Cardenolide Biosynthesis in Foxglove1
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Digitoxin-Induced Cytotoxicity in Cancer Cells Is Mediated Through Distinct Kinase and Interferon Signaling Networks
Published OnlineFirst August 22, 2011; DOI: 10.1158/1535-7163.MCT-11-0421 Molecular Cancer Therapeutic Discovery Therapeutics Digitoxin-Induced Cytotoxicity in Cancer Cells Is Mediated through Distinct Kinase and Interferon Signaling Networks Ioannis Prassas1,2, George S. Karagiannis1,2, Ihor Batruch4, Apostolos Dimitromanolakis1,2, Alessandro Datti2,3,5, and Eleftherios P. Diamandis1,2,4 Abstract Cardiac glycosides (e.g., digoxin, digitoxin) constitute a diverse family of plant-derived sodium pump inhibitors that have been in clinical use for the treatment of heart-related diseases (congestive heart failure, atrial arrhythmia) for many years. Recently though, accumulating in vitro and in vivo evidence highlight potential anticancer properties of these compounds. Despite the fact that members of this family have advanced to clinical trial testing in cancer therapeutics, their cytotoxic mechanism is not yet elucidated. In this study, we investigated the cytotoxic properties of cardiac glycosides against a panel of pancreatic cancer cell lines, explored their apoptotic mechanism, and characterized the kinetics of cell death induced by these drugs. Furthermore, we deployed a high-throughput kinome screening approach and identified several kinases of the Na-K-ATPase-mediated signal transduction circuitry (epidermal growth factor receptor, Src, pkC, and mitogen-activated protein kinases) as important mediators downstream of cardiac glycoside cytotoxic action. To further extend our knowledge on their mode of action, we used mass-spectrometry–based quantitative proteomics (stable isotope labeling of amino acids in cell culture) coupled with bioinformatics to capture large-scale protein perturbations induced by a physiological dose of digitoxin in BxPC-3 pancreatic cancer cells and identified members of the interferon family as key regulators of the main protein/protein interactions downstream of digitoxin action. -
Inhibitory Properties of Saponin from Eleocharis Dulcis Peel Against Α-Glucosidase
RSC Advances View Article Online PAPER View Journal | View Issue Inhibitory properties of saponin from Eleocharis dulcis peel against a-glucosidase† Cite this: RSC Adv.,2021,11,15400 Yipeng Gu, a Xiaomei Yang,b Chaojie Shang,a Truong Thi Phuong Thaoa and Tomoyuki Koyama*a The inhibitory properties towards a-glucosidase in vitro and elevation of postprandial glycemia in mice by the saponin constituent from Eleocharis dulcis peel were evaluated for the first time. Three saponins were isolated by silica gel and HPLC, identified as stigmasterol glucoside, campesterol glucoside and daucosterol by NMR spectroscopy. Daucosterol presented the highest content and showed the strongest a-glucosidase inhibitory activity with competitive inhibition. Static fluorescence quenching of a-glucosidase was caused by the formation of the daucosterol–a-glucosidase complex, which was mainly derived from hydrogen bonds and van der Waals forces. Daucosterol formed 7 hydrogen bonds with 4 residues of the active site Received 19th March 2021 and produced hydrophobic interactions with 3 residues located at the exterior part of the binding Accepted 9th April 2021 pocket. The maltose-loading test results showed that daucosterol inhibited elevation of postprandial Creative Commons Attribution-NonCommercial 3.0 Unported Licence. DOI: 10.1039/d1ra02198b glycemia in ddY mice. This suggests that daucosterol from Eleocharis dulcis peel can potentially be used rsc.li/rsc-advances as a food supplement for anti-hyperglycemia. 1. Introduction a common hydrophytic vegetable that -
