Control of Growth and Development of Preantral Follicle: Insights from in Vitro Culture

Total Page:16

File Type:pdf, Size:1020Kb

Control of Growth and Development of Preantral Follicle: Insights from in Vitro Culture DOI: 10.21451/1984-3143-AR2018-0019 Proceedings of the 10th International Ruminant Reproduction Symposium (IRRS 2018); Foz do Iguaçu, PR, Brazil, September 16th to 20th, 2018. Control of growth and development of preantral follicle: insights from in vitro culture José Ricardo de Figueiredo1,*, Laritza Ferreira de Lima1, José Roberto Viana Silva2, Regiane Rodrigues Santos3 1Laboratory of Manipulation of Oocytes and Preantral Follicles, Faculty of Veterinary, State University of Ceara, Fortaleza CE, Brazil. 2Biotecnology Nucleus of Sobral (NUBIS), Federal University of Ceara, Sobral, CE, Brazil. 3Schothorst Feed Research, Lelystad, The Netherlands. Abstract interaction among endocrine, paracrine and autocrine factors, which in turn affects the steroidogenesis, The regulation of folliculogenesis involves a angiogenesis, basement membrane turnover, oocyte complex interaction among endocrine, paracrine and growth and maturation as well as follicular atresia autocrine factors. The mechanisms involved in the (reviewed by Atwood and Meethala, 2016). It is well initiation of the growth of the primordial follicle, i.e., known that mammalian ovaries contain from thousands follicular activation and the further growth of primary to millions of follicles, whereby about 90% of them are follicles up to the pre-ovulatory stage, are not well represented by preantral follicles (PFs). The understood at this time. The present review focuses on mechanisms involved in the initiation of growth of the the regulation and development of early stage primordial follicles, i.e., follicular activation and the (primordial, primary, and secondary) folliculogenesis further growth of primary follicles up to the pre- highlighting the mechanisms of primordial follicle ovulatory stage, are not well understood at this time. It activation, growth of primary and secondary follicles is important to emphasize that despite the large number and finally transition from secondary to tertiary of follicles in the ovary, the vast majority follicles. We also discuss the importance of in vitro (approximately 99.9%) of them become atretic during follicle culture for the understanding of folliculogenesis their growth and development stages (reviewed by during the preantral phase. Studies suggest that Figueiredo et al., 2011). follicular development from primordial to early antral The in vitro follicle culture (IVFC) technology stages is primarily controlled by intra-ovarian ligands represents a valuable tool to preserve the fertility in but it can also be influenced by many extra-ovarian individuals subjected to cancer treatment as well as sub- factors. The control of early folliculogenesis is, or infertility treatment, to create gamete banks from therefore, extremely complex because several ligands endangered species and breeds, to complement other act through distinct signaling pathways that form reproductive technologies (e.g., in vitro embryo sophisticated information networks responding to production), and to be used as models for studies in multiple, often opposing, stimuli. The balance among reproductive toxicology (reviewed by Figueiredo et al., different stimuli determines follicular survival or death 2011). Furthermore, IVFC provides insights on the as well as quiescence or activation (growth). The control of growth and development of preantral and distribution of the ligands and their corresponding antral follicles (Cadenas et al., 2017). The present receptors varies among follicular compartments and review focuses on the regulation and development of species, and significant changes in gene expression early stage (primordial, primary, and secondary) of pattern among follicular categories have been reported. folliculogenesis highlighting the mechanisms of Knowing that follicular requirements during early primordial follicle activation, growth of primary and folliculogenesis can be stage-specific and species- secondary follicles and, finally, transition from specific, in vitro culture studies offer an alternative to secondary to tertiary follicles. We also discuss the evaluate single and combined factors during a specific importance of IVFC for the understanding of period of follicular development. Herewith we folliculogenesis during the preantral phase. summarize the main findings obtained in vitro together with the mechanisms regulating folliculogenesis. Basic aspects of follicle structure and populations Keywords: folliculogenesis, in vitro development, The ovarian follicle is the functional unit of the ovary, preantral follicle. ovary composed of an oocyte surrounded by companion somatic cells (granulosa and theca cells). To facilitate Introduction the understanding of this review the following follicular classification was adopted: quiescent or dormant Folliculogenesis is the physiological process of follicles represented by the primordial follicles (one formation, activation, growth