the wing), requiring re- amount of time a deicing/anti-icing ¯uid can prevent moval before takeoff. Runways are often treated with ice formation on an aircraft for a given precipitation an anti-icing ¯uid to prevent the accumulation of snow. type, rate, and temperature. The tables are based on Snow on highways must also be removed as quickly as testing of deicing ¯uids at 1 and 2.5 mm h21 liquid possible to ensure safe and ef®cient operations of both equivalent snowfall rates and at various temperatures. commercial and public vehicles. Thus, knowledge of the occurrence of rates less than 1 A key quantity in all of the above applications is the mm h21, between 1 and 2.5 mm h21, or greater than liquid equivalent amount of snow, or snow water equiv- 2.5 mm h21 are critical in the proper use of this table. alent (SWE). For instance, the performance of aircraft Current National Weather Service snow intensities are based on visibility, which has been shown to be a poor indicator of the actual liquid equivalent snowfall rate Corresponding author address: Dr. Roy Rasmussen, NCAR, P.O. Box 3000, Boulder, CO 80307. (Rasmussen et al. 1999b). Thus, the current hourly ME- E-mail: [email protected] TAR (a French acronym that translates as aviation rou- q 2003 American Meteorological Society JANUARY 2003 RASMUSSEN ET AL. 21 tine weather report) reports of snow intensity do not TABLE 1. Various Z±S and Ze±S relationships from literature (adopt- ed from Gray and Male 1981). Conversion to Z ±S is based on Z 5 meet this need. e e 0.224Z for melted snow¯akes (Smith 1984). The method of runway and taxiway snow removal also depends on whether the snow is dry and ¯uffy (low Precipitation type ZZe water content) or wet and dense (high water content). Hail 320S 1.6 72S 1.6 The formation of ice on a highway critically depends Graupel 900S 1.6 202S 1.6 on the water content of the snow. Single crystals (Carlson and Marshall 1972) 160S 2.0 36S 2.0 SWE rates at speci®c locations such as an airport or Snow¯akes consisting of the following crystal types: along a highway can be measured using accurate snow (Ohtake and Henmi 1970) gauges with appropriate wind shielding (Goodison Plates and columns 400S 1.6 90S 1.6 1978; Yang et al. 1998; Rasmussen et al. 2001). The Needle crystals 930S 1.9 208S 1.9 Stellar crystals 1800S 1.5 403S 1.5 recent study by Rasmussen et al. (2001) has shown that Spatial dendrites 3300S 1.7 739S 1.7 real-time, accurate snow measurements can be made if Snow¯akes (Imai 1960) the sidewalls of the snow gauges are heated to 12.08C Dry (T , 08C)* 540S 2 120S 2 and appropriate corrections are made to account for the Wet (T . 08C) 2100S 2 470S 2 undercatch of snow due to wind effects. In principle, a Snow¯akes (Puhakka 1975) network of these heated and shielded snow gauges could Dry (T , 08C)* 1050S 2 235S 2 be deployed to cover a wide region, such as a metro- Wet (T . 08C) 1600S 2 358S 2 politan area or large airport. However, such a network Snow¯akes (Gunn and Marshall 1958) 2000S 2.0 448S 2 is costly to deploy and maintain, and thus an attractive Snow¯akes (Sekon and Srivastava 1970) 1780S 2.21 399S 2.21 alternative is to use radars to estimate liquid equivalent snowfall rate. Radar measures the equivalent radar re- * T 5 mean air temperature. 1 ¯ectivity, Ze, rather than the SWE rate. Thus, a method to correlate radar re¯ectivity Ze with SWE rates is need- ter weather nowcasting system (Rasmussen et al. 2001) ed. Rasmussen et al. (2001) present a method to perform developed with Federal Aviation Administration (FAA) this correlation in real time using snow gauges on the funding. Section 2 provides a background on the use of ground and radar re¯ectivity measurements from aloft Z±S relationships to estimate snowfall rate and the prob- that will be further described in this paper. lems therein. The real-time technique is brie¯y de- In addition to current SWE rates, nowcasts of SWE scribed in section 3, and an evaluation of the technique rates are important. Forecasts with lead times as short is given in section 4. Conclusions are presented in sec- as 30 min are of value to decision makers, who require tion 5. forecasts of SWE amounts for particular locations, such