Plant Phenolics: Bioavailability As a Key Determinant of Their Potential Health-Promoting Applications
antioxidants Review Plant Phenolics: Bioavailability as a Key Determinant of Their Potential Health-Promoting Applications Patricia Cosme , Ana B. Rodríguez, Javier Espino * and María Garrido * Neuroimmunophysiology and Chrononutrition Research Group, Department of Physiology, Faculty of Science, University of Extremadura, 06006 Badajoz, Spain; [email protected] (P.C.); [email protected] (A.B.R.) * Correspondence: [email protected] (J.E.); [email protected] (M.G.); Tel.: +34-92-428-9796 (J.E. & M.G.) Received: 22 October 2020; Accepted: 7 December 2020; Published: 12 December 2020 Abstract: Phenolic compounds are secondary metabolites widely spread throughout the plant kingdom that can be categorized as flavonoids and non-flavonoids. Interest in phenolic compounds has dramatically increased during the last decade due to their biological effects and promising therapeutic applications. In this review, we discuss the importance of phenolic compounds’ bioavailability to accomplish their physiological functions, and highlight main factors affecting such parameter throughout metabolism of phenolics, from absorption to excretion. Besides, we give an updated overview of the health benefits of phenolic compounds, which are mainly linked to both their direct (e.g., free-radical scavenging ability) and indirect (e.g., by stimulating activity of antioxidant enzymes) antioxidant properties. Such antioxidant actions reportedly help them to prevent chronic and oxidative stress-related disorders such as cancer, cardiovascular and neurodegenerative diseases, among others. Last, we comment on development of cutting-edge delivery systems intended to improve bioavailability and enhance stability of phenolic compounds in the human body. Keywords: antioxidant activity; bioavailability; flavonoids; health benefits; phenolic compounds 1. Introduction Phenolic compounds are secondary metabolites widely spread throughout the plant kingdom with around 8000 different phenolic structures [1]. -
Content of the Cyanogenic Glucoside Amygdalin in Almond Seeds Related
Content of the cyanogenic glucoside amygdalin in almond seeds related to the bitterness genotype Contenido del glucósido cianogénico amigdalina en semillas de almendra con relación al genotipo con sabor amargo Guillermo Arrázola1, Raquel Sánchez P.2, Federico Dicenta2, and Nuria Grané3 ABSTRACT RESUMEN Almond kernels can be sweet, slightly bitter or bitter. Bitterness Las semillas de almendras pueden ser dulces, ligeramente ama- in almond (Prunus dulcis Mill.) and other Prunus species is rgas y amargas. El amargor en almendro (Prunus dulcis Mill.) related to the content of the cyanogenic diglucoside amygdalin. y en otras especies de Prunus se relaciona con el contenido de When an almond containing amygdalin is chopped, glucose, la amígdalina diglucósido cianogénico. Cuando una almendra benzaldehyde (bitter flavor) and hydrogen cyanide (which que contiene amigdalina se tritura, produce glucosa, benzal- is toxic) are released. This two-year-study with 29 different dehído (sabor amargo) y ácido cianihídrico (que es tóxico). El almond cultivars for bitterness was carried out in order to estudio es realizado durante dos años, con 29 variedades de al- relate the concentration of amygdalin in the kernel with the mendra diferentes para la amargura o amargor, se ha realizado phenotype (sweet, slightly bitter or bitter) and the genotype con el fin de relacionar la concentración de la amígdalina en el (homozygous: sweet or bitter or heterozygous: sweet or slightly núcleo con el fenotipo (dulce, ligeramente amargo y amargo) bitter) with an easy analytical test. Results showed that there y el genotipo (homocigota: dulce o amargo o heterocigótico: was a clear difference in the amount of amygdalin between bit- dulce o amarga un poco) por un ensayo de análisis fácil. -
