Shows Hundreds of X-Ray Sources Position

Total Page:16

File Type:pdf, Size:1020Kb

Shows Hundreds of X-Ray Sources Position 近傍銀河団におけるX線源の起源近傍銀河団におけるX線源の起源 NatureNature ofof X-rayX-ray sourcessources inin nearbynearby poorpoor clustersclusters ofof galaxiesgalaxies Murat Hüdaverdi Department of Particle and Astrophysical Science Nagoya University the formation of clusters and large-scale filaments 43 Mpc Simulation credit Kravtsov A. et al. National Center for Supercomputer Applications the formation of clusters and large-scale filaments Credit: Virgo consortium, Jenkins et al. 1998 Clusters of galaxies 1 Mpc X 1.5 Mpc Properties • Several 100s of galaxies • Total mass 10¹⁴-10¹⁵ M⊙ • Typical size of 2~5 Mpc • Average separation ~10Mpc • Density ~ 10⁻³ cm⁻³ • Temperature ≈ 10⁷-10⁸ K • Lx ~ 10⁴³-10⁴⁵ergs/s • Mx > Mopt. Simulation by Pittsburgh Supercomputing Center Background of the study Distant clusters: high population of X-ray sources on the outskirts. factor 2 larger at Lx ~ 10⁴²⁻⁴³erg/s (Cappi et al. 2001) ▲ A1995¹ (z=0.35) □ □ □ MS 0451¹ (z=0.55) □ ✱ ✱ ◆ ✱ ✱ RX J0030² (z=0.50) ▲ ▲ □ ◆◆✱◆ □ ✱◆ ◆ 2C 295² (z=0.46) ▲ □ ◆ ▲ ✱◆ □▲ ✱ ✱ 1: Molnar et al. 2002, Apj, 573,L91 ◆ 2: Cappi et al. 2001, ApJ, 548, 624 ✱ MS1054-0321 (z=0.83) (Johnson et al. 2003, MNRAS, 343, 924) Lx ~ 10⁴³erg/s excess of point sources at 1-2 Mpc from the center Motivation Studying the member galaxies in order to examine the environmental effects of clusters on them Only few quantitative investigation on point-like objects from clusters H0 = 75 (km/s)/Mpc, q0 = ½ (flat universe) Target selection • faint cluster diffuse emission Î detecting point like emissions easily • fairly even, smooth temperature distribution Î not to deal with other parameters • dynamically relaxed systems Î ruling out the indistinct effects of large scale dynamics • nearby clusters Î better inspection of central regions Abell 194bright& Abell 1060faint Overview ABELL 194 • Linear cluster • Richness 0 • Bautz-Morgan type III • LII= 142.2° , BII=-62.9° • z = 0.018 (73 Mpc) [1 arcmin ~ 20.5 kpc] • strong radio emitter • ICM 2.7 keV 25 arcmin • Fe ~ 0.25, Si ~ 0.35 Fukazawa et al, PASJ, 50, 157, 1998 25 arcmin A1060 • z : 0.0114 ( 46Mpc ) • RA 10 36 43.8 • ICM 3.3 keV [1 arcmin ~ 13 kpc] • Dec -27 31 28 • Fe ~ 0.3 • Lx ~ 2 E43 ergs/s • 2 giant elliptical in the center Tamura et al. ApJ, 535, 2000 NGC 3308 NGC 3311 NGC 3309 NGC 3312 NGC 3314 Courtesy Anglo Australian Observatory Lockman Hole the Lockman Hole (named after Felix Lockman, who discovered that this region is almost free (NH: 5.7e-19 cm-2) of absorption) shows hundreds of X-ray sources RA :10 52 43.00 Position (J2000): Dec : 57 28 48.00 Image, ESA/XMM-Newton ANALYSIS & RESULTS Observation Log source ra dec time exposure PI A194 01 25 47.35 -01 23 55.2 2002-12-23 21:50:56 22515 Furuzawa A1060 10 36 51.30 -27 31 35.0 2004-06-29 01:59:24 68554 Ohashi Lockman Hole 10 52 51.20 +57 28 25.2 2002-10-19 07:51:29 91514 Hasinger Lockman Hole 10 52 48.90 +57 28 42.8 2002-12-04 04:24:15 100918 Hasinger Lockman Hole 10 52 51.17 +57 29 04.2 2002-11-27 23:04:03 126075 Hasinger Lockman Hole 10 52 53.44 +57 29 22.7 2002-12-06 03:28:24 91019 Hasinger True Color A194 A1060 Lockman Hole RedRed :: 0.30.3--1.01.0 keVkeV GreenGreen :: 1.01.0--1.61.6 keVkeV BlueBlue :: 1.61.6--10.010.0 keVkeV X-Ray Images A194 A1060 