as the ramps, taxiways, runways, and highway sections. Techniques such as the cross-correlation method (Tuttle 2. Background and Foote 1990; Rinehart and Garvey 1978) enable de- The estimation of liquid equivalent snowfall rate us- termination of the motion of radar echoes. This method ing radar has been studied for the past 50 years by many was adapted to track winter storm echoes by Rasmussen investigators (e.g., Fujiyoshi et al. 1990; Langville and et al. (2001). An evaluation of the technique by Turner Thain 1951; Ohtake and Henmi 1970; Yoshida 1975; et al. (1999) showed it provided reasonably accurate Sekhon and Srivastava 1970; Marshall and Gunn 1952; point re¯ectivity forecasts out to 30 min. Therefore, a Carlson and Marshall 1972; Boucher and Weiler 1985; 30-min forecast of SWE rates could be made if a re- Harimaya 1978). These studies have attempted to relate lationship existed between radar re¯ectivity aloft and the liquid equivalent snowfall rate, S (mm h21), to radar snow gauge accumulation at the ground. Rasmussen et re¯ectivity factor Z (mm6 m23) using a power law of al. (2001) present a method to properly time-lag and the form wind-adjust the re¯ectivity and snow gauge data to Z aS b (mm6 m23 ). (1) achieve this relationship, and they use it to perform a 5 snow nowcast. In this paper we present a statistical eval- The values of the coef®cient a and exponent b are uation of this technique using data from New York City usually determined through a regression ®t of Z and S 6 snowstorms. for a number of snowstorms, in which Z (5SnDm, n is The main motivation for this work is to provide airline number concentration and Dm is the diameter of a melted and airport decision makers with accurate point now- snow¯ake) is calculated from melted snow¯akes (e.g., casts of SWE rates in support of aircraft deicing/anti- Marshall and Gunn 1952). These studies have found icing and runway snow removal operations. The tech- that the values of a and b are highly variable, depending nique is currently being used operationally in the Weath- on various parameters such as the crystal type, degree er Support to Deicing Decision Making (WSDDM) win- of riming and aggregation, density, and terminal veloc- ity (Table 1). 1 In many cases the goal of such studies is to determine Here, Ze is the radar-determined radar re¯ectivity factor that as- sumes particles with a dielectric constant of water.
Recommended publications
  • Quantitative Interpretation of Laser Ceilometer Intensity Profiles
    396 JOURNAL OF ATMOSPHERIC AND OCEANIC TECHNOLOGY VOLUME 14 Quantitative Interpretation of Laser Ceilometer Intensity Pro®les R. R. ROGERS AND M.-F. LAMOUREUX Atmospheric and Oceanic Sciences, McGill University, Montreal, Quebec, Canada L. R. BISSONNETTE Defence Research Establishment Valcartier, Courcelette, Quebec, Canada R. M. PETERS Department of Meteorology, The Pennsylvania State University, University Park, Pennsylvania (Manuscript received 23 July 1996, in ®nal form 28 October 1996) ABSTRACT The authors have used a commercially available laser ceilometer to measure vertical pro®les of the optical extinction in rain. This application requires special signal processing to correct the raw data for the effects of receiver noise, high-pass ®ltering, and the incomplete overlap of the transmitted beam with the receiver ®eld of view at close range. The calibration constant of the ceilometer, denoted by C, is determined from the pro®le of the corrected returned power in conditions of moderate attenuation in which the power is completely extin- guished over a distance on the order of 1 km. In this determination, the value of the backscatter-to-extinction ratio k of the scattering medium must be speci®ed and an allowance made for the effects of multiple scattering. These requirements impose an uncertainty on C that can amount to 650%. An alternative to determining the calibration constant is explained, which does not require specifying k, although it assumes that k is constant with height. Using this alternative approach, the authors have estimated many extinction pro®les in rain and compared them with radar re¯ectivity pro®les measured with a UHF boundary layer wind pro®ler.