and maturation of ovarian layer of flattened granulosa cells around the oocyte) and follicles. It describes the progression of some small growing follicles (intermediate: one layer of flattened primordial follicles into large preovulatory follicles. The and cuboidal granulosa cells; primary: one layer of regulation of folliculogenesis involves a complex cuboidal granulosa cells, and secondary: two or more _________________________________________ *Corresponding author: [email protected] Received: February 1, 2018 Copyright © The Author(s). Published by CBRA. Accepted: June 1, 2018 This is an Open Access article under the Creative Commons Attribution License (CC BY 4.0 license) Figueiredo et al. Regulation of preantral follicle development. layers of cuboidal granulosa cells around the oocyte; development of PFs is primarily controlled by Silva et al., 2004). However, some authors named intraovarian (autocrine/paracrine regulation) ligands dormant follicles the ones containing either one layer of (e.g., growth factors, cytokines, and gonadal steroids) flattened granulosa cells or with flattened and/or even though it can be influenced by many extraovarian cuboidal (Jimenez et al., 2016). All preantral follicle ligands (endocrine regulation) from different tissues categories contain an immature oocyte at the germinal including the endocrine glands (reviewed by Atwood vesicle stage. and Meethala, 2016; Fig. 1-2). The control of folliculogenesis is, therefore, extremely complex Regulation of folliculogenesis during the preantral because the aforementioned ligands act through distinct follicle phase signaling pathways. These cell-signaling pathways do not act in isolation, but interact in various ways forming Folliculogenesis is a highly regulated sophisticated information networks that respond to developmental sequence resulting in the growth and multiple, often opposing, stimuli. This connection may differentiation of the oocyte and associated somatic involve components that are common between cells. Capacity of the oocyte to resume meiosis, pathways, as well as positive and negative feedback complete maturation (oocyte maturational competence), loops (Hunter, 2000). The main pathways currently undergo successful fertilization, support normal embryo studied are adenylate cyclase, MAPK / Erk, PI3K / Akt, and fetal development and produce healthy offspring phospholipase C, JAKS / STATS, SMADS and nuclear (oocyte developmental competence) is gradually receptors. The ligands that regulate folliculogenesis act acquired as the oocyte develops as the follicles pass by binding to different types of receptors that activate through the primordial to the preovulatory stages one or more of these pathways leading to responses (reviewed by Figueiredo et al., 2011). The production of related to activation, survival, proliferation and a good quality oocyte (developmental competence) follicular maturation (reviewed by Atwood and depends on a fine crosstalk between the oocyte and its Meethala, 2016). The following sections describe the surrounding follicular cells that begins during the proposed mechanisms involved in the regulation of preantral follicle phase of folliculogenesis. The follicle growth from primordial to antral stage. Figure 1. Control of the development of preantral follicle. Follicular development from primordial to early antral stages is primarily controlled by intra-ovarian ligands, but it can also be influenced by many extra-ovarian factors. This process is complex and involves autocrine (blue arrows), paracrine (green arrows) and endocrine (pink arrows) regulations. Anim. Reprod., v.15, (Suppl.1), p.648-659. 2018 649 Figueiredo et al. Regulation of preantral follicle development. Figure 2- Distribution of some key growth factors and hormones within primordial and developing follicular compartments (oocyte, granulosa and theca cells) in ruminants. Ligands (bold black letter) and receptors (bold white letter). KL – Kit ligand; E2 - 17b-estradiol; FGFb – basic fibroblast growth factor; VEGF – vascular endothelial growth factor; GDF-9 – Growth differentiation factor-9; LIF – leukemia inhibitory factor; GH – growth hormone; EGF – Epidermal growth factor; AMH – Antimullerian hormone; BMP15 – Bone morphogenetic protein 15; BMP6 - Bone morphogenetic protein 6; BMP2 - Bone morphogenetic protein 2; BMP4 - Bone morphogenetic protein 4; IGF1 and IGF2 – Insulin growth factors 1 and 2; TGFβ- tumor growth factor beta; BMPs - Bone morphogenetic proteins superfamily; FSH – Follicle stimulating hormone; LH – Luteinizing hormone. Activation of primordial follicle pathway, leading to an
Recommended publications
  • Chapter V FOLLICULAR DYNAMICS and REPRODUCTIVE
