Phylogenetic Analysis and Intrageneric Structure of the Genus Hyphornicrobium and the Related Genus Filornicrobium

Total Page:16

File Type:pdf, Size:1020Kb

Phylogenetic Analysis and Intrageneric Structure of the Genus Hyphornicrobium and the Related Genus Filornicrobium International Journal of Systematic Bacteriology (1 998), 48,635-639 Printed in Great Britain Phylogenetic analysis and intrageneric structure of the genus Hyphornicrobium and the related genus Filornicrobium Frederick A. Rainey,' Naomi Ward-Rainey,' Christian G. Gliesche2 and Erko Stackebrandtl Author for correspondence: Erko Stackebrandt. Tel: +49 531 26 16 352. Fax: +49 532 26 16 418. e-mail : erkoagbf-de Deutsche Sammlung von Almost complete 16s rDNA sequences from the type strains of seven species of Mikroorganismen und the genus Hyphomicrobium and of Filomicrobium fusiforme have been Zellkulturen GmbH, D- 381 24 Braunschweig, determined. The Hyphomicrobium species form two phylogenetic clusters that Germany are only moderately related to each other. While cluster I contains the type Inst it ut fur Al lgemei ne species Hyphomicrobium vulgare, Hyphomicrobium aestuarii, Hyphomicrobium Mikro biologie, U n iversitat hollandicum and Hyphomicrobium zavarzinii, cluster II comprises Kiel, Am Botanischen Hyphomicrobium facilis, Hyphomicrobium denitrificans and Hyphomicmbium Garten 1-9, 0-241 18 Kiel, Germany methylovomm. Within the two species clusters, the species are highly related. Phylogenetically,Filomicmbium fusiforme clusters moderately with Hyphomicrobium species. The lack of distinguishing phenotypical properties presently excludes the possibility of describing cluster II as a new genus. Keywords: Hyphomicrobium, Filomicrobium, intrageneric structure INTRODUCTION been isolated and included in these and in taxonomic studies (Gebers et al., 1986; Gliesche et al., 1988; Hyphomicrobia are appendaged bacteria that repro- Stackebrandt et al., 1988; Roggentin & Hirsch, 1989; duce by budding and have a dimorphic life cycle Holm et al., 1996). involving non-motile prosthecate mother cells and motile swarmer cells (Hirsch, 1989). In contrast to The genus Hyphomicrobium presently contains nine morphologically similar taxa such as Hyphomonas species (Hirsch, 1989; Urakami et al., 1995), one of (Moore & Weiner, 1989), Pedomicrobium (Gebers, which, H. coagulans (Takada, 1975), is not available 1989), Dichotomicrobium (Hirsch & Hoffmann, 1989), from any culture collection, while H. indicum has been Filomicrobium (Schlesner, 1987) or Rhodomicrobium discussed in the literature to be a non-authentic (Imhoff & Truper, 1989), hyphomicrobia are restricted member of the genus (Hirsch, 1989; Urakami et al., facultative methylotrophs capable of growth on 1995). Of the other species, only a few strains have reduced C, compounds such as methanol, methylated been included in chemotaxonomic studies (Guckert et amines or formate (Harder & Attwood, 1978). In al., 1991 ;Sittig & Hirsch, 1992) and in the phylogenetic recent years, hyphomicrobia became of special interest analysis of 16s rRNA (Stackebrandt et al., 1988; because of their versatility and ability to use toxic Roggentin & Hirsch, 1989; Tsuji et al., 1990) and 5s waste compounds that are not metabolized by other RNA sequences (Stackebrandt et al., 1988; Boulygina methylotrophs (Hanson, 1992). They can be used in et al., 1993). These studies have indicated that the the denitrification of sewage (Nyberg et al., 1992) or genus belongs to the alpha subclass of the class drinking water (Liessnes, 1993) or in the bio- Proteobacteria. However, according to the results of remediation of C, compounds such as halomethanes, DNA dot-blot hybridization studies on hundreds of methyl sulphates and methylated phosphates (Large & Hyphomicrobium strains (Holm et al., 1996), 19 DNA Bamforth, 1988) and, consequently, many strains have similarity clusters were identified, which points towards the presence