CXXXIII.--Thujin. by ARTHURGEORGE PERKIN

Total Page:16

File Type:pdf, Size:1020Kb

CXXXIII.--Thujin. by ARTHURGEORGE PERKIN View Article Online / Journal Homepage / Table of Contents for this issue 1408 PERKTN : THUJIN. CXXXIII.--Thujin. By ARTHURGEORGE PERKIN. INthe year 1858 Rochleder and Kawalier (Wien. Akad. Ber., 29, 10; J. pr. Chem., 74, 8) isolated from the green portions of the Arbor vitae (Thuja occidentalis) a glucoside thu jin, C20H22012, soluble in alkali solutions with a yellow colour. This substance, present in the plant only in minute quantity, by gentle hydrolysis with acid in alcoholic solution, yielded dextrose and a compound, thujigenin, C14H12O7, which on longer digestion with the acid combined with a molecule of water, with the formation of thujetin, CI4H1408 : Published on 01 January 1914. Downloaded by University of California - San Diego 16/12/2016 23:13:26. c20H22012 + H2° == C6H7206 + C14H1207, C14H,207 + H2° = C14H1408* Thujigenin and thujetin are described as yellow, crystalline com- pounds, soluble in dilute alkali solutions with a green, and in alcoholic ammonia with a bluish-green, coloration. Thujetin gives a red precipitab with lead acetate solution, and by digestion with boiling baryta water was converted into1 thujetinic acid, C28H22013. From an alcoholic extract of 120 kilos. of the plant, these authors could isolate only a few grams of thujin, and it is probable on account of this very small yield that no further exhaustive investi- gation of the subject has been hitherto attempted. In many respects the description of this compound corresponds with that of a flavone glucoside, and as the result of a preliminary in- vestigation carried out several years ago, there could be little doubt, judging by the properties of the trace of yellow, crystalline colour- View Article Online PERKIN : THUJIN. 1409 ing matter then isolated (I!.,1899, 75, 829), that this is the case.* Although tKe presence of flavone glucosides in plants is now known to be of common occurrence, the peculiar properties assigned to thujin were attractive, and it appeared desirable to clear up if possible the mystery with which it has been so long surrounded. EXPERIMENTAL. It is known in certain caes that in the earlier stages of their growth the leaves of plants are richer in flavone glucoside than at a later period, and it therefore suggested itself that the younger leaves of the T. occidentaEis would on this account be most suitable for investigation. Twenty-five kilos. of this freshly gathered material, which on keeping for several days lost by evaporation of moisture approximately half its weight, were exhausted with alcohol, the extract evaporated, and the green, viscous residue gradually stirred into 6 litres of boiling water. When cold the pale brown aqueous liquid was decanted as far as possible from the semi- solid residue; the last traces were removed by filtration through paper, aq operation which occupied several hours. Addition of lead acetate solution in excess caused the separation of a dull, faintly yellow precipitate (A), which was collected after some time, the filtrate now giving with the basic acetate a much brighter yellow deposit (B). The procedure adopted appeared preferable to that of Rochleder and Kawalier, who merely employed neutral lead acetate as precipita_nt, extracting the product with dilute acetic acid, and after filtration reprecipitating with the basic compound. In the form of a thin cream with water (B) was treated with hydrogen sulphide, the mixture briskly boiled, and the lead sulphide removed by filtra- tion. The pale brown liquid on being kept in a vacuum deposited Published on 01 January 1914. Downloaded by University of California - San Diego 16/12/2016 23:13:26. at first a trace of yellow, semi-crystalline substance, which was of a non-glucosidal character ; this was removed, and subsequently crystals of the desired compound commenced to separate. The product was collected from time to time as a sufficient quantity accumulated, with the idea that some possible separation might thus be effected, and ultimately five distinct fractions were avail- able, the total weight of which in the air-dried condition was 2.95 grams. These samples, however, appeared to consist of one and the same substance, for by a recrystallisation from water, in four cases the glistening leaflets melted at about 183--185O, whereas the melting point of the fifth, namely, 176--178O, was only slightly lower. The final filtrate on further evaporation did not yield crystals, although dyeing experiments still indicated the preeence * The younger branches of the Chinese Arbor vik (7'. orimztnlis) are said to be used for dyeing yellow. View Article Online 1410 PERKIN : THUJln'. of some quantity of glucoside. In order to hydrolyse this, the mixture was boiled with addition of acid, and the coloiwing