    [Show full text]
  • A Study on Snow Density Variations at Different Elevations
    Brian Miretzky 1 A Study on Snow Density Variations at Different Elevations and the Related Consequences; Especially to Forecasting. Brian J. Miretzky Senior Undergrad at the University of Wisconsin- Madison ABSTRACT With observations becoming more common and forecasting becoming more accurate snow density research has increased. These new observations can be correlated with current knowledge to develop reasons for snow density variations. Currently there is still no specific consensus on what are the important characteristics in snow density variations. There are many points of general agreement such as that temperature and relative humidity are key factors. How to incorporate these into snowfall prediction is the key. Once there is more substantiated knowledge, more accurate forecasts can be made. Finally, the last in the chain of events is that society can plan accordingly to this new data. Better prediction means less work, less time, and less money spent. This study attempts to determine if elevation is an important characteristic in snow density variations. It also looks at computer models and how snow density is used in conjunction with these models to make snowfall projections. The results seem to show elevation is not an important characteristic. The results also show that model accuracy is more important than snow density variations when using models to make snowfall projections. 1. Introduction volume of the sample. Snow densities are typically on an order of 70 to 150 kg The density of snow is a m-3, but can be lower or higher in some very important topic in winter weather. cases. This is because the density of snow The fact that snow densities can helps determine characteristics of a vary makes them one of the most given snowfall.
    [Show full text]
  • Evaluation of the Hotplate Snow Gauge
    Evaluation of the Hotplate Snow Gauge http://aurora-program.org Aurora Project 2004-01 Final Report July 2005 Technical Report Documentation Page 1. Report No. 2. Government Accession No. 3. Recipient’s Catalog No. Aurora Project 2004-01 4. Title and Subtitle 5. Report Date Evaluation of the Hotplate Snow Gauge July 2005 6. Performing Organization Code 7. Author(s) 8. Performing Organization Report No. Jack Stickel, Bill Maloney, Curt Pape, Dennis Burkheimer 9. Performing Organization Name and Address 10. Work Unit No. (TRAIS) Center for Transportation Research and Education Iowa State University 11. Contract or Grant No. 2711 South Loop Drive, Suite 4700 Ames, IA 50010-8664 12. Sponsoring Organization Name and Address 13. Type of Report and Period Covered Aurora Program Iowa State University 14. Sponsoring Agency Code 2711 South Loop Drive, Suite 4700 Ames, IA 50010-8664 15. Supplementary Notes Visit www.ctre.iastate.edu for color PDF files of this and other research reports. 16. Abstract Winter precipitation (e.g., snow, ice, freezing rain) is poorly measured by current National Weather Service (NWS), Federal Aviation Administration (FAA), and State Departments of Transportation (SDOT) automated weather observation systems. The lack of accurate winter precipitation measurements, particularly snow, negatively impacts the ability of winter maintenance personnel to conduct snow and ice control operations. The inability to accurately measure winter precipitation is an ongoing problem that is well recognized by the meteorological community as well as organizations and industries dependent on accurate quantitative precipitation information. The FAA recognized this limitation and its impact on the ability to conduct aircraft deicing operations, and began a research program in the 1990s to improve decision support for aircraft deicing.