In Chemistry, Glycosides Are Certain Molecules in Which a Sugar Part Is
GLYCOSIDES Glycosides may be defined as the organic compounds from plants or animal sources, which on enzymatic or acid hydrolysis give one or more sugar moieties along with non- sugar moiety. Glycosides play numerous important roles in living organisms. Many plants store important chemicals in the form of inactive glycosides; if these chemicals are needed, the glycosides are brought in contact with water and an enzyme, and the sugar part is broken off, making the chemical available for use. Many such plant glycosides are used as medications. In animals (including humans), poisons are often bound to sugar molecules in order to remove them from the body. Formally, a glycoside is any molecule in which a sugar group is bonded through its carbon atom to another group via an O-glycosidic bond or an S-glycosidic bond; glycosides involving the latter are also called thioglycosides. The sugar group is then known as the glycone and the non-sugar group as the aglycone or genin part of the glycoside. The glycone can consist of a single sugar group (monosaccharide) or several sugar groups (oligosaccharide). Classification Classification based on linkages Based on the linkage of sugar moiety to aglycone part 1. O-Glycoside:-Here the sugar is combined with alcoholic or phenolic hydroxyl function of aglycone.eg:-digitalis. 2. N-glycosides:-Here nitrogen of amino group is condensed with a sugar ,eg- Nucleoside 3. S-glycoside:-Here sugar is combined with sulphur of aglycone,eg- isothiocyanate glycosides. 4. C-glycosides:-By condensation of a sugar with a cabon atom, eg-Cascaroside, aloin. Glycosides can be classified by the glycone, by the type of glycosidic bond, and by the aglycone. -
Glycosides Pharmacognosy Dr
GLYCOSIDES PHARMACOGNOSY DR. KIBOI Glycosides Glycosides • Glycosides consist of a sugar residue covalently bound to a different structure called the aglycone • The sugar residue is in its cyclic form and the point of attachment is the hydroxyl group of the hemiacetal function. The sugar moiety can be joined to the aglycone in various ways: 1.Oxygen (O-glycoside) 2.Sulphur (S-glycoside) 3.Nitrogen (N-glycoside) 4.Carbon ( Cglycoside) • α-Glycosides and β-glycosides are distinguished by the configuration of the hemiacetal hydroxyl group. • The majority of naturally-occurring glycosides are β-glycosides. • O-Glycosides can easily be cleaved into sugar and aglycone by hydrolysis with acids or enzymes. • Almost all plants that contain glycosides also contain enzymes that bring about their hydrolysis (glycosidases ). • Glycosides are usually soluble in water and in polar organic solvents, whereas aglycones are normally insoluble or only slightly soluble in water. • It is often very difficult to isolate intact glycosides because of their polar character. • Many important drugs are glycosides and their pharmacological effects are largely determined by the structure of the aglycone. • The term 'glycoside' is a very general one which embraces all the many and varied combinations of sugars and aglycones. • More precise terms are available to describe particular classes. Some of these terms refer to: 1.the sugar part of the molecule (e.g. glucoside ). 2.the aglycone (e.g. anthraquinone). 3.the physical or pharmacological property (e.g. saponin “soap-like ”, cardiac “having an action on the heart ”). • Modern system of naming glycosides uses the termination '-oside' (e.g. sennoside). • Although glycosides form a natural group in that they all contain a sugar unit, the aglycones are of such varied nature and complexity that glycosides vary very much in their physical and chemical properties and in their pharmacological action. -