    Chapter V FOLLICULAR DYNAMICS AND REPRODUCTIVE TECHNOLOGIES IN BUFFALO Giuseppina Maria Terzano Istituto Sperimentale per la Zootecnia (Animal Production Research Institute) Via Salaria 31, 00016 Monterotondo (Rome), Italy The general characteristics of reproduction like seasonality, cyclicity and ovulation differ widely in mammals for the following reasons: a) reproductive activity may take place during the whole year or at defined seasons, according to the species and their adaptation to environmental conditions; thus, photoperiod plays a determinant role in seasonal breeders such as rodents, carnivores and ruminants (sheep, goats, buffaloes, deer, etc.,). An extreme situation is observed in foxes with only one ovulation per year, occurring in January or February; b) mammals may be distinguished according to the absence or presence of spontaneous ovulations: in the first group of mammals ( rabbits, hares, cats, mink, camels, Llama), the ovulation is induced by mating and cyclicity is not obvious; in the second group, ovulation occurs spontaneously in each cycle, separating the follicular phase from the luteal phase; c) the length of cycles is quite different among species: small rodents have short cycles of four or five days, farm animals and primates have longer cycles (sheep: 17 days; cow, goat, buffalo, horse and pig: 21 days; primates: 28 days), and dogs are characterized by long cycles of six to seven months, including a two month luteal phase (Concannon, 1993); d) ovulation rates differ widely among species and breeds within a given species: in sheep for example, Merinos d'Arles or Ile-de-France breeds have only one ovulation per cycle, whereas average rates of two to four ovulations per cycle are observed in prolific breeds like Romanov or Finn (Land et al., 1973).
    [Show full text]
  • Oogenesis in Mammals
    OOGENESIS IN MAMMALS In contrast to most other vertebrates , mammals do not replenish the stores of oocytes present in the ovary at birth. At birth the human ovaries contain about 1 million oocytes ( many of which are already degenerating) that have been arrested in the diplotene stage of the first meiotic division . These oocytes are already surrounded by a layer of follicular cells or granulosa cells , and the complex of ovum and its surrounding cellular investments is known as a follicle . Of all the germ cells present in the ovary ,only about 400 (one per menstrual cycle) will reach maturity and become ovulated. The remainder develop to varying degrees and then undergo atresia (degeneration). Oocytes first become associated with follicular cells in the late fetal period , when they are going through early prophase of the first meiotic division . The primary oocyte (so called because it is undergoing the first meiotic division ) plus its incomplete covering of flattened follicular cells is called a primordial follicle . According to Gougeon (1993) a follicle passes through three major phases on its way to ovulation. The first phase is characterized by a large pool of nongrowing follicles , approximately 500,000 per ovary at birth. In this pool are primordial follicles, which develop into primary follicles by surrounding themselves with a complete single layer of cuboidal follicular cells . By this time , the oocytes have entered the first period of meiotic arrest , the diplotene stage . In human , essentially all oocytes , unless Page 1 of 5 : SEM-2 (GEN ) , Unit#6 : OOGENESIS : Pritha Mondal they degenerate ,remain arrested in the diplotene stage until puberty ; some will not progress past the diplotene stage until the woman’s last reproductive cycle (age 45 to 55 years).
    [Show full text]
  • GROSS and HISTOMORPHOLOGY of the OVARY of BLACK BENGAL GOAT (Capra Hircus)
    VOLUME 7 NO. 1 JANUARY 2016 • pages 37-42 MALAYSIAN JOURNAL OF VETERINARY RESEARCH RE# MJVR – 0006-2015 GROSS AND HISTOMORPHOLOGY OF THE OVARY OF BLACK BENGAL GOAT (Capra hircus) HAQUE Z.1*, HAQUE A.2, PARVEZ M.N.H.3 AND QUASEM M.A.1 1 Department of Anatomy and Histology, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh-2202, Bangladesh 2 Chittagong Veterinary and Animal Sciences University, Khulshi, Chittagong 3 Department of Anatomy and Histology, Faculty of Veterinary and Animal Science, Hajee Mohammad Danesh Science and Technology University, Basherhat, Dinajpur * Corresponding author: [email protected] ABSTRACT. Ovary plays a vital 130.07 ± 12.53 µm and the oocyte diameter role in the reproductive biology and was 109.8 ± 5.75 µm. These results will be biotechnology of female animals. In this helpful to manipulate ovarian functions in study, both the right and left ovaries of small ruminants. the Black Bengal goat were collected from Keywords: Morphometry, ovarian the slaughter houses of different Thanas follicles, cortex, medulla, oocyte. in the Mymensingh district. For each of the specimens, gross parameters such as INTRODUCTION weight, length and width were recorded. Then they were processed and stained with Black Bengal goat is the national pride of H&E for histomorphometry. This study Bangladesh. The most promising prospect revealed that the right ovary (0.53 ± 0.02 of Black Bengal goat in Bangladesh is g) was heavier than the left (0.52 ± 0.02 g). that this dwarf breed is a prolific breed, The length of the right ovary (1.26 ± 0.04 requiring only a small area to breed and cm) was lower than the left (1.28 ± 0.02 with the advantage of their selective cm) but the width of the right (0.94 ± 0.02 feeding habit with a broader feed range.