    [Show full text]
  • Gauge and Radarradargauge
    GaGaugugeeaandndRRaadadarr PPaaoo--LLiaiangngChaChangng CentCentrarallWWeaeattherherBBurureaeau,u,TTaaiwiwaann A Training Course on Quantitative Precipitation Estimation/Forecasting (QPE/QPF) Crowne Plaza Manila Galleria, Quezon City, Philippines 27-30 March 2012 OOuutlitlinnee RaRadadarraandndGGaaugugeeNetNetwwoorkrkininTTaaiwiwaann RaRadadarrDaDattaaQQCCususingingRefReflectlectivivitityyaandnd RaRainfinfaallllClimClimaattoolologgyy RaRadadarrQQPPEEaandndGGaaugugee--cocorrrrectectededQQPPEE OOututloloookk 2 OOppeerratiationonalalRRadadararNNeetwtwororkkiinnTTaiaiwwanan RRCCWWFF RRCCCCKK RRCCHHLL RRCCMMKK RRCCCCGG RRCCKKTT CCWBWB::RRCCWFWF,,RRCCHHLL,,RRCCKKTT,,RRCCCCGG((DDopoppplleerr,,wwaveavelleenngtgthh::10c10cmm)) AAiirrFFororccee::RRCCCCKK,,RRCCMMKK((dduualal--ppololarariizzatatiionon,,wwaveavelleenngtgthh::5c5cmm)) Taiwan operational radar network basic information RCWF RCHL RCCG RCKT RCCK RCMK Observation Range (km) 460,230 460,230 460,230 460,230 460,160 460,160 (Z,Vr) Gematronik Gematronik Gematronik Gematronik Gematronik Type WSR-88D 1500S 1500S 1500S 1500C 1500C Height (m) 766 63 38 42 203 48 Wavelength (cm) 10 10 10 10 5 5 Polarization Single Single Single Single Dual Dual Max. Unambiguous 26.55 21.15 21.15 49.5 49.5 49.5 Velocity (m/s) GGaaugugeeStStaattioionsns inin TTaaiwiwaann Data from CWB and Gov. agencies (WRA, SWCB,TPC,..) •All Gauge stations ~570 stations •Overland ~560 stations MMeaeannGGaaugugeeSpaSpacingcing ffrroommCWBCWBSitSiteses((dadattaainin22000077)) Number of Gauges CoConceptnceptooffRefReflectlectivivitityyClimClimaattoolologgyy
    [Show full text]
  • Measurement of Precipitation
    CHAPTER CONTENTS Page CHAPTER 6. MEASUREMENT OF PRECIPITATION ..................................... 186 6.1 General ................................................................... 186 6.1.1 Definitions ......................................................... 186 6.1.2 Units and scales ..................................................... 186 6.1.3 Meteorological and hydrological requirements .......................... 187 6.1.4 Measurement methods .............................................. 187 6.1.4.1 Instruments ................................................ 187 6.1.4.2 Reference gauges and intercomparisons ........................ 188 6.1.4.3 Documentation. 188 6.2 Siting and exposure ........................................................ 189 6.3 Non-recording precipitation gauges .......................................... 190 6.3.1 Ordinary gauges .................................................... 190 6.3.1.1 Instruments ................................................ 190 6.3.1.2 Operation. 192 6.3.1.3 Calibration and maintenance ................................. 192 6.3.2 Storage gauges ..................................................... 192 6.4 Precipitation gauge errors and corrections ..................................... 193 6.5 Recording precipitation gauges .............................................. 196 6.5.1 Weighing-recording gauge ........................................... 196 6.5.1.1 Instruments ................................................ 196 6.5.1.2 Errors and corrections. 197 6.5.1.3 Calibration
    [Show full text]
  • Ott Parsivel - Enhanced Precipitation Identifier for Present Weather, Drop Size Distribution and Radar Reflectivity - Ott Messtechnik, Germany
    ® OTT PARSIVEL - ENHANCED PRECIPITATION IDENTIFIER FOR PRESENT WEATHER, DROP SIZE DISTRIBUTION AND RADAR REFLECTIVITY - OTT MESSTECHNIK, GERMANY Kurt Nemeth1, Martin Löffler-Mang2 1 OTT Messtechnik GmbH & Co. KG, Kempten (Germany) 2 HTW, Saarbrücken (Germany) as a laser-optic enhanced precipitation identifier and present weather sensor. The patented extinction method for simultaneous measurements of particle size and velocity of all liquid and solid precipitation employs a direct physical measurement principle and classification of hydrometeors. The instrument provides a full picture of precipitation events during any kind of weather phenomenon and provides accurate reporting of precipitation types, accumulation and intensities without degradation of per- formance in severe outdoor environments. Parsivel® operates in any climate regime and the built-in heating device minimizes the negative effect of freezing and frozen precipitation accreting critical surfaces on the instrument. Parsivel® can be integrated into an Automated Surface/ Weather Observing System (ASOS/AWOS) as part of the sensor suite. The derived data can be processed and 1. Introduction