Chemistry, Spectroscopic Characteristics and Biological Activity of Natural Occurring Cardiac Glycosides
IOSR Journal of Biotechnology and Biochemistry (IOSR-JBB) ISSN: 2455-264X, Volume 2, Issue 6 Part: II (Sep. – Oct. 2016), PP 20-35 www.iosrjournals.org Chemistry, spectroscopic characteristics and biological activity of natural occurring cardiac glycosides Marzough Aziz DagerAlbalawi1* 1 Department of Chemistry, University college- Alwajh, University of Tabuk, Saudi Arabia Abstract:Cardiac glycosides are organic compounds containing two types namely Cardenolide and Bufadienolide. Cardiac glycosides are found in a diverse group of plants including Digitalis purpurea and Digitalis lanata (foxgloves), Nerium oleander (oleander),Thevetiaperuviana (yellow oleander), Convallariamajalis (lily of the valley), Urgineamaritima and Urgineaindica (squill), Strophanthusgratus (ouabain),Apocynumcannabinum (dogbane), and Cheiranthuscheiri (wallflower). In addition, the venom gland of cane toad (Bufomarinus) contains large quantities of a purported aphrodisiac substance that has resulted in cardiac glycoside poisoning.Therapeutic use of herbal cardiac glycosides continues to be a source of toxicity today. Recently, D.lanata was mistakenly substituted for plantain in herbal products marketed to cleanse the bowel; human toxicity resulted. Cardiac glycosides have been also found in Asian herbal products and have been a source of human toxicity.The most important use of Cardiac glycosides is its affects in treatment of cardiac failure and anticancer agent for several types of cancer. The therapeutic benefits of digitalis were first described by William Withering in 1785. Initially, digitalis was used to treat dropsy, which is an old term for edema. Subsequent investigations found that digitalis was most useful for edema that was caused by a weakened heart. Digitalis compounds have historically been used in the treatment of chronic heart failure owing to their cardiotonic effect. -
Quinidine, Beta-Blockers, Diphenylhydantoin, Bretylium *
Pharmacology of Antiarrhythmics: Quinidine, Beta-Blockers, Diphenylhydantoin, Bretylium * ALBERT J. WASSERMAN, M.D. Professor of Medicine, Chairman, Division of Clinical Pharmacology, Medical College of Virginia, Health Sciences Division of Virginia Commonwealth University, Richmond, Virginia JACK D. PROCTOR, M.D. Assistant Professor of Medicine, Medical College of Virginia, Health Sciences Division of Virginia Commonwealth University, Richmond, Virginia The electrophysiologic effects of the antiar adequate, controlled clinical comparisons are virtu rhythmic drugs, presented elsewhere in this sym ally nonexistent. posium, form only one of the bases for the selec A complete presentation of the non-electro tion of a therapeutic agent in any given clinical physiologic pharmacology would include the follow situation. The final choice depends at least on the ing considerations: following factors: 1. Absorption and peak effect times 1. The specific arrhythmia 2. Biotransformation 2. Underlying heart disease, if any 3. Rate of elimination or half-life (t1d 3. The degree of compromise of the circula 4. Drug interactions tion, if any 5. Toxicity 4. The etiology of the arrhythmia 6. Clinical usefulness 5. The efficacy of the drug for that arrhythmia 7. Therapeutic drug levels due to that etiology 8. Dosage schedules 6. The toxicity of the drug, especially in the As all of the above data cannot be presented in given patient with possible alterations in the limited space available, only selected items will volume of distribution, biotransformation, be discussed. Much of the preceding information and excretion is available, however, in standard texts ( 1 7, 10). 7. The electrophysiologic effects of the drug (See Addendum 1) 8. The routes and frequency of administration Quinidine. -