matter (1'073 grams) isolated by meaiis of et Iier, aid wscrved for subse- quent examination (0). As the glucoside was possibly still impure, and contained a trace of free colouring matter, it was dissolved in a little boiling alcohol, and the solution slowly poured into a separating funnel, which contained one part of ether and two parts of water. After gectle agitation the aqueous solution was removed, boiled to expel ether and alcohol, and the crystals which separated on cooling were recrystallised from alcohol and water. The latter treatments, how- ever, caused no alteration in the melting point of the substance, which still melted at 183-185O. When dried in the air no lms was experienced by heating to looo (Found, C= 53.76 ; H =4-88. C21H2201zrequires C = 54.07 ; H = 4.72 per cent.). It was sparingly soluble in boiling water, dissolved in alkali solutions with a pale yellow colour, and gave with lead acetate a yellow precipitate. To determine the nature of this glucoside it was hydrolysed with boiling 1 per cent. sulphuric acid, and, after cooling, the yellow needles which had then separated were collected and dried at 160O. The yield was 65-11 per cent., and in a second experiment 64-89 per cent. (Found, C = 59.62 ; H = 3.58. Cl,Hl0O7 requires C = 59-60 ; H=3*31 per cent.). The acetyl compound prepared in the usual manner consisted of colourless needles melting at 191-195O (Found, C = 58-70; H = 3-95. C,,H,O,(C~H,O), requires C = 58.59 ; H'= 3-90 per cent.). This colouring matter had all the properties of quercetin except in respect of the colour of its alkaline solution, which possessed a slight green tint, and experiment indicated that it was in reality Published on 01 January 1914. Downloaded by University of California - San Diego 16/12/2016 23:13:26. this substance contaminated with a trace of a second compound. In order to characterise the sugar which was formed by the hydrolysis of this glucoside, the sulphuric acid present in the filtrate from the quercetin was removed by means of barium carbonate, the clear liquid evaporated, and the residue freed from mineral matter by extraction with alcohol. The product gave with phenylhydrazine bn osazone, which after purification melted at 179-181°, and was found to consist of rhamnose-osazone. The hydrolysis of the glucoside could therefore be expressed as follows : c%Hzzo~z + Hzo = C,,H1oo, + C6H1,06J and this equation represents a yield of 64.81 per cent. of quer- cetin. From these results it seemed certain that the glucoside dried at looo was not anhydrous, and in reality possessed the View Article Online PERRIN : THUJJN. 1411 formula C21H20011,H20,for anhydrous rhamnose is now known to be C6H,,05. This proved to be the case, and when dried at 160° the following analytical figures were obtained (Found, C= 55.90; H=4.58. C,,H,,O,, requires C =56*25; H=4.46 per cent.). The only simple rhamnoside of quercetin at present known is the quercitrin of quercitron bark (Quercus tinctoria), and this in appearance and general properties possessed a striking resemblance to thujin. Again comparative dyeing experiments with the two substances, employing mordanted woollen cloth, further accentuated this similarity. On the other hand, as the melting point found by Herzig (Mouatsh., 1885, 6, 877), the latest worker on quercitrin, is 173O; it was still possible that thujin was a distinct substance. To settle this point some quercitrin was prepared from yellow flavine by the method previously described (T., 1913, 103, 1634) and recrystallised from dilute alcohol. In case a trace of quercetin was present the product was submitted to the ether treatment, detailed above in connexion with thujin, and then fractionally crystallised by the gradual addition of boiling water to its concen- trated alcoholic solution. The second fraction only was taken as pure, for Herzig, who recommends the latter procedure, has pointed out that any quercetin is contained in the first deposit. The air- dried product did not evolve water of crystallisation when heated to looo (Found, C = 54.11 ; R = 4.74. C;,H,,O,, requires C = 54.07 ; H=4*72 per cent.). At 160°, however, a molecule of water was given off (Found, H,O = 3-86, 3-75, 3-96. C,,H2,0,,,H20 requires H20= 3-86 per cent.), and on analysis the anhydrous compound gave: C=56*24; H=4.63. CzlHzOO1lrequires C = 56-25; H =4*46 per cent. Published on 01 January 1914. Downloaded by University of California - San Diego 16/12/2016 23:13:26. The quercitrin obtained in this way melted at 183--185O, and was identical with the thujin prepared from Thuja occidentalis. The formula C,,H,,O,, previously assigned to quercitrin by Herzig, and correctly so in view of the temperature at which the specimens analysed by this author were dried, was based, as in the case of many other glucosides, on the assumption that rhamnose was C,H,,O, rather than C,H,,O,,H,O.