of a significantly higher number of species than presently described. This paper is dedicated to Dr Peter Hirsch on the occasion of his 70th birthday. In this study, we present a phylogenetic analysis on all The EMBL accession numbers for the sequences reported in this paper are available type strains of the genus Hyphornicrobium, Y14302-Y14313. which will allow subsequent affiliation of environ- 00698 0 1998 IUMS 635 F. A. Rainey and others Table I. Bacterial strains analysed in this study ~~ Strain* Other designation(s)* Referencelsource H. aestuarii IFAM NQ-521grT ATCC 27488 Hirsch (1989) H. denitriJicansDSM 1869T TK 0415 = IFAM HA-905 Urakami et al. (1995) H. facilis subsp. facilis IFAM H-526T DSM 1565, ATCC 27485 Hirsch (1989) H. facilis IFAM B-522 Hirsch (1 989) H. facilis subsp. tolerans IFAM I-551T ATCC 27489 Hirsch (1 989) H.facilis subsp. ureaphilum IFAM CO-582T ATCC 27492 Hirsch (1989) H. hollandicum IFAM KB-677T ATCC 27498 Hirsch (1989) H. methylovorum DSM 5458T ATCC 35216, KM-146 Hirsch (1989) H. vulgare IFAM MC-750T ATCC 27500 Hirsch (1989) H. zavarzinii IFAM ZV-622T ATCC 27496 Hirsch (1989) H. zavarzinii IFAM ZV-580 Hirsch (1989) F. fusiforme DSM 5304T Schlesner (1987) * ATCC, American Type Culture Collection, Rockville, MD, USA; DSM, DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen, Germany ; IFAM, Institut fur Allgemeine Mikrobiologie, University of Kiel, Germany. mental isolates to known species and the recognition additional strains of Hyphomicrobium were sequenced. of novel genomic nuclei that may represent novel Their EMBL accession numbers are : Hyphomicrobium species. vulgare IFAM MC-750T (Y 14302), Hyphomicrobium hollandicum IFAM KB-677T (Y 14303), Hypho- METHODS microbium aestuarii IFAM NQ-52 lgrT (Y 14304), Hyphomicrobium zavarzinii IFAM ZV-622T (Y 14309, Bacterial strains. Strains analysed in this study are listed in Hyphomicrobium zavarzinii IFAM ZV-580 (Y 14306), Table 1. Growth media and culture conditions followed Hyphomicrobium methylovorum DSM 545gT(Y 14307), described procedures for the cultivation of Hyphomicrobium Hyphomicrobium denitrijicans DSM 1869T (Y 14308), strains (DSM catalogue of strains, 1993, 1996). Hyphomicrobium facilis subsp. facilis IFAM H-526T 165 rDNA sequence determination and analysis. Extraction (Y 14 309), Hyphom icr obium facil is subsp . ureaph ilum of genomic DNA, PCR-mediated amplification of the 16s IFAM CO-582T (Y 143lo), Hyphomicrobium facilis rDNA and sequence analysis of the purified PCR products subsp. tolerans IFAM I-551T (Y1431 l), Hypho- were performed as described previously (Rainey et al., 1996), microbium facilis IFAM B-522 (Y14312) and Filo- and the sequence reactions were electrophoresed using a microbium fusiforme DSM 5304T (Y 14313). model 373A automatic DNA sequencer (Applied Bio- systems). The length of sequences ranged between 1410 and 1446 To determine the closest relatives of strains of hypho- bases, which corresponded to 91 and 94% of the microbia, their phylogenetic position was determined Escherichia coli sequence (Brosius et al., 1978), re- initially using the database ARB (Strunk & Ludwig, 1995). A spectively. The position of the type strain of the type fine resolution of the relatedness between hyphomicrobia species of Hyphomicrobium was searched for in the and their closest relatives was perfomed using the ae2 editor ARB database (Strunk & Ludwig, 1995), and the (Maidak et al., 1994). Phylogenetic dendrograms were position within the ' Rhodomicrobium vannielii assem- reconstructed using treeing algorithms contained in the blage' (Maidak et al., 1994) could be confirmed. PHYLIP package (Felsenstein, 1993). Bootstrap values were determined using the PHYLIP package (Felsenstein, 1993). Subsequent phylogenetic analysis was carried out using the ae2 editor. The sequences of Hypho- Nucleotide sequence accession numbers. The accession microbium strains and of Filomicrobium fusiforme were numbers of the 16s rDNAs of references strains were: aligned with each other and with representatives of Agrobacterium tumefaciens, X67223 ; Methylobacterium organophilum, M29028 ; Methy lobacterium extorquens, neighbouring taxa. A total of 1360 nucleotides were M29027 ; Phyllobacteriurn myrsinacearum, D 12789; Meso- used in the analysis, and phylogenetic trees were rhizobium loti, D12791; Rhodobium rnarinum, D30790; generated using the algorithms of De Soete (1983) and Rhodobium orientis, D30792 ; and Rhodomicrobium vannielii, those included in the PHYLIP package (Felsenstein, M34127. 