Lockman Hole 0.30.3--1010 keVkeV,, 11 pixpix :: 55 arcsecarcsec AdaptivelyAdaptively smoothedsmoothed Optical Images A194 A1060 Lockman Hole NGC 3308 NGC545 NGC 3311 NGC 3309 NGC547 NGC 3312 NGC541 NGC 3314 ImageImage :: DSSDSS opticoptic RedRed contourcontour :: XX--rayray 0.30.3--1010 keVkeV BlueBlue contourcontour :: VLAVLA radioradio A194 – ICM emission 2.68 ∓ 0.12 keV 0.27 ∓ 0.06 Z⊙ R < 5’ ICM • kT ~ 2.7 keV • Fe ~ 0.25 R < 10’ 2.58 ∓ 0.12 keV 0.53 ⊙ 0.45 0.39 Z A1060 – ICM emission 3.42 3.39 3.38 keV 0.42 ∓ 0.01 Z⊙ R < 5’ ICM • kT ~ 3.3 keV • Fe ~ 0.3 3.35 ∓ 0.02 keV R < 10’ 0.39 ∓ 0.01 Z⊙ POINT SOURCE DETECTION detection technique EBOXDETECT EWAVELET L = - ln P L = 10 ~P=3.2E-5~ 4σ Cash W., ApJ, 228, p 939, 1979 Multiband source detection Mos1 Output source lists Mos2 soft medium hard merged into final list PN [SRCMATCH] ENERGY SELECTION soft medium hard Γ:1.7 Nh: 1 Nh: 30 Nh: 100Nh: 300 0.3 1.0 1.6 10.0 Absorption effect can be studied at lower energies ENERGY SELECTION soft medium hard Γ:2.01.7 Γ:1.4 Γ:1.0 0.3 1.0 1.6 10.0 PL emission can be studied at higher energies ENERGY SELECTION soft medium hard Γ:1.7 thermal: 0.5 keV Additional thermal plasma seen at lower enegies A194 SOFT MEDIUM HARD 0.3-1.0 keV 1.0-1.6 keV 1.6-10.0 keV A194 detected sources added by SRCMATCH Total 56 sources A1060 SOFT MEDIUM HARD 0.3-1.0 keV 1.0-1.6 keV 1.6-10.0 keV A1060 detected sources added by SRCMATCH Total 32 sources Lockman Hole SOFT MEDIUM HARD 0.3-1.0 keV 1.0-1.6 keV 1.6-10.0 keV field sources added by SRCMATCH Total 173 sources Notes on Individual Sources A194 A1060 NGC545 NGC3311 NGC547 NGC541 NGC3309 NGC3312 NGC3314 (#2) NGC 547 & NGC 545 source counts Γ Nh kT Flux Log (Lx) z (10²²/cm²) keV (10¹⁴ergs/s) [2-10] 4.37 0.59 NGC 547 1375 2.14∓ 0.28 3.50 2.80 0.57 0.53 159.13 42.06 0.01823 7.79 0.71 NGC 545 582 2.00(fix) 5.02 2.85 0.68 0.63 10.77 40.89 0.01780 NGC 541 source counts Γ Nh kT Flux Log (Lx) z (10²²/cm²) keV (10¹⁴ergs/s) [2-10] 2.25 0.63 NGC 541 401 1.68 1.28 …… 0.54 0.42 3.62 40.42 0.01808 X-ray source catalogues HR2 HR1 ACRONYM Rerr SOFTSOFT MEDIUMMEDIUM HARD (H-M)/(H+M) (M-S)/(M+S) 1 XMMU J012600.5-012043 0.20 37.65+/-1.66 12.19+/-0.98 33.00+/-1.61 0.46+/-0.04 -0.51+/-0.03 2 XMMU J012535.9-012546 0.41 14.31+/-1.04 7.32+/-0.78 6.89+/-0.80 -0.03+/-0.08 -0.32+/-0.06 3 XMMU J012549.3-012412 0.54 3.41+/-0.56 3.41+/-0.51 4.23+/-0.64 0.11+/-0.11 0.00+/-0.11 4 XMMU J012602.8-012701 0.82 - 1.66+/-0.41 4.00+/-0.61 0.41+/-0.12 1.00+/-0.00 ( - ) X-ray diagnostic HR1 = color-color diagram ( + ) based on hardness ratios ( - ) HR2 = ( + ) Simulations Power Low 1.0 HR1 3.0 Thermal + PL HR2 Simulations HR1 Power Low n tio rp so Ab Increasing Γ 3.0 1.0 A b so r p Thermal + PL ti o n HR2 SOURCE CLASSIFICATION Super hard Classification Definition -0.6≦ HR1≦ 0, ed unabsorbed orb abs -0.4≦ HR2≦ 0.5 absorbed 0 ≦ HR1 ≦ 0.8; (-1,1)¹ ed HR1 rb bso ≦ ≦ una multi-comp. HR1 -0.4, 0.3 HR2 mp ulti-co m Super Soft HR2=-1.0² Super Hard HR1= 1.0³ ; (1,-1)⁴ Super Soft HR2 color-color diagram A194 A1060 Field ≦ Type A194 A1060 LH Unabsorbed 13 11 28 Absorbed 4 6 4 Multi-comp. 2 1 3 Super soft 5 4 32 Super hard 3 4 15 Indet-soft 12 6 21 Indet-hard 6 1 10 Log N – Log S field level Hasinger et al. (2001) N(>S) = K . S - α deg⁻² K = 1.45E-14 α= 1.16 Source number density of clusters is higher than the field in X-rays band