Recommended publications
  • Inhibitory Properties of Saponin from Eleocharis Dulcis Peel Against Α-Glucosidase
    RSC Advances View Article Online PAPER View Journal | View Issue Inhibitory properties of saponin from Eleocharis dulcis peel against a-glucosidase† Cite this: RSC Adv.,2021,11,15400 Yipeng Gu, a Xiaomei Yang,b Chaojie Shang,a Truong Thi Phuong Thaoa and Tomoyuki Koyama*a The inhibitory properties towards a-glucosidase in vitro and elevation of postprandial glycemia in mice by the saponin constituent from Eleocharis dulcis peel were evaluated for the first time. Three saponins were isolated by silica gel and HPLC, identified as stigmasterol glucoside, campesterol glucoside and daucosterol by NMR spectroscopy. Daucosterol presented the highest content and showed the strongest a-glucosidase inhibitory activity with competitive inhibition. Static fluorescence quenching of a-glucosidase was caused by the formation of the daucosterol–a-glucosidase complex, which was mainly derived from hydrogen bonds and van der Waals forces. Daucosterol formed 7 hydrogen bonds with 4 residues of the active site Received 19th March 2021 and produced hydrophobic interactions with 3 residues located at the exterior part of the binding Accepted 9th April 2021 pocket. The maltose-loading test results showed that daucosterol inhibited elevation of postprandial Creative Commons Attribution-NonCommercial 3.0 Unported Licence. DOI: 10.1039/d1ra02198b glycemia in ddY mice. This suggests that daucosterol from Eleocharis dulcis peel can potentially be used rsc.li/rsc-advances as a food supplement for anti-hyperglycemia. 1. Introduction a common hydrophytic vegetable that
    [Show full text]
  • Plant Phenolics: Bioavailability As a Key Determinant of Their Potential Health-Promoting Applications
    antioxidants Review Plant Phenolics: Bioavailability as a Key Determinant of Their Potential Health-Promoting Applications Patricia Cosme , Ana B. Rodríguez, Javier Espino * and María Garrido * Neuroimmunophysiology and Chrononutrition Research Group, Department of Physiology, Faculty of Science, University of Extremadura, 06006 Badajoz, Spain; [email protected] (P.C.); [email protected] (A.B.R.) * Correspondence: [email protected] (J.E.); [email protected] (M.G.); Tel.: +34-92-428-9796 (J.E. & M.G.) Received: 22 October 2020; Accepted: 7 December 2020; Published: 12 December 2020 Abstract: Phenolic compounds are secondary metabolites widely spread throughout the plant kingdom that can be categorized as flavonoids and non-flavonoids. Interest in phenolic compounds has dramatically increased during the last decade due to their biological effects and promising therapeutic applications. In this review, we discuss the importance of phenolic compounds’ bioavailability to accomplish their physiological functions, and highlight main factors affecting such parameter throughout metabolism of phenolics, from absorption to excretion. Besides, we give an updated overview of the health benefits of phenolic compounds, which are mainly linked to both their direct (e.g., free-radical scavenging ability) and indirect (e.g., by stimulating activity of antioxidant enzymes) antioxidant properties. Such antioxidant actions reportedly help them to prevent chronic and oxidative stress-related disorders such as cancer, cardiovascular and neurodegenerative diseases, among others. Last, we comment on development of cutting-edge delivery systems intended to improve bioavailability and enhance stability of phenolic compounds in the human body. Keywords: antioxidant activity; bioavailability; flavonoids; health benefits; phenolic compounds 1. Introduction Phenolic compounds are secondary metabolites widely spread throughout the plant kingdom with around 8000 different phenolic structures [1].