1993). All trees showed very similar topologies, in that all hyphomicrobia as well as F. fusiforme formed a phylogenetically coherent group, which was most RESULTS closely related to Rhodomicrobium vannielii (around The almost complete primary structure of the 16s 90% 16s rDNA sequence similarity), while the other rDNA of eight type strains of Hyphomicrobium species reference organisms were more distantly related (be- and of Filomicrobium fusiforme as well as of four tween 87 and 89.5 YOsimilarity). The only differences in 636 International Journal of Systematic Bacteriology 48 Phylogeny of Hyphomicrobium and Filomicrobium .................... ... .............................................................................. Rhodobium orientis Fig. 7- Dendrogram showing the Rhodobium marinum phylogenetic position of the genera Phyllobacterium myninacearum r-c+=FFMesorhizobium loti Hyphomicrobium and Filomicrobium among Agro bacterium turne fa ciens members of the alpha-2 subclass of the class Rhodomicrobium vannielii Proteobacteria. The tree was constructed by Hyphomicrobium facilis su bsp. ureaphilum CO-582T the neighbour-joining method (Saitou & Hyphomicrobium facilis subsp. tolerans I-551T Nei, 1987), using corrected distance values Hyphomicrobium facilis B-522 Hyphomicrobium facilis su bsp. facilis H-526T (Jukes & Cantor, 1969). The sequences
Recommended publications
  • A Study on the Phototrophic Microbial Mat Communities of Sulphur Mountain Thermal Springs and Their Association with the Endangered, Endemic Snail Physella Johnsoni
    A Study on the Phototrophic Microbial Mat Communities of Sulphur Mountain Thermal Springs and their Association with the Endangered, Endemic Snail Physella johnsoni By Michael Bilyj A thesis submitted to the Faculty of Graduate Studies in partial fulfillment of the requirements for the degree of Master of Science Department of Microbiology Faculty of Science University of Manitoba Winnipeg, Manitoba October 2011 © Copyright 2011, Michael A. Bilyj 1 Abstract The seasonal population fluctuation of anoxygenic phototrophs and the diversity of cyanobacteria at the Sulphur Mountain thermal springs of Banff, Canada were investigated and compared to the drastic population changes of the endangered snail Physella johnsoni. A new species and two strains of Rhodomicrobium were taxonomically characterized in addition to new species of Rhodobacter and Erythromicrobium. Major mat-forming organisms included Thiothrix-like species, oxygenic phototrophs of genera Spirulina, Oscillatoria, and Phormidium and purple nonsulfur bacteria Rhodobacter, Rhodopseudomonas and Rhodomicrobium. Aerobic anoxygenic phototrophs comprised upwards of 9.6 x 104 CFU/cm2 of mat or 18.9% of total aerobic heterotrophic bacterial isolates at certain sites, while maximal purple nonsulfur and purple sulfur bacteria were quantified at 3.2 x 105 and 2.0 x 106 CFU/cm2 of mat, respectively. Photosynthetic activity measurements revealed incredibly productive carbon fixation rates averaging 40.5 mg C/cm2/24 h. A temporal mismatch was observed for mat area and prokaryote-based organics to P. johnsoni population flux in a ―tracking inertia‖ manner. 2 Acknowledgements It is difficult to express sufficient gratitude to my supervisor Dr. Vladimir Yurkov for his unfaltering patience, generosity and motivation throughout this entire degree.