Ehealth DSI [Ehdsi V2.2.2-OR] Ehealth DSI – Master Value Set
MTC eHealth DSI [eHDSI v2.2.2-OR] eHealth DSI – Master Value Set Catalogue Responsible : eHDSI Solution Provider PublishDate : Wed Nov 08 16:16:10 CET 2017 © eHealth DSI eHDSI Solution Provider v2.2.2-OR Wed Nov 08 16:16:10 CET 2017 Page 1 of 490 MTC Table of Contents epSOSActiveIngredient 4 epSOSAdministrativeGender 148 epSOSAdverseEventType 149 epSOSAllergenNoDrugs 150 epSOSBloodGroup 155 epSOSBloodPressure 156 epSOSCodeNoMedication 157 epSOSCodeProb 158 epSOSConfidentiality 159 epSOSCountry 160 epSOSDisplayLabel 167 epSOSDocumentCode 170 epSOSDoseForm 171 epSOSHealthcareProfessionalRoles 184 epSOSIllnessesandDisorders 186 epSOSLanguage 448 epSOSMedicalDevices 458 epSOSNullFavor 461 epSOSPackage 462 © eHealth DSI eHDSI Solution Provider v2.2.2-OR Wed Nov 08 16:16:10 CET 2017 Page 2 of 490 MTC epSOSPersonalRelationship 464 epSOSPregnancyInformation 466 epSOSProcedures 467 epSOSReactionAllergy 470 epSOSResolutionOutcome 472 epSOSRoleClass 473 epSOSRouteofAdministration 474 epSOSSections 477 epSOSSeverity 478 epSOSSocialHistory 479 epSOSStatusCode 480 epSOSSubstitutionCode 481 epSOSTelecomAddress 482 epSOSTimingEvent 483 epSOSUnits 484 epSOSUnknownInformation 487 epSOSVaccine 488 © eHealth DSI eHDSI Solution Provider v2.2.2-OR Wed Nov 08 16:16:10 CET 2017 Page 3 of 490 MTC epSOSActiveIngredient epSOSActiveIngredient Value Set ID 1.3.6.1.4.1.12559.11.10.1.3.1.42.24 TRANSLATIONS Code System ID Code System Version Concept Code Description (FSN) 2.16.840.1.113883.6.73 2017-01 A ALIMENTARY TRACT AND METABOLISM 2.16.840.1.113883.6.73 2017-01 -
Malaysian STATISTICS on MEDICINE 2005
Malaysian STATISTICS ON MEDICINE 2005 Edited by: Sameerah S.A.R Sarojini S. With contributions from Goh A, Faridah A, Rosminah MD, Radzi H, Azuana R, Letchuman R, Muruga V, Zanariah H, Oiyammal C, Sim KH, Fong AYY, Tamil Selvan M, Basariah N, Hooi LS, Zaki Morad, Fadilah O, Lim V.K.E., Tan KK, Biswal BM, Lim YS, Lim GCC, Mohammad Anwar H.A, Ahmad Sabri O, Mary SC, Marzida M, Benjamin Chan TM, Suarn Singh, Zoriah A, Noor Ratna N , Abdul Razak M, Norzila Z, Shamsinah H A publication of the Pharmaceutical Services Division and the Clinical Research Centre Ministry of Health Malaysia Malaysian Statistics On Medicine 22005005 Edited by: Sameerah S.A.R Sarojini S. With contributions from Goh A, Faridah A, Rosminah MD, Radzi H, Azuana R, Letchuman R, Muruga V, Zanariah H, Oiyammal C, Sim KH, Fong AYY, Tamil Selvan M, Basariah N, Hooi LS, Zaki Morad, Fadilah O, Lim V.K.E., Tan KK, Biswal BM, Lim YS, Lim GCC, Mohammad Anwar H.A, Ahmad Sabri O, Mary SC, Marzida M, Benjamin Chan TM, Suarn Singh, Zoriah A, Noor Ratna N , Abdul Razak M, Norzila Z, Shamsinah H A publication of the Pharmaceutical Services Division and the Clinical Research Centre Ministry of Health Malaysia Malaysian Statistics On Medicine 2005 April 2007 © Ministry of Health Malaysia Published by: The National Medicines Use Survey Pharmaceutical Services Division Lot 36, Jalan Universiti 46350 Petaling Jaya Selangor, Malaysia Tel. : (603) 4043 9300 Fax : (603) 4043 9400 e-mail : [email protected] Web site : http://www.crc.gov.my/nmus This report is copyrighted. -