    [Show full text]
  • Vocabulario De Morfoloxía, Anatomía E Citoloxía Veterinaria
    Vocabulario de Morfoloxía, anatomía e citoloxía veterinaria (galego-español-inglés) Servizo de Normalización Lingüística Universidade de Santiago de Compostela COLECCIÓN VOCABULARIOS TEMÁTICOS N.º 4 SERVIZO DE NORMALIZACIÓN LINGÜÍSTICA Vocabulario de Morfoloxía, anatomía e citoloxía veterinaria (galego-español-inglés) 2008 UNIVERSIDADE DE SANTIAGO DE COMPOSTELA VOCABULARIO de morfoloxía, anatomía e citoloxía veterinaria : (galego-español- inglés) / coordinador Xusto A. Rodríguez Río, Servizo de Normalización Lingüística ; autores Matilde Lombardero Fernández ... [et al.]. – Santiago de Compostela : Universidade de Santiago de Compostela, Servizo de Publicacións e Intercambio Científico, 2008. – 369 p. ; 21 cm. – (Vocabularios temáticos ; 4). - D.L. C 2458-2008. – ISBN 978-84-9887-018-3 1.Medicina �������������������������������������������������������������������������veterinaria-Diccionarios�������������������������������������������������. 2.Galego (Lingua)-Glosarios, vocabularios, etc. políglotas. I.Lombardero Fernández, Matilde. II.Rodríguez Rio, Xusto A. coord. III. Universidade de Santiago de Compostela. Servizo de Normalización Lingüística, coord. IV.Universidade de Santiago de Compostela. Servizo de Publicacións e Intercambio Científico, ed. V.Serie. 591.4(038)=699=60=20 Coordinador Xusto A. Rodríguez Río (Área de Terminoloxía. Servizo de Normalización Lingüística. Universidade de Santiago de Compostela) Autoras/res Matilde Lombardero Fernández (doutora en Veterinaria e profesora do Departamento de Anatomía e Produción Animal.
    [Show full text]
  • The Effectiveness and Safety of the Early Follicular Phase Full-Dose Down
    The effectiveness and safety of the early follicular phase full-dose down- regulation protocol for controlled ovarian hyperstimulation: a randomized, paralleled controlled, multicenter trial 2018-12-29 Background Since the first “tube baby”, Louise Brown, was born in the United Kingdom in 1978, many infertile couples have been benefitted from in vitro fertilization and embryo transfer (IVF-ET) and intracytoplasmic sperm injection (ICSI). It is reported that there are over 5 million babies born with the help of assisted reproductive technology (ART). According to the 2015 national data published by Human Fertility and Embryology Authority (HFEA, 48,147 women received 61,726 IVF/ICSI cycles and gave birth to 17,041 newborns [1]. In the United States, 169,602 IVF/ICSI cycles were performed in 2014 and 68,791 tubal babies were born [2]. China has a huge population base, and therefore has a substantial number of infertile couples. Although a late starter, China is developing rapidly in ART and playing a more and more important role in the area of reproductive medicine. In spite of the continuous development in ART, so far, the overall success rate of IVF/ICSI is still hovering around 25-40%. The live birth rate per stimulated cycle is 25.6% in the UK in 2015, fluctuating from 1.9% in women aged 45 and elder to 32.2% in women younger than 35 years old [1]. The IVF/ICSI success rate in 2014 in the US is similar [2]. In China, according to the data submitted by 115 reproductive medicine centers on the ART data reporting system developed by Chinese Society of Reproductive Medicine, the delivery rate is about 40% [3].