DISCUSSION Excess emission/population in X-rays from clusters Nature of early-type galaxies NGC 3079 Hot Halo + LMXB + AGN logLx 37 ~ 39 erg/s 38 ~ 40 erg/s 39~40 erg/s < [Blanton et al. Apj, 552, 106, 2001] [Randall et al. Apj, 636, 200, 2006] [Blanton et al. Apj, 552, 106, 2001] fraction of X-ray emission • Morphological type M87 M102 M51 elliptical lenticular spiral • Viewing angle NGC 891 M100 edge-on face-on fraction of X-ray emission Elliptical (E) LENTICULAR (S0) SPIRAL NGC 4697 NGC 1553 M83 Sarazin et al. 2000, ApJ Blanton et al. 2001, ApJ, 552, 106 R.Soria & K.Wu 2000 Most of X-rays SOFT Î Diffuse gas diffuse soft : halo + LMXB (if not all) are from HARD Î LMXBs Diffuse hard: unresol. LMXB point sources (LMXBs) HALO LMXB Abell 1060 R=1.3Mpc E-S0 90% Emission is SUBARU S-Irr 10% dominated by discrete sources XMM LMXBs Not OUTSKIRT diffuse HALO E-S0 50% S-Irr 50% NAO, Yamanoi H. 2005 DISCUSSION Higher population in X-rays from clusters to ta l LMXB Æ can be studied by LX/LB AGN Æ comparison LMXB by the field levels Log N AGN diffuse 38 39 40 41 Log Lx (erg/s) Matsushita K. 2001, X-rayApJ, 547, 1-693to optical Checking luminosity LMXBs ratio (LX / LB) S0 Average distribution of early-type galaxies Matsushita 2001 X-ray to optical luminosity ratio LX / LB NGC 547 bright elliptical 2- checking (LL)AGN nature Log N – Log S field level Hasinger et al.
Recommended publications
  • Formation of an Ultra-Diffuse Galaxy in the Stellar Filaments of NGC 3314A
    A&A 652, L11 (2021) Astronomy https://doi.org/10.1051/0004-6361/202141086 & c ESO 2021 Astrophysics LETTER TO THE EDITOR Formation of an ultra-diffuse galaxy in the stellar filaments of NGC 3314A: Caught in the act? Enrichetta Iodice1 , Antonio La Marca1, Michael Hilker2, Michele Cantiello3, Giuseppe D’Ago4, Marco Gullieuszik5, Marina Rejkuba2, Magda Arnaboldi2, Marilena Spavone1, Chiara Spiniello6, Duncan A. Forbes7, Laura Greggio5, Roberto Rampazzo5, Steffen Mieske8, Maurizio Paolillo9, and Pietro Schipani1 1 INAF-Astronomical Observatory of Capodimonte, Salita Moiariello 16, 80131 Naples, Italy e-mail: [email protected] 2 European Southern Observatory, Karl-Schwarzschild-Strasse 2, 85748 Garching bei Muenchen, Germany 3 INAF-Astronomical Observatory of Abruzzo, Via Maggini, 64100 Teramo, Italy 4 Instituto de Astrofísica, Facultad de Fisica, Pontificia Universidad Católica de Chile, Av. Vicuña Mackenna 4860, 7820436 Macul, Santiago, Chile 5 INAF-Osservatorio Astronomico di Padova, Vicolo dell’Osservatorio 5, 35122 Padova, Italy 6 Department of Physics, University of Oxford, Denys Wilkinson Building, Keble Road, Oxford OX1 3RH, UK 7 Centre for Astrophysics and Supercomputing, Swinburne University of Technology, Hawthorn, Victoria 3122, Australia 8 European Southern Observatory, Alonso de Cordova 3107, Vitacura, Santiago, Chile 9 University of Naples “Federico II”, C.U. Monte Sant’Angelo, Via Cinthia, 80126 Naples, Italy Received 14 April 2021 / Accepted 9 July 2021 ABSTRACT The VEGAS imaging survey of the Hydra I cluster has revealed an extended network of stellar filaments to the south-west of the spiral galaxy NGC 3314A. Within these filaments, at a projected distance of ∼40 kpc from the galaxy, we discover an ultra-diffuse galaxy −2 (UDG) with a central surface brightness of µ0;g ∼ 26 mag arcsec and effective radius Re ∼ 3:8 kpc.