included into transmitted weather observation reports and messages (WMO, SYNOP, METAR and NWS codes). ® OTT Parsivel : Laser based optical Disdrometer for 1.2. Performance, accuracy and calibration procedure simultaneous measurement of PARticle SIze and VELocity of all liquid and solid precipitation. This state The new generation of Parsivel® disdrometer provides of the art instrument, designed to operate under all the latest state of the art optical laser technology. Each weather conditions, is capable of fulfilling multiple hydrometeor, which falls through the measuring area is meteorological applications: present weather sensing, measured simultaneously for size and velocity with an optical precipitation gauging, enhanced precipitation acquisition cycle of 50 kHz.
    [Show full text]
  • Downloaded 09/24/21 04:33 AM UTC APRIL 2013 F R I E D R I C H E T a L
    1182 MONTHLY WEATHER REVIEW VOLUME 141 Drop-Size Distributions in Thunderstorms Measured by Optical Disdrometers during VORTEX2 KATJA FRIEDRICH AND EVAN A. KALINA University of Colorado, Boulder, Colorado FORREST J. MASTERS AND CARLOS R. LOPEZ University of Florida, Gainesville, Florida (Manuscript received 13 April 2012, in final form 22 October 2012) ABSTRACT When studying the influence of microphysics on the near-surface buoyancy tendency in convective thun- derstorms, in situ measurements of microphysics near the surface are essential and those are currently not provided by most weather radars. In this study, the deployment of mobile microphysical probes in con- vective thunderstorms during the second Verification of the Origins of Rotation in Tornadoes Experiment (VORTEX2) is examined. Microphysical probes consist of an optical Ott Particle Size and Velocity (PARSIVEL) disdrometer that measures particle size and fall velocity distributions and a surface obser- vation station that measures wind, temperature, and humidity. The mobile probe deployment allows for targeted observations within various areas of the storm and coordinated observations with ground-based mobile radars. Quality control schemes necessary for providing reliable observations in severe environ- ments with strong winds and high rainfall rates and particle discrimination schemes for distinguishing be- tween hail, rain, and graupel are discussed. It is demonstrated how raindrop-size distributions for selected cases can be applied to study size-sorting and microphysical processes. The study revealed that the raindrop-size distribution changes rapidly in time and space in convective thunderstorms. Graupel, hailstones, and large raindrops were primarily observed close to the updraft region of thunderstorms in the forward- and rear-flank downdrafts and in the reflectivity hook appendage.
    [Show full text]
  • Radar Artifacts and Associated Signatures, Along with Impacts of Terrain on Data Quality
    Radar Artifacts and Associated Signatures, Along with Impacts of Terrain on Data Quality 1.) Introduction: The WSR-88D (Weather Surveillance Radar designed and built in the 80s) is the most useful tool used by National Weather Service (NWS) Meteorologists to detect precipitation, calculate its motion, estimate its type (rain, snow, hail, etc) and forecast its position. Radar stands for “Radio, Detection, and Ranging”, was developed in the 1940’s and used during World War II, has gone through numerous enhancements and technological upgrades to help forecasters investigate storms with greater detail and precision. However, as our ability to detect areas of precipitation, including rotation within thunderstorms has vastly improved over the years, so has the radar’s ability to detect other significant meteorological and non meteorological artifacts. In this article we will identify these signatures, explain why and how they occur and provide examples from KTYX and KCXX of both meteorological and non meteorological data which WSR-88D detects. KTYX radar is located on the Tug Hill Plateau near Watertown, NY while, KCXX is located in Colchester, VT with both operated by the NWS in Burlington. Radar signatures to be shown include: bright banding, tornadic hook echo, low level lake boundary, hail spikes, sunset spikes, migrating birds, Route 7 traffic, wind farms, and beam blockage caused by terrain and the associated poor data sampling that occurs. 2.) How Radar Works: The WSR-88D operates by sending out directional pulses at several different elevation angles, which are microseconds long, and when the pulse intersects water droplets or other artifacts, a return signal is sent back to the radar.