    [Show full text]
  • Content of the Cyanogenic Glucoside Amygdalin in Almond Seeds Related
    Content of the cyanogenic glucoside amygdalin in almond seeds related to the bitterness genotype Contenido del glucósido cianogénico amigdalina en semillas de almendra con relación al genotipo con sabor amargo Guillermo Arrázola1, Raquel Sánchez P.2, Federico Dicenta2, and Nuria Grané3 ABSTRACT RESUMEN Almond kernels can be sweet, slightly bitter or bitter. Bitterness Las semillas de almendras pueden ser dulces, ligeramente ama- in almond (Prunus dulcis Mill.) and other Prunus species is rgas y amargas. El amargor en almendro (Prunus dulcis Mill.) related to the content of the cyanogenic diglucoside amygdalin. y en otras especies de Prunus se relaciona con el contenido de When an almond containing amygdalin is chopped, glucose, la amígdalina diglucósido cianogénico. Cuando una almendra benzaldehyde (bitter flavor) and hydrogen cyanide (which que contiene amigdalina se tritura, produce glucosa, benzal- is toxic) are released. This two-year-study with 29 different dehído (sabor amargo) y ácido cianihídrico (que es tóxico). El almond cultivars for bitterness was carried out in order to estudio es realizado durante dos años, con 29 variedades de al- relate the concentration of amygdalin in the kernel with the mendra diferentes para la amargura o amargor, se ha realizado phenotype (sweet, slightly bitter or bitter) and the genotype con el fin de relacionar la concentración de la amígdalina en el (homozygous: sweet or bitter or heterozygous: sweet or slightly núcleo con el fenotipo (dulce, ligeramente amargo y amargo) bitter) with an easy analytical test. Results showed that there y el genotipo (homocigota: dulce o amargo o heterocigótico: was a clear difference in the amount of amygdalin between bit- dulce o amarga un poco) por un ensayo de análisis fácil.
    [Show full text]
  • In Chemistry, Glycosides Are Certain Molecules in Which a Sugar Part Is
    GLYCOSIDES Glycosides may be defined as the organic compounds from plants or animal sources, which on enzymatic or acid hydrolysis give one or more sugar moieties along with non- sugar moiety. Glycosides play numerous important roles in living organisms. Many plants store important chemicals in the form of inactive glycosides; if these chemicals are needed, the glycosides are brought in contact with water and an enzyme, and the sugar part is broken off, making the chemical available for use. Many such plant glycosides are used as medications. In animals (including humans), poisons are often bound to sugar molecules in order to remove them from the body. Formally, a glycoside is any molecule in which a sugar group is bonded through its carbon atom to another group via an O-glycosidic bond or an S-glycosidic bond; glycosides involving the latter are also called thioglycosides. The sugar group is then known as the glycone and the non-sugar group as the aglycone or genin part of the glycoside. The glycone can consist of a single sugar group (monosaccharide) or several sugar groups (oligosaccharide). Classification Classification based on linkages Based on the linkage of sugar moiety to aglycone part 1. O-Glycoside:-Here the sugar is combined with alcoholic or phenolic hydroxyl function of aglycone.eg:-digitalis. 2. N-glycosides:-Here nitrogen of amino group is condensed with a sugar ,eg- Nucleoside 3. S-glycoside:-Here sugar is combined with sulphur of aglycone,eg- isothiocyanate glycosides. 4. C-glycosides:-By condensation of a sugar with a cabon atom, eg-Cascaroside, aloin. Glycosides can be classified by the glycone, by the type of glycosidic bond, and by the aglycone.