    [Show full text]
  • Androgens Regulate Ovarian Follicular Development by Increasing Follicle Stimulating Hormone Receptor and Microrna-125B Expression
    Androgens regulate ovarian follicular development by increasing follicle stimulating hormone receptor and microRNA-125b expression Aritro Sena,b,1, Hen Prizanta, Allison Lighta, Anindita Biswasa, Emily Hayesa, Ho-Joon Leeb, David Baradb, Norbert Gleicherb, and Stephen R. Hammesa,1 aDivision of Endocrinology and Metabolism, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642; and bCenter for Human Reproduction, New York, NY 10021 Edited by John J. Eppig, Jackson Laboratory, Bar Harbor, ME, and approved January 15, 2014 (received for review October 8, 2013) Although androgen excess is considered detrimental to women’s promoting preantral follicle growth and development into an- health and fertility, global and ovarian granulosa cell-specific an- tral follicles. However, these in vivo studies did not elucidate drogen-receptor (AR) knockout mouse models have been used to specific mechanisms used by androgens and ARs to mediate show that androgen actions through ARs are actually necessary these processes. for normal ovarian function and female fertility. Here we describe Here we performed an in-depth analysis of androgen-induced two AR-mediated pathways in granulosa cells that regulate ovar- signaling pathways that regulate ovarian folliculogenesis. Andro- ian follicular development and therefore female fertility. First, we gens signal via extranuclear (nongenomic) and nuclear (genomic) show that androgens attenuate follicular atresia through nuclear pathways. In fact, previous work by others and ourselves in and extranuclear signaling pathways by enhancing expression of androgen-sensitive prostate cancer cells showed that these two the microRNA (miR) miR-125b, which in turn suppresses proapop- processes are tightly linked, with maximal AR-mediated nuclear totic protein expression.
    [Show full text]
  • Variability in the Length of Menstrual Cycles Within and Between Women - a Review of the Evidence Key Points
    Variability in the Length of Menstrual Cycles Within and Between Women - A Review of the Evidence Key Points • Mean cycle length ranges from 27.3 to 30.1 days between ages 20 and 40 years, follicular phase length is 13-15 days, and luteal phase length is less variable and averages 13-14 days1-3 • Menstrual cycle lengths vary most widely just after menarche and just before menopause primarily as cycles are anovulatory 1 • Mean length of follicular phase declines with age3,11 while luteal phase remains constant to menopause8 • The variability in menstrual cycle length is attributable to follicular phase length1,11 Introduction Follicular and luteal phase lengths Menstrual cycles are the re-occurring physiological – variability of menstrual cycle changes that happen in women of reproductive age. Menstrual cycles are counted from the first day of attributable to follicular phase menstrual flow and last until the day before the next onset of menses. It is generally assumed that the menstrual cycle lasts for 28 days, and this assumption Key Points is typically applied when dating pregnancy. However, there is variability between and within women with regard to the length of the menstrual cycle throughout • Follicular phase length averages 1,11,12 life. A woman who experiences variations of less than 8 13-15 days days between her longest and shortest cycle is considered normal. Irregular cycles are generally • Luteal phase length averages defined as having 8 to 20 days variation in length of 13-14 days1-3 cycle, whereas over 21 days variation in total cycle length is considered very irregular.