Relative Selectivity of Plant Cardenolides for Na+/K+-Atpases from the Monarch Butterfly and Non-Resistant Insects
fpls-09-01424 September 26, 2018 Time: 15:23 # 1 ORIGINAL RESEARCH published: 28 September 2018 doi: 10.3389/fpls.2018.01424 Relative Selectivity of Plant Cardenolides for NaC/KC-ATPases From the Monarch Butterfly and Non-resistant Insects Georg Petschenka1*, Colleen S. Fei2, Juan J. Araya3, Susanne Schröder4, Barbara N. Timmermann5 and Anurag A. Agrawal2 1 Institute for Insect Biotechnology, Justus-Liebig-Universität, Giessen, Germany, 2 Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY, United States, 3 Centro de Investigaciones en Productos Naturales, Escuela de Química, Instituto de Investigaciones Farmacéuticas, Facultad de Farmacia, Universidad de Costa Rica, San Pedro, Costa Rica, 4 Institut für Medizinische Biochemie und Molekularbiologie, Universität Rostock, Rostock, Germany, 5 Department of Medicinal Chemistry, School of Pharmacy, University of Kansas, Lawrence, KS, United States A major prediction of coevolutionary theory is that plants may target particular herbivores with secondary compounds that are selectively defensive. The highly specialized Edited by: monarch butterfly (Danaus plexippus) copes well with cardiac glycosides (inhibitors Daniel Giddings Vassão, C C Max-Planck-Institut für chemische of animal Na /K -ATPases) from its milkweed host plants, but selective inhibition Ökologie, Germany of its NaC/KC-ATPase by different compounds has not been previously tested. Reviewed by: We applied 17 cardiac glycosides to the D. plexippus-NaC/KC-ATPase and to the Stephen Baillie Malcolm, C C Western Michigan University, more susceptible Na /K -ATPases of two non-adapted insects (Euploea core and United States Schistocerca gregaria). Structural features (e.g., sugar residues) predicted in vitro Supaart Sirikantaramas, inhibitory activity and comparison of insect NaC/KC-ATPases revealed that the monarch Chulalongkorn University, Thailand has evolved a highly resistant enzyme overall. -
Pharmaceutical Services Division and the Clinical Research Centre Ministry of Health Malaysia
A publication of the PHARMACEUTICAL SERVICES DIVISION AND THE CLINICAL RESEARCH CENTRE MINISTRY OF HEALTH MALAYSIA MALAYSIAN STATISTICS ON MEDICINES 2008 Edited by: Lian L.M., Kamarudin A., Siti Fauziah A., Nik Nor Aklima N.O., Norazida A.R. With contributions from: Hafizh A.A., Lim J.Y., Hoo L.P., Faridah Aryani M.Y., Sheamini S., Rosliza L., Fatimah A.R., Nour Hanah O., Rosaida M.S., Muhammad Radzi A.H., Raman M., Tee H.P., Ooi B.P., Shamsiah S., Tan H.P.M., Jayaram M., Masni M., Sri Wahyu T., Muhammad Yazid J., Norafidah I., Nurkhodrulnada M.L., Letchumanan G.R.R., Mastura I., Yong S.L., Mohamed Noor R., Daphne G., Kamarudin A., Chang K.M., Goh A.S., Sinari S., Bee P.C., Lim Y.S., Wong S.P., Chang K.M., Goh A.S., Sinari S., Bee P.C., Lim Y.S., Wong S.P., Omar I., Zoriah A., Fong Y.Y.A., Nusaibah A.R., Feisul Idzwan M., Ghazali A.K., Hooi L.S., Khoo E.M., Sunita B., Nurul Suhaida B.,Wan Azman W.A., Liew H.B., Kong S.H., Haarathi C., Nirmala J., Sim K.H., Azura M.A., Asmah J., Chan L.C., Choon S.E., Chang S.Y., Roshidah B., Ravindran J., Nik Mohd Nasri N.I., Ghazali I., Wan Abu Bakar Y., Wan Hamilton W.H., Ravichandran J., Zaridah S., Wan Zahanim W.Y., Kannappan P., Intan Shafina S., Tan A.L., Rohan Malek J., Selvalingam S., Lei C.M.C., Ching S.L., Zanariah H., Lim P.C., Hong Y.H.J., Tan T.B.A., Sim L.H.B, Long K.N., Sameerah S.A.R., Lai M.L.J., Rahela A.K., Azura D., Ibtisam M.N., Voon F.K., Nor Saleha I.T., Tajunisah M.E., Wan Nazuha W.R., Wong H.S., Rosnawati Y., Ong S.G., Syazzana D., Puteri Juanita Z., Mohd.