    [Show full text]
  • The Chemical Constituents and Pharmacological Effects of Convolvulus Arvensis and Convolvulus Scammonia- a Review
    IOSR Journal Of Pharmacy www.iosrphr.org (e)-ISSN: 2250-3013, (p)-ISSN: 2319-4219 Volume 6, Issue 6 Version. 3 (June 2016), PP. 64-75 The chemical constituents and pharmacological effects of Convolvulus arvensis and Convolvulus scammonia- A review Prof Dr Ali Esmail Al-Snafi Department of Pharmacology, College of Medicine, Thi qar University, Nasiriyah, P O Abstract:The phytochemical studies showed that Convolvulus arvensis contained alkaloids, phenolic compounds, flavonoids, carbohydrates, sugars, mucilage, sterols, resin. tannins, unsaturated sterols/triterpenes, lactones and proteins; while, scammonia contained scammonin resin, dihydroxy cinnamic acid, beta-methyl- esculetin, ipuranol, surcose, reducing sugar and starch. The previous pharmacological studies revealed that Convolvulus arvensis possessed cytotoxic, antioxidant, vasorelaxat, immunostimulant, epatoprotective, antibacterial, antidiarrhoeal and diuretic effect; while, Convolvulus scammonia sowed purgative , vasorelaxat, anti platelet aggregation, anticancer and cellular protective effects. This study will highlight the constituents and pharmacological effects of Convolvulus arvensis and Convolvulus scammonia. Keywords: constituents, pharmacology, Convolvulus arvensis, Convolvulus scammonia. I. INTRODUCTION: Herbal medicine is the oldest form of medicine known to mankind. It was the mainstay of many early civilizations and still the most widely practiced form of medicine in the world today. Plant showed wide range of pharmacological activities including antimicrobial, antioxidant,
    [Show full text]
  • Chemistry, Spectroscopic Characteristics and Biological Activity of Natural Occurring Cardiac Glycosides
    IOSR Journal of Biotechnology and Biochemistry (IOSR-JBB) ISSN: 2455-264X, Volume 2, Issue 6 Part: II (Sep. – Oct. 2016), PP 20-35 www.iosrjournals.org Chemistry, spectroscopic characteristics and biological activity of natural occurring cardiac glycosides Marzough Aziz DagerAlbalawi1* 1 Department of Chemistry, University college- Alwajh, University of Tabuk, Saudi Arabia Abstract:Cardiac glycosides are organic compounds containing two types namely Cardenolide and Bufadienolide. Cardiac glycosides are found in a diverse group of plants including Digitalis purpurea and Digitalis lanata (foxgloves), Nerium oleander (oleander),Thevetiaperuviana (yellow oleander), Convallariamajalis (lily of the valley), Urgineamaritima and Urgineaindica (squill), Strophanthusgratus (ouabain),Apocynumcannabinum (dogbane), and Cheiranthuscheiri (wallflower). In addition, the venom gland of cane toad (Bufomarinus) contains large quantities of a purported aphrodisiac substance that has resulted in cardiac glycoside poisoning.Therapeutic use of herbal cardiac glycosides continues to be a source of toxicity today. Recently, D.lanata was mistakenly substituted for plantain in herbal products marketed to cleanse the bowel; human toxicity resulted. Cardiac glycosides have been also found in Asian herbal products and have been a source of human toxicity.The most important use of Cardiac glycosides is its affects in treatment of cardiac failure and anticancer agent for several types of cancer. The therapeutic benefits of digitalis were first described by William Withering in 1785. Initially, digitalis was used to treat dropsy, which is an old term for edema. Subsequent investigations found that digitalis was most useful for edema that was caused by a weakened heart. Digitalis compounds have historically been used in the treatment of chronic heart failure owing to their cardiotonic effect.