    [Show full text]
  • 17, 3203–3222, 2020 © Author(S) 2020
    Biogeosciences, 17, 3203–3222, 2020 https://doi.org/10.5194/bg-17-3203-2020 © Author(s) 2020. This work is distributed under the Creative Commons Attribution 4.0 License. The contribution of microbial communities in polymetallic nodules to the diversity of the deep-sea microbiome of the Peru Basin (4130–4198 m depth) Massimiliano Molari1, Felix Janssen1,2, Tobias R. Vonnahme1,a, Frank Wenzhöfer1,2, and Antje Boetius1,2 1Max Planck Institute for Marine Microbiology, Bremen, Germany 2HGF MPG Joint Research Group for Deep-Sea Ecology and Technology, Alfred Wegener Institute for Polar and Marine Research, Bremerhaven, Germany apresent address: UiT the Arctic University of Tromsø, Tromsø, Norway Correspondence: Massimiliano Molari ([email protected]) Received: 16 January 2020 – Discussion started: 3 February 2020 Revised: 27 April 2020 – Accepted: 15 May 2020 – Published: 25 June 2020 Abstract. Industrial-scale mining of deep-sea polymetal- tween the Clarion–Clipperton Fracture Zone (CCZ) and the lic nodules will remove nodules in large areas of the sea Peru Basin suggest that changes in environmental setting floor. The regrowth of the nodules by metal precipita- (e.g. sedimentation rates) also play a significant role in struc- tion is estimated to take millions of years. Thus, for fu- turing the nodule microbiome. ture mining impact studies, it is crucial to understand the role of nodules in shaping microbial diversity and function in deep-sea environments. Here we investigated microbial- community composition based on 16S rRNA gene sequences 1 Introduction retrieved from sediments and nodules of the Peru Basin (4130–4198 m water depth). The nodule field of the Peru Polymetallic nodules (or manganese nodules) occur in Basin showed a typical deep-sea microbiome, with domi- abyssal plains (4000–6000 m water depth) and consist pri- nance of the classes Gammaproteobacteria, Alphaproteobac- marily of manganese and iron as well as many other metals teria, Deltaproteobacteria, and Acidimicrobiia.
    [Show full text]
  • Information to Users
    INFORMATION TO USERS This manuscript has been reproduced from themicrofilm master. UMI films the text directly from the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter face, while others may be from any type of computer printer. The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, prim bleedthrough, substandard margins, and improper alignment can adversely affect reproduction. In the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note win indicate the deletion. Oversize materials (e.g^ maps, drawings, charts) are reproduced by sectioning the original, beginning at the upper left-hand comer and continuing from left to right in equal sections with small overlaps. Each original is also photographed in one exposure and is included in reduced form at the back of the book. Photographs inchiried in the original manuscript have been reproduced xerographically in this copy. Higher quality 6" x 9" black and white photographic prints are available for any photographs or illustrations appearing in this copy for an additional charge. Contact UMI directly to order. A Be<l & Howell Information Company 300 North ZeeO Road. Ann Arbor. Ml 48106-1346 USA 313.- 761-4700 800/ 521-0600 BACTERIA ASSOCIATED WITH WELL WATER: BIOGEOCHEMICAL TRANSFORMATION OF FE AND MN, AND CHARACTERIZATION AND CHEMOTAXIS OF A METHYLOTROPHIC HYPHOMICROBIUM SP. DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy in the Graduate School of The Ohio State University By Laura Tuhela, B.S., M.S.