    [Show full text]
  • Guide Du Ciel Profond
    Guide du ciel profond Olivier PETIT 8 mai 2004 2 Introduction hjjdfhgf ghjfghfd fg hdfjgdf gfdhfdk dfkgfd fghfkg fdkg fhdkg fkg kfghfhk Table des mati`eres I Objets par constellation 21 1 Androm`ede (And) Andromeda 23 1.1 Messier 31 (La grande Galaxie d'Androm`ede) . 25 1.2 Messier 32 . 27 1.3 Messier 110 . 29 1.4 NGC 404 . 31 1.5 NGC 752 . 33 1.6 NGC 891 . 35 1.7 NGC 7640 . 37 1.8 NGC 7662 (La boule de neige bleue) . 39 2 La Machine pneumatique (Ant) Antlia 41 2.1 NGC 2997 . 43 3 le Verseau (Aqr) Aquarius 45 3.1 Messier 2 . 47 3.2 Messier 72 . 49 3.3 Messier 73 . 51 3.4 NGC 7009 (La n¶ebuleuse Saturne) . 53 3.5 NGC 7293 (La n¶ebuleuse de l'h¶elice) . 56 3.6 NGC 7492 . 58 3.7 NGC 7606 . 60 3.8 Cederblad 211 (N¶ebuleuse de R Aquarii) . 62 4 l'Aigle (Aql) Aquila 63 4.1 NGC 6709 . 65 4.2 NGC 6741 . 67 4.3 NGC 6751 (La n¶ebuleuse de l’œil flou) . 69 4.4 NGC 6760 . 71 4.5 NGC 6781 (Le nid de l'Aigle ) . 73 TABLE DES MATIERES` 5 4.6 NGC 6790 . 75 4.7 NGC 6804 . 77 4.8 Barnard 142-143 (La tani`ere noire) . 79 5 le B¶elier (Ari) Aries 81 5.1 NGC 772 . 83 6 le Cocher (Aur) Auriga 85 6.1 Messier 36 . 87 6.2 Messier 37 . 89 6.3 Messier 38 .
    [Show full text]
  • Detection of Co Emission in Hydra I Cluster Galaxies
    DETECTION OF CO EMISSION IN HYDRA I CLUSTER GALAXIES W.K. Huehtmeier Max- Planek-Ins t it ut fur Radioastr onomie Auf dem Huge1 69 5300 Bonn 1 , W. Germany Abstract A survey of bright Hydra cluster spiral galaxies for the CO(1-0) transition at 115 GHa was performed with the 15m Swedish-ESO submillimeter telescope (SEST). Five out of 15 galaxies observed have been detected in the CO(1-0) line. The largest spiral galaxy in the cluster , NGC 3312, got more CO than any spiral of the Virgo cluster. This Sa-type galaxy is optically largely distorted and disrupted on one side. It is a good candidate for ram pressure stripping while passing through the cluster's central region. A comparison with global CO properties of Virgo cluster spirals shows a relatively good agreement with the detected Hydra cluster galaxies. 0 bservations Observations were performed with the 15m Swedish-ESO submillimeter telescope (SEST) at La Silla in January 1989 under favorable meteorological conditions. At a frequency of 115 GHz the half power beamwidth (HPBW) of this telescope is 43 arcsec. The cooled Schottky heterodyne receiver had a typical receiver temperature of 350 K; the system temperature was typically 650 to 900 K depending on elevation and humidity. An accousto-optic spectrometer (Zensen 1984) with a bandwidth of 500 MHz yielded a channel width of 0.69 MHz or about 1.8 km/s. In order to improve the signal-to-noise ratio of the integrated profiles usually 5 to 10 frequency channels were averaged resulting in a resolution of 9 to 18 km/s.