    [Show full text]
  • Studies on Betalain Phytochemistry by Means of Ion-Pair Countercurrent Chromatography
    STUDIES ON BETALAIN PHYTOCHEMISTRY BY MEANS OF ION-PAIR COUNTERCURRENT CHROMATOGRAPHY Von der Fakultät für Lebenswissenschaften der Technischen Universität Carolo-Wilhelmina zu Braunschweig zur Erlangung des Grades einer Doktorin der Naturwissenschaften (Dr. rer. nat.) genehmigte D i s s e r t a t i o n von Thu Tran Thi Minh aus Vietnam 1. Referent: Prof. Dr. Peter Winterhalter 2. Referent: apl. Prof. Dr. Ulrich Engelhardt eingereicht am: 28.02.2018 mündliche Prüfung (Disputation) am: 28.05.2018 Druckjahr 2018 Vorveröffentlichungen der Dissertation Teilergebnisse aus dieser Arbeit wurden mit Genehmigung der Fakultät für Lebenswissenschaften, vertreten durch den Mentor der Arbeit, in folgenden Beiträgen vorab veröffentlicht: Tagungsbeiträge T. Tran, G. Jerz, T.E. Moussa-Ayoub, S.K.EI-Samahy, S. Rohn und P. Winterhalter: Metabolite screening and fractionation of betalains and flavonoids from Opuntia stricta var. dillenii by means of High Performance Countercurrent chromatography (HPCCC) and sequential off-line injection to ESI-MS/MS. (Poster) 44. Deutscher Lebensmittelchemikertag, Karlsruhe (2015). Thu Minh Thi Tran, Tamer E. Moussa-Ayoub, Salah K. El-Samahy, Sascha Rohn, Peter Winterhalter und Gerold Jerz: Metabolite profile of betalains and flavonoids from Opuntia stricta var. dilleni by HPCCC and offline ESI-MS/MS. (Poster) 9. Countercurrent Chromatography Conference, Chicago (2016). Thu Tran Thi Minh, Binh Nguyen, Peter Winterhalter und Gerold Jerz: Recovery of the betacyanin celosianin II and flavonoid glycosides from Atriplex hortensis var. rubra by HPCCC and off-line ESI-MS/MS monitoring. (Poster) 9. Countercurrent Chromatography Conference, Chicago (2016). ACKNOWLEDGEMENT This PhD would not be done without the supports of my mentor, my supervisor and my family.
    [Show full text]
  • Betalains and Phenolics in Red Beetroot (Beta Vulgaris)
    Betalains and Phenolics in Red Beetroot (Beta vulgaris) Peel Extracts: Extraction and Characterisation Tytti Kujala*, Jyrki Loponen and Kalevi Pihlaja Department of Chemistry, Vatselankatu 2, FIN-20014 University of Turku, Finland. Fax: +3582-333 67 00. E-mail: [email protected] * Author for correspondence and reprint requests Z. Naturforsch. 56 c, 343-348 (2001); received January 9/February 12, 2001 Beta vulgaris , Betalains, Phenolics The extraction of red beetroot (Beta vulgaris ) peel betalains and phenolics was compared with two extraction methods and solvents. The content of total phenolics in the extracts was determined according to a modification of the Folin-Ciocalteu method and expressed as gallic acid equivalents (GAE). The profiles of extracts were analysed by high-performance liquid chromatography (HPLC). The compounds of beetroot peel extracted with 80% aqueous methanol were characterised from separated fractions using HPLC- diode array detection (HPLC-DAD) and HPLC- electrospray ionisation-mass spectrometry (HPLC-ESI-MS) tech­ niques. The extraction methods and the choice of solvent affected noticeably the content of individual compounds in the extract. The betalains found in beetroot peel extract were vulgaxanthin I, vulgaxanthin II, indicaxanthin, betanin, prebetanin, isobetanin and neobe- tanin. Also cyclodopa glucoside, /V-formylcyclodopa glucoside, glucoside of dihydroxyindol- carboxylic acid, betalamic acid, L-tryptophan, p-coumaric acid, ferulic acid and traces of un­ identified flavonoids were detected. Introduction acid in their cell walls (Jackman and Smith, 1996). Phenolic compounds are ubiquitous in the plant Except ferulic acid, also other phenolic acids and kingdom and they have been reported to possess phenolic acid conjugates have been reported in many biological effects.