    [Show full text]
  • Hyphal Proteobacteria, Hirschia Baltica Gen. Nov. , Sp. Nov
    INTERNATIONALJOURNAL OF SYSTEMATICBACTERIOLOGY, Oct. 1990, p. 443451 Vol. 40. No. 4 0020-7713/9O/040443-O9$02.00/0 Copyright 0 1990, International Union of Microbiological Societies Taxonomic and Phylogenetic Studies on a New Taxon of Budding, Hyphal Proteobacteria, Hirschia baltica gen. nov. , sp. nov. HEINZ SCHLESNER," CHRISTINA BARTELS, MANUEL SITTIG, MATTHIAS DORSCH, AND ERKO STACKEBRANDTT Institut fur Allgemeine Mikrobiologie, Christian-Albrecht-Universitat, 2300 Kiel, Federal Republic of Germany Four strains of budding, hyphal bacteria, which had very similar chemotaxonomic properties, were isolated from the Baltic Sea. The results of DNA-DNA hybridization experiments, indicated that three of the new isolates were closely related, while the fourth was only moderately related to the other three. Sequence signature and higher-order structural detail analyses of the 16s rRNA of strain IFAM 141gT (T = type strain) indicated that this isolate is related to the alpha subclass of the class Proteobacteriu. Although our isolates resemble members of the genera Hyphomicrobium and Hyphomonas in morphology, assignment to either of these genera was excluded on the basis of their markedly lower DNA guanine-plus-cytosine contents. We propose that these organisms should be placed in a new genus, Hirschiu baltica is the type species of this genus, and the type strain of H. bdtica is strain IFAM 1418 (= DSM 5838). Since the first description of a hyphal, budding bacterium, no1 and formamide were tested at concentrations of 0.02 and Hyphomicrobium vulgare (53), only the following additional 0.1% (vol/vol). Utilization of nitrogen sources was tested in genera having this morphological type have been formally M9 medium containing glucose as the carbon source.
    [Show full text]
  • Oleomonas Sagaranensis Gen. Nov., Sp. Nov., Represents a Novel Genus in the K-Proteobacteria
    FEMS Microbiology Letters 217 (2002) 255^261 www.fems-microbiology.org Oleomonas sagaranensis gen. nov., sp. nov., represents a novel genus in the K-Proteobacteria Takeshi Kanamori a, Naeem Rashid a, Masaaki Morikawa b, Haruyuki Atomi a, a;Ã Tadayuki Imanaka Downloaded from https://academic.oup.com/femsle/article/217/2/255/502948 by guest on 01 October 2021 a Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Yoshida-Honmachi, Sakyo-ku, Kyoto 606-8501, Japan, and Core Research for Evolutional Science and Technology Program of Japan Science and Technology Corporation (CREST-JST), Kawaguchi, Saitama 332-0012, Japan b Department of Material and Life Science, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan Received 13 July 2002; received in revised form 7 October 2002; accepted 21 October 2002 First published online 7 November 2002 Abstract A Gram-negative bacterium was previously isolated from an oil field in Shizuoka, Japan, and designated strain HD-1. Here we have performed detailed characterization of the strain, and have found that it represents a novel genus. The 16S rRNA sequence of strain HD-1 displayed highest similarity to various uncultured species (86.7V99.7%), along with 86.2V88.2% similarity to sequences from Azospirillum, Methylobacterium, Rhizobium, and Hyphomicrobium, all members of the K-Proteobacteria. Phylogeneticanalysis revealed that HD-1 represented a deep-branched lineage among the K-Proteobacteria. DNA^DNA hybridization analysis with Azospirillum lipoferum and Hyphomicrobium vulgare revealed low levels of similarity among the strains. We further examined the biochemical properties of the strain under aerobic conditions.