    [Show full text]
  • 7.5 X 11.5.Threelines.P65
    Cambridge University Press 978-0-521-19267-5 - Observing and Cataloguing Nebulae and Star Clusters: From Herschel to Dreyer’s New General Catalogue Wolfgang Steinicke Index More information Name index The dates of birth and death, if available, for all 545 people (astronomers, telescope makers etc.) listed here are given. The data are mainly taken from the standard work Biographischer Index der Astronomie (Dick, Brüggenthies 2005). Some information has been added by the author (this especially concerns living twentieth-century astronomers). Members of the families of Dreyer, Lord Rosse and other astronomers (as mentioned in the text) are not listed. For obituaries see the references; compare also the compilations presented by Newcomb–Engelmann (Kempf 1911), Mädler (1873), Bode (1813) and Rudolf Wolf (1890). Markings: bold = portrait; underline = short biography. Abbe, Cleveland (1838–1916), 222–23, As-Sufi, Abd-al-Rahman (903–986), 164, 183, 229, 256, 271, 295, 338–42, 466 15–16, 167, 441–42, 446, 449–50, 455, 344, 346, 348, 360, 364, 367, 369, 393, Abell, George Ogden (1927–1983), 47, 475, 516 395, 395, 396–404, 406, 410, 415, 248 Austin, Edward P. (1843–1906), 6, 82, 423–24, 436, 441, 446, 448, 450, 455, Abbott, Francis Preserved (1799–1883), 335, 337, 446, 450 458–59, 461–63, 470, 477, 481, 483, 517–19 Auwers, Georg Friedrich Julius Arthur v. 505–11, 513–14, 517, 520, 526, 533, Abney, William (1843–1920), 360 (1838–1915), 7, 10, 12, 14–15, 26–27, 540–42, 548–61 Adams, John Couch (1819–1892), 122, 47, 50–51, 61, 65, 68–69, 88, 92–93,
    [Show full text]
  • The Hubble Catalog of Variables (HCV)? A
    Astronomy & Astrophysics manuscript no. hcv c ESO 2019 September 25, 2019 The Hubble Catalog of Variables (HCV)? A. Z. Bonanos1, M. Yang1, K. V. Sokolovsky1; 2; 3, P. Gavras4; 1, D. Hatzidimitriou1; 5, I. Bellas-Velidis1, G. Kakaletris6, D. J. Lennon7; 8, A. Nota9, R. L. White9, B. C. Whitmore9, K. A. Anastasiou5, M. Arévalo4, C. Arviset8, D. Baines10, T. Budavari11, V. Charmandaris12; 13; 1, C. Chatzichristodoulou5, E. Dimas5, J. Durán4, I. Georgantopoulos1, A. Karampelas14; 1, N. Laskaris15; 6, S. Lianou1, A. Livanis5, S. Lubow9, G. Manouras5, M. I. Moretti16; 1, E. Paraskeva1; 5, E. Pouliasis1; 5, A. Rest9; 11, J. Salgado10, P. Sonnentrucker9, Z. T. Spetsieri1; 5, P. Taylor9, and K. Tsinganos5; 1 1 IAASARS, National Observatory of Athens, Penteli 15236, Greece e-mail: [email protected] 2 Department of Physics and Astronomy, Michigan State University, East Lansing, MI 48824, USA 3 Sternberg Astronomical Institute, Moscow State University, Universitetskii pr. 13, 119992 Moscow, Russia 4 RHEA Group for ESA-ESAC, Villanueva de la Cañada, 28692 Madrid, Spain 5 Department of Physics, National and Kapodistrian University of Athens, Panepistimiopolis, Zografos 15784, Greece 6 Athena Research and Innovation Center, Marousi 15125, Greece 7 Instituto de Astrofísica de Canarias, E-38205 La Laguna, Tenerife, Spain 8 ESA, European Space Astronomy Centre, Villanueva de la Canada, 28692 Madrid, Spain 9 Space Telescope Science Institute, Baltimore, MD 21218, USA 10 Quasar Science Resources for ESA-ESAC, Villanueva de la Cañada, 28692 Madrid, Spain 11 The Johns Hopkins University, Baltimore, MD 21218, USA 12 Institute of Astrophysics, FORTH, Heraklion 71110, Greece 13 Department of Physics, Univ.
    [Show full text]
  • 190 Index of Names