    [Show full text]
  • THE Glucosinolates & Cyanogenic Glycosides
    THE Glucosinolates & Cyanogenic Glycosides Assimilatory Sulphate Reduction - Animals depend on organo-sulphur - In contrast, plants and other organisms (e.g. fungi, bacteria) can assimilate it - Sulphate is assimilated from the environment, reduced inside the cell, and fixed to sulphur containing amino acids and other organic compounds Assimilatory Sulphate Reduction The Glucosinolates The Glucosinolates - Found in the Capparales order and are the main secondary metabolites in cruciferous crops The Glucosinolates - The glucosinolates are a class of organic compounds (water soluble anions) that contain sulfur, nitrogen and a group derived from glucose - Every glucosinolate contains a central carbon atom which is bond via a sulfur atom to the glycone group, and via a nitrogen atom to a sulfonated oxime group. In addition, the central carbon is bond to a side group; different glucosinolates have different side groups The Glucosinolates Central carbon atom The Glucosinolates - About 120 different glucosinolates are known to occur naturally in plants. - They are synthesized from certain amino acids: methionine, phenylalanine, tyrosine or tryptophan. - The plants contain the enzyme myrosinase which, in the presence of water, cleaves off the glucose group from a glucosinolate The Glucosinolates -Post myrosinase activity the remaining molecule then quickly converts to a thiocyanate, an isothiocyanate or a nitrile; these are the active substances that serve as defense for the plant - To prevent damage to the plant itself, the myrosinase and glucosinolates
    [Show full text]
  • CLXX VIIL- the Methylation of Quercetin
    View Article Online / Journal Homepage / Table of Contents for this issue 1632 PEREIN : THE METHYLATION OF QUERCETIN. CLXX VIIL- The Methylation of Quercetin. Published on 01 January 1913. Downloaded by Nanyang Technological University 25/08/2015 11:37:09. By ARTHURGEORGE PERKIN. WHEREASin 1884 Herzig (Monntsh., 5, 72) observed that quercetin could not be completely methylated by means of methyl iodide and alkali, v. Kostanecki and Dreher, as the result of their experiments with the monohydroxyxanthones (Rer., 1893, 26, 76), showed that although the methyl ethers of the 2-, 3-, and 4-compounds could be readily prepared by this method, the 1-hydroxyxanthone in which the hydroxyl is adjacent to the carbonyl group was thus not affected. In relation also to the dihydroxyxanthone, chrysin, Kostanecki states (Bey., 1893, 26, 2901), “Dass im Chrysin beim methyliren ein Hydroxyl unangeriffen bleibt . das Hydroxyl welches im Orthostellung steht, sich nicht methyliren lasst.” Alizarin (Schunck and Marchlewski, T., 1894, 65, 185) behaves similarly, and, indeed, this property has been so generally observed in the case of aromatic hydroxy-ketones and acids that the resist- View Article Online PERKIN : TEE METHY LATION OF QUERCETIN. 1633 ance of an hydroxyl group to methylation by this process has in many cases been considered to serve for the detection of a carbonyl group. Although ethyl iodide resembles methyl iodide in this respect, and it appears to have been generally considered that the complete ethylation of such hydroxy-compounds could not be effected by means of this reagent, certain exceptions in this case are to be found in the literature, notably as regards resaceto- phenone (Gregor, Mo?~nfsh.,1894, 15, 437, and Wechsler, ibid., p.