    [Show full text]
  • Female Reproductive System
    Female Reproductive System By the end of this lecture, the student should be able to describe: 1. The Histological Structure And Fate Of Ovarian Follicles. 2. The Histological Structure Of: • Ovary. • Oviducts (Fallopian tubes). • Uterus. • Vagina. • Placenta. • Resting and lactating mammary gland. Color index: Slides.. Important ..Notes ..Extra.. Female Reproductive System Adult Ovary Ovarian Cycle: Overview Primary sex organs: 1. Germinal Epithelium: outer layer of - 2 ovaries. flat cells. Secondary sex organs: 2. Tunica Albuginea: dense C.T layer. - 2 Fallopian tubes. Thick capsule covering the ovaries - Uterus. 3. Outer Cortex: ovarian follicles and - Vagina. interstitial cells. - External genitalia. 4. Inner Medulla: highly vascular - 2 mammary glands. loose C.T. Its thickness depends on age (pre or post menopausal) and does NOT contain follicles All the changes happening in the follicle are in: 1) size of oocytes 2) cells surrounding the oocytes Ovarian Follicles The cortex of the ovary in adults contains the following types (stages) of follicles: 2. PRIMARY Follicles: 1. PRIMORDIAL follicles. • They develop from the primordial follicles, 2. PRIMARY follicles: at puberty under the effect of FSH. A. Unilaminar A. Unilaminar primary follicles: B. Multilaminar Are similar to primordial follicles, but: 3. SECONDARY (ANTRAL) follicles. o The primary oocyte is larger (40 µm). 4. MATURE Graafian follicles. o The follicular cells are cuboidal in shape. one layer of cuboidal cells surrounding the oocytes nuclei here are becoming round, representing that in the cuboidal cells 1. Primordial Follicles: B. Multilaminar primary follicles: • The only follicles present before puberty. • 1ry oocyte larger • The earliest and most numerous stage. • Corona radiate • Located superficially under the tunica albuginea.
    [Show full text]
  • Effects of Caffeine, Alcohol and Smoking on Fertility
    Pre-Conception Health Special Interest Group Effects of caffeine, alcohol and smoking on fertility There is an increasing body of evidence that health behaviours affect fertility. As most health behaviours can be modified, providing advice and support in making healthy changes can promote fertility. The evidence relating to the effects on fertility of caffeine, alcohol consumption and smoking is reviewed here. Your Fertility is a national public education campaign funded by the Australian Government Department of Health and Ageing under the Family Planning Grants Program. 1 Updated October 2015 Pre-Conception Health Special Interest Group Effects of caffeine, alcohol and smoking on fertility Evidence review Caffeine Smoking Caffeine is widely consumed as it is present in coffee, tea, some soft drinks There is strong evidence that smoking adversely affects male and female and chocolate. Some evidence suggests that the consumption of caffeine, fertility. Smokers are more likely to be infertile [7, 20-21] and women with a possible dose-response effect, may prolong the time to pregnancy who are exposed to smoking take longer to conceive [22]. Furthermore, and affect the health of a developing foetus, although the mechanism for maternal smoking increases the risk of low birth weight and birth defects this is unclear. Caffeine may affect ovulation and corpus luteum functioning [23] and women who smoke reach menopause earlier than non-smokers through alterations to hormone levels [1] and has been shown to be associated [24]. Smoking can also damage sperm DNA. Heavy smoking (≥20 with elevated early follicular E2 levels in females [2]. Although some studies cigarettes per day) by fathers at the time of conception increases the have found a positive relationship between caffeine consumption and time child’s risk of childhood leukaemia and shortens reproductive lifespan to conception [3-6], study results are inconsistent and should be interpreted of daughters [25-26].
    [Show full text]
  • Nomina Histologica Veterinaria, First Edition
    NOMINA HISTOLOGICA VETERINARIA Submitted by the International Committee on Veterinary Histological Nomenclature (ICVHN) to the World Association of Veterinary Anatomists Published on the website of the World Association of Veterinary Anatomists www.wava-amav.org 2017 CONTENTS Introduction i Principles of term construction in N.H.V. iii Cytologia – Cytology 1 Textus epithelialis – Epithelial tissue 10 Textus connectivus – Connective tissue 13 Sanguis et Lympha – Blood and Lymph 17 Textus muscularis – Muscle tissue 19 Textus nervosus – Nerve tissue 20 Splanchnologia – Viscera 23 Systema digestorium – Digestive system 24 Systema respiratorium – Respiratory system 32 Systema urinarium – Urinary system 35 Organa genitalia masculina – Male genital system 38 Organa genitalia feminina – Female genital system 42 Systema endocrinum – Endocrine system 45 Systema cardiovasculare et lymphaticum [Angiologia] – Cardiovascular and lymphatic system 47 Systema nervosum – Nervous system 52 Receptores sensorii et Organa sensuum – Sensory receptors and Sense organs 58 Integumentum – Integument 64 INTRODUCTION The preparations leading to the publication of the present first edition of the Nomina Histologica Veterinaria has a long history spanning more than 50 years. Under the auspices of the World Association of Veterinary Anatomists (W.A.V.A.), the International Committee on Veterinary Anatomical Nomenclature (I.C.V.A.N.) appointed in Giessen, 1965, a Subcommittee on Histology and Embryology which started a working relation with the Subcommittee on Histology of the former International Anatomical Nomenclature Committee. In Mexico City, 1971, this Subcommittee presented a document entitled Nomina Histologica Veterinaria: A Working Draft as a basis for the continued work of the newly-appointed Subcommittee on Histological Nomenclature. This resulted in the editing of the Nomina Histologica Veterinaria: A Working Draft II (Toulouse, 1974), followed by preparations for publication of a Nomina Histologica Veterinaria.