    Index of names Ancora Leonis 389 NGC 3664, Arp 005 Andriscus Centauri 879 IC 3290 Anemodes Ceti 85 NGC 0864 Name CMG Identification Angelica Canum Venaticorum 659 NGC 5377 Accola Leonis 367 NGC 3489 Angulatus Ursae Majoris 247 NGC 2654 Acer Leonis 411 NGC 3832 Angulosus Virginis 450 NGC 4123, Mrk 1466 Acritobrachius Camelopardalis 833 IC 0356, Arp 213 Angusticlavia Ceti 102 NGC 1032 Actenista Apodis 891 IC 4633 Anomalus Piscis 804 NGC 7603, Arp 092, Mrk 0530 Actuosus Arietis 95 NGC 0972 Ansatus Antliae 303 NGC 3084 Aculeatus Canum Venaticorum 460 NGC 4183 Antarctica Mensae 865 IC 2051 Aculeus Piscium 9 NGC 0100 Antenna Australis Corvi 437 NGC 4039, Caldwell 61, Antennae, Arp 244 Acutifolium Canum Venaticorum 650 NGC 5297 Antenna Borealis Corvi 436 NGC 4038, Caldwell 60, Antennae, Arp 244 Adelus Ursae Majoris 668 NGC 5473 Anthemodes Cassiopeiae 34 NGC 0278 Adversus Comae Berenices 484 NGC 4298 Anticampe Centauri 550 NGC 4622 Aeluropus Lyncis 231 NGC 2445, Arp 143 Antirrhopus Virginis 532 NGC 4550 Aeola Canum Venaticorum 469 NGC 4220 Anulifera Carinae 226 NGC 2381 Aequanimus Draconis 705 NGC 5905 Anulus Grahamianus Volantis 955 ESO 034-IG011, AM0644-741, Graham's Ring Aequilibrata Eridani 122 NGC 1172 Aphenges Virginis 654 NGC 5334, IC 4338 Affinis Canum Venaticorum 449 NGC 4111 Apostrophus Fornac 159 NGC 1406 Agiton Aquarii 812 NGC 7721 Aquilops Gruis 911 IC 5267 Aglaea Comae Berenices 489 NGC 4314 Araneosus Camelopardalis 223 NGC 2336 Agrius Virginis 975 MCG -01-30-033, Arp 248, Wild's Triplet Aratrum Leonis 323 NGC 3239, Arp 263 Ahenea
    [Show full text]
  • Ngc Catalogue Ngc Catalogue
    NGC CATALOGUE NGC CATALOGUE 1 NGC CATALOGUE Object # Common Name Type Constellation Magnitude RA Dec NGC 1 - Galaxy Pegasus 12.9 00:07:16 27:42:32 NGC 2 - Galaxy Pegasus 14.2 00:07:17 27:40:43 NGC 3 - Galaxy Pisces 13.3 00:07:17 08:18:05 NGC 4 - Galaxy Pisces 15.8 00:07:24 08:22:26 NGC 5 - Galaxy Andromeda 13.3 00:07:49 35:21:46 NGC 6 NGC 20 Galaxy Andromeda 13.1 00:09:33 33:18:32 NGC 7 - Galaxy Sculptor 13.9 00:08:21 -29:54:59 NGC 8 - Double Star Pegasus - 00:08:45 23:50:19 NGC 9 - Galaxy Pegasus 13.5 00:08:54 23:49:04 NGC 10 - Galaxy Sculptor 12.5 00:08:34 -33:51:28 NGC 11 - Galaxy Andromeda 13.7 00:08:42 37:26:53 NGC 12 - Galaxy Pisces 13.1 00:08:45 04:36:44 NGC 13 - Galaxy Andromeda 13.2 00:08:48 33:25:59 NGC 14 - Galaxy Pegasus 12.1 00:08:46 15:48:57 NGC 15 - Galaxy Pegasus 13.8 00:09:02 21:37:30 NGC 16 - Galaxy Pegasus 12.0 00:09:04 27:43:48 NGC 17 NGC 34 Galaxy Cetus 14.4 00:11:07 -12:06:28 NGC 18 - Double Star Pegasus - 00:09:23 27:43:56 NGC 19 - Galaxy Andromeda 13.3 00:10:41 32:58:58 NGC 20 See NGC 6 Galaxy Andromeda 13.1 00:09:33 33:18:32 NGC 21 NGC 29 Galaxy Andromeda 12.7 00:10:47 33:21:07 NGC 22 - Galaxy Pegasus 13.6 00:09:48 27:49:58 NGC 23 - Galaxy Pegasus 12.0 00:09:53 25:55:26 NGC 24 - Galaxy Sculptor 11.6 00:09:56 -24:57:52 NGC 25 - Galaxy Phoenix 13.0 00:09:59 -57:01:13 NGC 26 - Galaxy Pegasus 12.9 00:10:26 25:49:56 NGC 27 - Galaxy Andromeda 13.5 00:10:33 28:59:49 NGC 28 - Galaxy Phoenix 13.8 00:10:25 -56:59:20 NGC 29 See NGC 21 Galaxy Andromeda 12.7 00:10:47 33:21:07 NGC 30 - Double Star Pegasus - 00:10:51 21:58:39
    [Show full text]
  • Astronomy Magazine 2012 Index Subject Index
    Astronomy Magazine 2012 Index Subject Index A AAR (Adirondack Astronomy Retreat), 2:60 AAS (American Astronomical Society), 5:17 Abell 21 (Medusa Nebula; Sharpless 2-274; PK 205+14), 10:62 Abell 33 (planetary nebula), 10:23 Abell 61 (planetary nebula), 8:72 Abell 81 (IC 1454) (planetary nebula), 12:54 Abell 222 (galaxy cluster), 11:18 Abell 223 (galaxy cluster), 11:18 Abell 520 (galaxy cluster), 10:52 ACT-CL J0102-4915 (El Gordo) (galaxy cluster), 10:33 Adirondack Astronomy Retreat (AAR), 2:60 AF (Astronomy Foundation), 1:14 AKARI infrared observatory, 3:17 The Albuquerque Astronomical Society (TAAS), 6:21 Algol (Beta Persei) (variable star), 11:14 ALMA (Atacama Large Millimeter/submillimeter Array), 2:13, 5:22 Alpha Aquilae (Altair) (star), 8:58–59 Alpha Centauri (star system), possibility of manned travel to, 7:22–27 Alpha Cygni (Deneb) (star), 8:58–59 Alpha Lyrae (Vega) (star), 8:58–59 Alpha Virginis (Spica) (star), 12:71 Altair (Alpha Aquilae) (star), 8:58–59 amateur astronomy clubs, 1:14 websites to create observing charts, 3:61–63 American Astronomical Society (AAS), 5:17 Andromeda Galaxy (M31) aging Sun-like stars in, 5:22 black hole in, 6:17 close pass by Triangulum Galaxy, 10:15 collision with Milky Way, 5:47 dwarf galaxies orbiting, 3:20 Antennae (NGC 4038 and NGC 4039) (colliding galaxies), 10:46 antihydrogen, 7:18 antimatter, energy produced when matter collides with, 3:51 Apollo missions, images taken of landing sites, 1:19 Aristarchus Crater (feature on Moon), 10:60–61 Armstrong, Neil, 12:18 arsenic, found in old star, 9:15