    [Show full text]
  • TMT-Based Quantitative Proteomic Analysis Reveals Defense
    Qiao et al. BMC Plant Biology (2021) 21:82 https://doi.org/10.1186/s12870-021-02853-6 RESEARCH ARTICLE Open Access TMT-based quantitative proteomic analysis reveals defense mechanism of wheat against the crown rot pathogen Fusarium pseudograminearum Fangfang Qiao1†, Xiwen Yang1†, Fengdan Xu1, Yuan Huang1, Jiemei Zhang1, Miao Song1, Sumei Zhou1, Meng Zhang2* and Dexian He1* Abstract Background: Fusarium crown rot is major disease in wheat. However, the wheat defense mechanisms against this disease remain poorly understood. Results: Using tandem mass tag (TMT) quantitative proteomics, we evaluated a disease-susceptible (UC1110) and a disease-tolerant (PI610750) wheat cultivar inoculated with Fusarium pseudograminearum WZ-8A. The morphological and physiological results showed that the average root diameter and malondialdehyde content in the roots of PI610750 decreased 3 days post-inoculation (dpi), while the average number of root tips increased. Root vigor was significantly increased in both cultivars, indicating that the morphological, physiological, and biochemical responses of the roots to disease differed between the two cultivars. TMT analysis showed that 366 differentially expressed proteins (DEPs) were identified by Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment in the two comparison groups, UC1110_3dpi/UC1110_0dpi (163) and PI610750_3dpi/PI610750_0dpi (203). It may be concluded that phenylpropanoid biosynthesis (8), secondary metabolite biosynthesis (12), linolenic acid metabolites (5), glutathione metabolism (8), plant hormone signal transduction (3), MAPK signaling pathway-plant (4), and photosynthesis (12) contributed to the defense mechanisms in wheat. Protein-protein interaction network analysis showed that the DEPs interacted in both sugar metabolism and photosynthesis pathways. Sixteen genes were validated by real-time quantitative polymerase chain reaction and were found to be consistent with the proteomics data.
    [Show full text]
  • Study of the Cluster Thinning Grape As a Source of Phenolic Compounds and Evaluation of Its Antioxidant Potential
    biomolecules Article Study of the Cluster Thinning Grape as a Source of Phenolic Compounds and Evaluation of Its Antioxidant Potential Yolanda Carmona-Jiménez , Miguel Palma , Dominico A. Guillén-Sánchez * and M. Valme García-Moreno * Departamento de Química Analítica, Facultad de Ciencias, Instituto Universitario de Investigación Vitivinícola y Agroalimentaria (IVAGRO), Universidad de Cádiz, Campus Universitario de Puerto Real, 11510 Puerto Real, Cádiz, Spain; [email protected] (Y.C.-J.); [email protected] (M.P.) * Correspondence: [email protected] (D.A.G.-S.); [email protected] (M.V.G.-M.) Abstract: Thinning is a common viticulture practice in warm climates, and it is applied to increase the quality of the harvest. Thinning clusters are usually discarded, and they are considered another oenological industry waste. To valorize this by-product, the phenolic content and antioxidant activity of three red varieties (Tempranillo, Cabernet Sauvignon, and Syrah), thinned at three different times between veraison and harvest, were studied: the first at the beginning of the veraison stage, in a low ripening stage; the second in an intermediate ripening stage; and, finally, the third sampling in the highest ripening stage. These by-products showed high values of total phenolic contents (10.66–11.75 mg gallic acid equivalent/g), which is of the same order as or even higher than that found in grape pomace. In thinned grape were identified 24 phenolic compounds, being the flavan- 3-ols (catechin and epicatechin) of particular interest, with mean contents ranging from 105.1 to 516.4 mg/kg of thinned grape. Antioxidant activity similar to that of the vintage grape was found.
    [Show full text]