    [Show full text]
  • Observation of Cloud Base Height and Precipitation Characteristics at a Polar Site Ny-Ålesund, Svalbard Using Ground-Based Remote Sensing and Model Reanalysis
    remote sensing Article Observation of Cloud Base Height and Precipitation Characteristics at a Polar Site Ny-Ålesund, Svalbard Using Ground-Based Remote Sensing and Model Reanalysis Acharya Asutosh 1,2,*, Sourav Chatterjee 1,3 , M.P. Subeesh 1, Athulya Radhakrishnan 1 and Nuncio Murukesh 1 1 National Centre for Polar and Ocean Research, Ministry of Earth Sciences, Goa 403804, India; [email protected] (S.C.); [email protected] (M.P.S.); [email protected] (A.R.); [email protected] (N.M.) 2 Indian Institute of Technology, Bhubaneswar, Odisha 752050, India 3 School of Earth, Ocean, and Atmospheric Sciences, Goa University, Goa 403206, India * Correspondence: [email protected] Abstract: Clouds play a significant role in regulating the Arctic climate and water cycle due to their impacts on radiative balance through various complex feedback processes. However, there are still large discrepancies in satellite and numerical model-derived cloud datasets over the Arctic region due to a lack of observations. Here, we report observations of cloud base height (CBH) characteristics measured using a Vaisala CL51 ceilometer at Ny-Ålesund, Svalbard. The study highlights the monthly and seasonal CBH characteristics at the location. It is found that almost 40% of the lowest Citation: Asutosh, A.; Chatterjee, S.; CBHs fall within a height range of 0.5–1 km. The second and third cloud bases that could be detected Subeesh, M.P.; Radhakrishnan, A.; by the ceilometer are mostly concentrated below 3 km during summer but possess more vertical Murukesh, N. Observation of Cloud spread during the winter season. Thin and low-level clouds appear to be dominant during the Base Height and Precipitation summer.
    [Show full text]
  • METEOROLOGICAL HAZARDS by Werner Wehry and Lutz Lesch Prcsenledat the XXV Ostmongress, St
    NOWCASTING METEOROLOGICAL HAZARDS by Werner Wehry and Lutz Lesch Prcsenledat the XXV OsTMongress, St. Auban, Fnnce cal elements of interest are process€d and displayed by The main workofregional forecasters and especially of means ofstatistical model inlerpretation (Knup ffer, 1996). m€teorologists briefing geneml aviation and, especially, Some of this information is available, already, in the Cer, flight comp€titions is to provide most accurate Nowcastin g man Weather Service systems. (up to twohours) and VeryShortRange Forecasting (VSRF, Hosever. mrssinS are the hard \rlue, concernrng up to 12 hours) including wamings of hazardous weather extreme weather, i-e- w€ath€rhazards likemaximum gusts, events in general and in task actions. In co-operation with large amount of convective rain, conditions of fl ash fl oods, the German National Weather Service (DWD) our Work- hail, and - in wint€r - sudden tuming ofrain into snow or ing Croup does res€arch pr€paring a modular system to glaze conditions. "Waming points" are available in the which will work mostly automatically, and it includes DWD monitoring system, now, like hail heads derived empirical parts. This system will enable the forecaster to from satellite cloud top temperature and thunderstorms, give objective information for proper decisions. A similar derived from radar and w€ather observations and, espe system working for several parts of the USA has been cially, from lightning location sysiems. described by Eilts et al (1996). 3. Special Methods for Nowcasting Hazards 2. Monitoring We are developing an empirical syst€m, combining all Such a nowcasting system needs all available meteoro' available Direct Model Output (DMO)and Model Output loSical inputin order to monitor the atmospherjc€lements Statistics (MOS) information, in order to catch theseldom- like t€mperature, precipitation, gusts etc.