    [Show full text]
  • Hydra the Multi- Headed Serpent by Magda Streicher [email protected]
    deep-sky delights Hydra the multi- headed Serpent by Magda Streicher [email protected] Hydra, the female Water kills her off- Snake, is the longest of spring. How- today’s 88 known constel- ever slightly la�ons, stretching from the so�er on the Libra up to the northern tongue is the Image source: Stellarium.org constella�on Cancer – more German name than 3% of the en�re night Wa s s e r s c h - sky (see starmap). It is quite lange. a challenge to deal with this The well-known open expansive constella�on in The northern part of the cluster NGC 2548, per- one ar�cle, especially as it constella�on is character- haps be�er known by contains excep�onally mag- ised by the magnitude 3 the name Messier 48, is nificent objects that make to 4 stars eta, sigma, delta, situated due west of al- a visit to the constella�on epsilon and zeta Hydrae, pha Hydrae right on the decidedly worthwhile. which could be seen as constella�on Monoceros making up the head shape boundary. Caroline Her- Of course, what makes with a sharp-pointed nose. schel and Charles Messier the constella�on all the independently discov- more interes�ng is the fact The star Alphard, also ered this large, bright and that it raises the ques�on, known as alpha Hydrae, loosely expanded cluster why the name – why a could easily seen as a yellow- of around 50 stars dis- female snake? According white diamond hanging on playing circles, pairs and to legend Hydra was the her slender neck (remem- triplets (see picture).
    [Show full text]
  • Jata Galaksija, Virijalni Teorem I Nevidljiva Tvar
    Jata galaksija, virijalni teorem i nevidljiva tvar Pavlovski, Krešimir Source / Izvornik: Matematičko fizički list, 2001, 203, 152 - 154 Journal article, Published version Rad u časopisu, Objavljena verzija rada (izdavačev PDF) Permanent link / Trajna poveznica: https://urn.nsk.hr/urn:nbn:hr:217:539050 Rights / Prava: In copyright Download date / Datum preuzimanja: 2021-09-26 Repository / Repozitorij: Repository of Faculty of Science - University of Zagreb IASTRONOMIJA I Jata galaksija, virijalni teorem i nevidljiva tvar Krešimir Pavlovski 1 , Zagreb Galaksije se u svemiru nalaze u skupinama ili jatima. To mogu biti male skupine kao što je Lokalna grupa galaksija koju čini naša galaksija Mliječni put i Andromedina galaksija (M31) kao dominantne, te još tridesetak, uglavnom manjih, nepravilnih ili patuljastih eliptičnih galaksija. Lokalna grupa galaksija, koja obuhvaća promjer oko 1 Mpc ( 1 pc = 3.26 svjet. god. = 3.086·1016 m), dio je pak lokalnog superjata koje obuhvaća i vrlo bogato Virgo jato galaksija što se nalazi na udaljenosti od oko 15 Mpc od naše Galaksije. Virgo jato galaksija na nebu se rasprostire na gotovo 7° , što znači da ima promjer od nekih 2 Mpc. Jata galaksija uočio je još William Herschel u 18. stoljeću kao velike nakupine maglica. Pravi smisao dao im je Edwin Hubble dvadesetih i tridesetih godina 20. stoljeća svojim istraživanjima dalekog svemira. Pregledom fotografskih ploča snimljenih za "palomarski pregled neba" američki je astronom George Abell otkrio 2 712 jata. Njegov se katalog najčešće koristi u istraživanju dalekog svemira. Za stabilni sustav, tj. sustav koji se niti skuplja niti širi, vrijedi Clausiusov virijalni teorem koji povezuje kinetičku energiju ( Ek) sustava s gravitacijskom potencijalnom energijom (Ep).