    [Show full text]
  • Deterioration of an Etruscan Tomb by Bacteria from the Order Rhizobiales
    OPEN Deterioration of an Etruscan tomb by SUBJECT AREAS: bacteria from the order Rhizobiales SOIL MICROBIOLOGY Marta Diaz-Herraiz1*, Valme Jurado1*, Soledad Cuezva2, Leonila Laiz1, Pasquino Pallecchi3, Piero Tiano4, MICROBIOLOGY TECHNIQUES Sergio Sanchez-Moral5 & Cesareo Saiz-Jimenez1 Received 1Instituto de Recursos Naturales y Agrobiologia, IRNAS-CSIC, Avda. Reina Mercedes 10, 41012 Sevilla, Spain, 2Departamento de 23 September 2013 Ciencias de la Tierra y del Medio Ambiente, Universidad de Alicante, 03690 San Vicente del Raspeig, Spain, 3Soprintendenza per i Beni Archeologici della Toscana, 50143 Firenze, Italy, 4CNR Istituto per la Conservazione e Valorizzazione dei Beni Culturali, Accepted 50019 Sesto Fiorentino, Italy, 5Museo Nacional de Ciencias Naturales, MNCN-CSIC, 28006 Madrid, Spain. 10 December 2013 Published The Etruscan civilisation originated in the Villanovan Iron Age in the ninth century BC and was absorbed by 9 January 2014 Rome in the first century BC. Etruscan tombs, many of which are subterranean, are one of the best representations of this culture. The principal importance of these tombs, however, lies in the wall paintings and in the tradition of rich burial, which was unique in the Mediterranean Basin, with the exception of Correspondence and Egypt. Relatively little information is available concerning the biodeterioration of Etruscan tombs, which is caused by a colonisation that covers the paintings with white, circular to irregular aggregates of bacteria or requests for materials biofilms that tend to connect each other. Thus, these colonisations sometimes cover extensive surfaces. Here should be addressed to we show that the colonisation of paintings in Tomba del Colle is primarily due to bacteria of the order C.S.-J.
    [Show full text]
  • Supplementary Information
    Supplementary Information Comparative Microbiome and Metabolome Analyses of the Marine Tunicate Ciona intestinalis from Native and Invaded Habitats Caroline Utermann 1, Martina Blümel 1, Kathrin Busch 2, Larissa Buedenbender 1, Yaping Lin 3,4, Bradley A. Haltli 5, Russell G. Kerr 5, Elizabeta Briski 3, Ute Hentschel 2,6, Deniz Tasdemir 1,6* 1 GEOMAR Centre for Marine Biotechnology (GEOMAR-Biotech), Research Unit Marine Natural Products Chemistry, GEOMAR Helmholtz Centre for Ocean Research Kiel, Am Kiel-Kanal 44, 24106 Kiel, Germany 2 Research Unit Marine Symbioses, GEOMAR Helmholtz Centre for Ocean Research Kiel, Duesternbrooker Weg 20, 24105 Kiel, Germany 3 Research Group Invasion Ecology, Research Unit Experimental Ecology, GEOMAR Helmholtz Centre for Ocean Research Kiel, Duesternbrooker Weg 20, 24105 Kiel, Germany 4 Chinese Academy of Sciences, Research Center for Eco-Environmental Sciences, 18 Shuangqing Rd., Haidian District, Beijing, 100085, China 5 Department of Chemistry, University of Prince Edward Island, 550 University Avenue, Charlottetown, PE C1A 4P3, Canada 6 Faculty of Mathematics and Natural Sciences, Kiel University, Christian-Albrechts-Platz 4, Kiel 24118, Germany * Corresponding author: Deniz Tasdemir ([email protected]) This document includes: Supplementary Figures S1-S11 Figure S1. Genotyping of C. intestinalis with the mitochondrial marker gene COX3-ND1. Figure S2. Influence of the quality filtering steps on the total number of observed read pairs from amplicon sequencing. Figure S3. Rarefaction curves of OTU abundances for C. intestinalis and seawater samples. Figure S4. Multivariate ordination plots of the bacterial community associated with C. intestinalis. Figure S5. Across sample type and geographic origin comparison of the C. intestinalis associated microbiome.