    [Show full text]
  • Triggered Upward Lightning from Towers in Rapid City, South Dakota
    LIGHTNING-TRIGGERED UPWARD LIGHTNING FROM TOWERS IN RAPID CITY, SOUTH DAKOTA Tom A. Warner 1*, Marcelo M. F. Saba 2, Scott Rudge 3, Matthew Bunkers 3, Walt Lyons 4, and Richard E. Orville 5 1. Dept. of Atmospheric and Environmental Sciences, South Dakota School of Mines and Technology, Rapid City, SD, USA 2. National Institute for Space Research – INPE – Sao Jose dos Campos, Brazil 3. NOAA /National Weather Service, Rapid City, SD, USA 4. FMA Research, Inc., Fort Collins, CO, USA 5. Dept. of Atmospheric Sciences, Texas A&M University, College Station, Texas, USA 1. INTRODUCTION Since 2004, 84 upward flashes from 10 towers (91–191 m AGL) have been observed using optical Recent research efforts have shown that nearby instrumentation. High-speed cameras were added in flashes can trigger upward lightning from tall towers 2008 along with electric field sensing instrumentation in (e.g., Wang and Takagi, 2010; Mazur and Ruhnke , 2009, which allowed for coordinated measurements for 2011; Warner, 2011, Warner et al., 2011, and Zhou et some flashes. An analysis has shown that preceding al., 2011). Findings from these studies suggest that visible flash activity triggered all but one upward flash. these lightning-triggered upward lightning (LTUL) The upward flashes discussed below were flashes are more common with summer thunderstorms, observed with up to three high-speed cameras whereas self-initiated upward lightning (SIUL) flashes, operating between 1,000 and 67,000 images per where an upward leader initiates from a tall object second (ips). Fast electric field change data were without nearby preceding flash activity, favor less collected using a modified whip antenna at a sensor site electrically active winter storms.
    [Show full text]
  • 260-2510 Standard Rain and Snow Gauge
    Precipitation 260-2510 Standard Rain and Snow Gauge The 260-2510 Standard Rain and Snow Gauge is a National Weather Service type all-aluminum rain gauge with a total capacity of 20" of rainfall. The gauge includes a funnel, measuring tube, overflow can and measuring stick with English and metric markings. The tripod support is sold separately. The upper portion of the funnel is cylindrical in shape and is turned to a fine edge. Rainwater falling into the funnel is delivered into a measuring tube. The cross- section area of the tube is one-tenth the cross-section area of the funnel. Therefore, when 1 inch of rain falls into the funnel, it fills the measuring tube to a depth of 10 inches. The scale on the measuring stick is expanded 10 times, and since the scale is graduated to hundredths of an inch, the correct rainfall depth of water in the tube is read directly to hundredths from the stick. The capacity of the measuring tube is 2" of rainfall. Any excess overflows into the outer chamber. The overflow water must be transferred to the empty measuring tube for direct measurement with the stick. In winter, the funnel and measuring tube are removed so that rain/sleet/snow/hail are collected by the outer chamber. The amount of precipitation is measured by melting the ice and then pouring the water into the measuring tube. 260-2510 Rain Gauge Features with 260-2510S Tripod National Weather Service Type Rain and Snow Gauge Total capacity 20 inches (500 mm) English / metric measuring stick included Optional tripod support stand Specifications
    [Show full text]