    [Show full text]
  • Hydra - the Water Snake
    Aug 02 2020 Hydra - The Water Snake Observed: No Object Her Type Mag Alias/Notes NGC 2555 H256-3 Glxy SB(rs)ab 13.1 UGC 4319 MCG 0-21-12 CGCG 3-28 IRAS 8153+54 PGC 23259 NGC 2561 Glxy SB? 14.1 UGC 4336 MCG 1-22-1 CGCG 31-81 CGCG 32-1 IRAS 8169+448 PGC 23351 NGC 2574 Glxy SB(rs)ab: 13.7 MCG -1-22-3 IRAS 8183-845 PGC 23418 IC 2327 Glxy Sa? 14.2 UGC 4356 MCG 1-22-2 CGCG 32-4 IRAS 8188+319 PGC 23447 IC 503 Glxy SBa 13.9 UGC 4366 MCG 1-22-4 CGCG 32-6 IRAS 8195+325 PGC 23474 IC 504 Glxy S0 14 UGC 4372 MCG 1-22-5 CGCG 32-8 PGC 23495 NGC 2583 Glxy E: 14.4 MCG -1-22-8 PGC 23516 NGC 2584 Glxy SB(s)bc? 14.5 MCG -1-22-9 PGC 23523 IC 505 Glxy S 14.7 UGC 4382 MCG 1-22-8 CGCG 32-15 PGC 23528 NGC 2585 Glxy SB(s)b pec 14.5 MCG -1-22-10 IRAS 8209-445 PGC 23537 IC 506 Glxy E/S0 14.7 MCG 1-22-9 CGCG 32-16 PGC 23536 NGC 2589 Non-Existent NGC 2586 Non-Existent STAR MCG -1-2-47 IRAS 407-654 PGC 23603 IC 507 Non-Existent UGC 4392 MCG 0-22-10 CGCG 4-20 IRAS 8224-25 PGC 23616 NGC 2590 Glxy SA(s)bc: 13.9 IC 507 PGC 23616 UGC 4392 MCG 0-22-10 CGCG 4-20 IRAS 8224-25 IC 510 Glxy SB 14.7 UGC 4460 MCG 0-22-15 CGCG 4-46 PGC 23940 IC 513 Glxy SB(rs)0^? 14.5 MCG -2-22-19 PGC 23983 NGC 2612 Glxy S0- sp 13.5 MCG -2-22-20 PGC 24028 NGC 2615 Glxy SB(rs)b 13.3 UGC 4481 MCG 0-22-19 CGCG 4-59 IRAS 8320-222 PGC 24071 IC 514 Glxy 15.3 CGCG 4-66 PGC 24119 IC 515 Glxy S 15.3 UGC 4488 CGCG 4-68 PGC 24125 NGC 2616 Glxy SAB(rs)0^? 13.5 UGC 4489 MCG 0-22-21 CGCG 4-69 PGC 24129 NGC 2617 Glxy S0/a pec: 14.1 MCG -1-22-27 PGC 24136 IC 516 Glxy 15.7 CGCG 4-75 PGC 24155 NGC 2618 H257-3 Glxy
    [Show full text]
  • Wasserschlange (Hydra) - Hya
    Wasserschlange (Hydra) - Hya Allgemeines Die Wasserschlange ist das größte Sternbild und erstreckt sich auf über 100°. Teile des Sternbildes sind auf der ganzen Erde zu beobachten. Ähnlich wie bei Eridanus besteht auch die Wasserschlange nur aus lichtschwachen Sternen und ist somit nur schwer zu erkennen. Das Sternbild erstreckt sich in RA von 8h 12min bis 15h 3min und in DEC von +7° 20' bis -35° 40' und wird dabei von den Sternbildern Krebs (Cancer), Kleiner Hund (Canis Minor), Einhorn (Monoceros), Hinterdeck des Schiffes (Puppis), Kompaß (Pyxis), Luftpumpe (Antlia), Kentaur (Centaurus), Wolf (Lupus), Waage (Libra), Jungfrau (Virgo), Rabe (Corvus), Becher (Crater), Sextant (Sextans) und Löwe (Leo) umschlossen. Die Sterne im Kopf des Sternbildes kulminieren Ende Januar, die des Schwanzes im April gegen Mitternacht. Die Wasserschlange ist wenig markant, da die meisten ihrer Sterne lichtschwach sind. Lediglich der Hauptstern Alphard ist mit 1,98m auffallend hell. Stellare Objekte 30 D Hya - ist ein orangefarbener Stern von 2,0m in 180 LJ Entfernung der Spektralklasse K3 in Alphard Der arabische Name bedeutet "Einsamer in der Schlange". Alphard besitzt ca. die 400-fache Leuchtkraft unserer Sonne. Seine Oberflächentemperatur beträgt 4000 Kelvin. Er gehört mit einem Durchmesser, der den der Sonne um das 40,8-fache übersteigt, zu den Orangeroten Riesensternen E Hya ist ein bläulich-weißer Stern von 4,3m in 360 LJ Entfernung. 46 J Hya ist ein Doppelstern in 132 LJ Entfernung. Die beiden 3,5m und 6,9m hellen Partner zeigen einen schönen Farbkontrast von blau und gelb. Die Trennung ist erst in Teleskopen ab 75 mm Öffnung möglich. 11 H Hya ist ein Doppelstern in 135 LJ Entfernung.
    [Show full text]