    [Show full text]
  • Research Collection
    Research Collection Doctoral Thesis Development and application of molecular tools to investigate microbial alkaline phosphatase genes in soil Author(s): Ragot, Sabine A. Publication Date: 2016 Permanent Link: https://doi.org/10.3929/ethz-a-010630685 Rights / License: In Copyright - Non-Commercial Use Permitted This page was generated automatically upon download from the ETH Zurich Research Collection. For more information please consult the Terms of use. ETH Library DISS. ETH NO.23284 DEVELOPMENT AND APPLICATION OF MOLECULAR TOOLS TO INVESTIGATE MICROBIAL ALKALINE PHOSPHATASE GENES IN SOIL A thesis submitted to attain the degree of DOCTOR OF SCIENCES of ETH ZURICH (Dr. sc. ETH Zurich) presented by SABINE ANNE RAGOT Master of Science UZH in Biology born on 25.02.1987 citizen of Fribourg, FR accepted on the recommendation of Prof. Dr. Emmanuel Frossard, examiner PD Dr. Else Katrin Bünemann-König, co-examiner Prof. Dr. Michael Kertesz, co-examiner Dr. Claude Plassard, co-examiner 2016 Sabine Anne Ragot: Development and application of molecular tools to investigate microbial alkaline phosphatase genes in soil, c 2016 ⃝ ABSTRACT Phosphatase enzymes play an important role in soil phosphorus cycling by hydrolyzing organic phosphorus to orthophosphate, which can be taken up by plants and microorgan- isms. PhoD and PhoX alkaline phosphatases and AcpA acid phosphatase are produced by microorganisms in response to phosphorus limitation in the environment. In this thesis, the current knowledge of the prevalence of phoD and phoX in the environment and of their taxonomic distribution was assessed, and new molecular tools were developed to target the phoD and phoX alkaline phosphatase genes in soil microorganisms.
    [Show full text]
  • Lists of Names of Prokaryotic Candidatus Taxa
    NOTIFICATION LIST: CANDIDATUS LIST NO. 1 Oren et al., Int. J. Syst. Evol. Microbiol. DOI 10.1099/ijsem.0.003789 Lists of names of prokaryotic Candidatus taxa Aharon Oren1,*, George M. Garrity2,3, Charles T. Parker3, Maria Chuvochina4 and Martha E. Trujillo5 Abstract We here present annotated lists of names of Candidatus taxa of prokaryotes with ranks between subspecies and class, pro- posed between the mid- 1990s, when the provisional status of Candidatus taxa was first established, and the end of 2018. Where necessary, corrected names are proposed that comply with the current provisions of the International Code of Nomenclature of Prokaryotes and its Orthography appendix. These lists, as well as updated lists of newly published names of Candidatus taxa with additions and corrections to the current lists to be published periodically in the International Journal of Systematic and Evo- lutionary Microbiology, may serve as the basis for the valid publication of the Candidatus names if and when the current propos- als to expand the type material for naming of prokaryotes to also include gene sequences of yet-uncultivated taxa is accepted by the International Committee on Systematics of Prokaryotes. Introduction of the category called Candidatus was first pro- morphology, basis of assignment as Candidatus, habitat, posed by Murray and Schleifer in 1994 [1]. The provisional metabolism and more. However, no such lists have yet been status Candidatus was intended for putative taxa of any rank published in the journal. that could not be described in sufficient details to warrant Currently, the nomenclature of Candidatus taxa is not covered establishment of a novel taxon, usually because of the absence by the rules of the Prokaryotic Code.