    [Show full text]
  • Review Article Physiologic Course of Female Reproductive Function: a Molecular Look Into the Prologue of Life
    Hindawi Publishing Corporation Journal of Pregnancy Volume 2015, Article ID 715735, 21 pages http://dx.doi.org/10.1155/2015/715735 Review Article Physiologic Course of Female Reproductive Function: A Molecular Look into the Prologue of Life Joselyn Rojas, Mervin Chávez-Castillo, Luis Carlos Olivar, María Calvo, José Mejías, Milagros Rojas, Jessenia Morillo, and Valmore Bermúdez Endocrine-Metabolic Research Center, “Dr. Felix´ Gomez”,´ Faculty of Medicine, University of Zulia, Maracaibo 4004, Zulia, Venezuela Correspondence should be addressed to Joselyn Rojas; [email protected] Received 6 September 2015; Accepted 29 October 2015 Academic Editor: Sam Mesiano Copyright © 2015 Joselyn Rojas et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The genetic, endocrine, and metabolic mechanisms underlying female reproduction are numerous and sophisticated, displaying complex functional evolution throughout a woman’s lifetime. This vital course may be systematized in three subsequent stages: prenatal development of ovaries and germ cells up until in utero arrest of follicular growth and the ensuing interim suspension of gonadal function; onset of reproductive maturity through puberty, with reinitiation of both gonadal and adrenal activity; and adult functionality of the ovarian cycle which permits ovulation, a key event in female fertility, and dictates concurrent modifications in the endometrium and other ovarian hormone-sensitive tissues. Indeed, the ultimate goal of this physiologic progression is to achieve ovulation and offer an adequate environment for the installation of gestation, the consummation of female fertility. Strict regulation of these processes is important, as disruptions at any point in this evolution may equate a myriad of endocrine- metabolic disturbances for women and adverse consequences on offspring both during pregnancy and postpartum.
    [Show full text]
  • Biology of Oocyte Maturation Oogenesis
    Biology of Reproduction Unit Biology of Oocyte Maturation Carlos E. Plancha1,2 1 Unidade de Biologia da Reprodução, Inst. Histologia e Biologia do Desenvolvimento, . Faculdade de Medicina de Lisboa, Portugal 2 CEMEARE – Centro Médico de Assistência à Reprodução, Lisboa, Portugal Basic principles in ovarian physiology: relevance for IVF, ESHRE Campus Workshop Lisbon, 19-20 September, 2008 Biology of Reproduction Unit Oogenesis Growth Phase: - Oocyte diameter increases OOCYTE GROWTH - Organelle redistribution - High transcriptional and translational activity - Accumulation of RNA / proteins - Incompetent Æ Competent ooc. Oocyte Maturation: GV Complex series of nuclear and cytoplasmic events with resumption of the 1st meiotic OOCYTE MATURATION division and arrest at MII OVULATION shortly before ovulation MII Ovulation Growth Maturation FERTILIZATION Resumption of meiosis Æ PN formation Embryo development Prophase I Metaphase II Basic principles in ovarian physiology: relevance for IVF, ESHRE Campus Workshop Lisbon, 19-20 September, 2008 Biology of Reproduction Unit Oogenesis in vivo (including oocyte maturation) takes place inside a morfo-functional unit: The Ovarian Follicle Basic principles in ovarian physiology: relevance for IVF, ESHRE Campus Workshop Lisbon, 19-20 September, 2008 Biology of Reproduction Unit Factors involved in oogenesis Igf-1,2,3 and folliculogenesis GDF - 9 FSH,LH Cellular interactions Perifolicular matrix Laminin Basic principles in ovarian physiology: relevance for IVF, ESHRE Campus Workshop Lisbon, 19-20 September,
    [Show full text]