    [Show full text]
  • Compile.Xlsx
    Silva OTU GS1A % PS1B % Taxonomy_Silva_132 otu0001 0 0 2 0.05 Bacteria;Acidobacteria;Acidobacteria_un;Acidobacteria_un;Acidobacteria_un;Acidobacteria_un; otu0002 0 0 1 0.02 Bacteria;Acidobacteria;Acidobacteriia;Solibacterales;Solibacteraceae_(Subgroup_3);PAUC26f; otu0003 49 0.82 5 0.12 Bacteria;Acidobacteria;Aminicenantia;Aminicenantales;Aminicenantales_fa;Aminicenantales_ge; otu0004 1 0.02 7 0.17 Bacteria;Acidobacteria;AT-s3-28;AT-s3-28_or;AT-s3-28_fa;AT-s3-28_ge; otu0005 1 0.02 0 0 Bacteria;Acidobacteria;Blastocatellia_(Subgroup_4);Blastocatellales;Blastocatellaceae;Blastocatella; otu0006 0 0 2 0.05 Bacteria;Acidobacteria;Holophagae;Subgroup_7;Subgroup_7_fa;Subgroup_7_ge; otu0007 1 0.02 0 0 Bacteria;Acidobacteria;ODP1230B23.02;ODP1230B23.02_or;ODP1230B23.02_fa;ODP1230B23.02_ge; otu0008 1 0.02 15 0.36 Bacteria;Acidobacteria;Subgroup_17;Subgroup_17_or;Subgroup_17_fa;Subgroup_17_ge; otu0009 9 0.15 41 0.99 Bacteria;Acidobacteria;Subgroup_21;Subgroup_21_or;Subgroup_21_fa;Subgroup_21_ge; otu0010 5 0.08 50 1.21 Bacteria;Acidobacteria;Subgroup_22;Subgroup_22_or;Subgroup_22_fa;Subgroup_22_ge; otu0011 2 0.03 11 0.27 Bacteria;Acidobacteria;Subgroup_26;Subgroup_26_or;Subgroup_26_fa;Subgroup_26_ge; otu0012 0 0 1 0.02 Bacteria;Acidobacteria;Subgroup_5;Subgroup_5_or;Subgroup_5_fa;Subgroup_5_ge; otu0013 1 0.02 13 0.32 Bacteria;Acidobacteria;Subgroup_6;Subgroup_6_or;Subgroup_6_fa;Subgroup_6_ge; otu0014 0 0 1 0.02 Bacteria;Acidobacteria;Subgroup_6;Subgroup_6_un;Subgroup_6_un;Subgroup_6_un; otu0015 8 0.13 30 0.73 Bacteria;Acidobacteria;Subgroup_9;Subgroup_9_or;Subgroup_9_fa;Subgroup_9_ge;
    [Show full text]
  • Evolution of Methanotrophy in the Beijerinckiaceae&Mdash
    The ISME Journal (2014) 8, 369–382 & 2014 International Society for Microbial Ecology All rights reserved 1751-7362/14 www.nature.com/ismej ORIGINAL ARTICLE The (d)evolution of methanotrophy in the Beijerinckiaceae—a comparative genomics analysis Ivica Tamas1, Angela V Smirnova1, Zhiguo He1,2 and Peter F Dunfield1 1Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada and 2Department of Bioengineering, School of Minerals Processing and Bioengineering, Central South University, Changsha, Hunan, China The alphaproteobacterial family Beijerinckiaceae contains generalists that grow on a wide range of substrates, and specialists that grow only on methane and methanol. We investigated the evolution of this family by comparing the genomes of the generalist organotroph Beijerinckia indica, the facultative methanotroph Methylocella silvestris and the obligate methanotroph Methylocapsa acidiphila. Highly resolved phylogenetic construction based on universally conserved genes demonstrated that the Beijerinckiaceae forms a monophyletic cluster with the Methylocystaceae, the only other family of alphaproteobacterial methanotrophs. Phylogenetic analyses also demonstrated a vertical inheritance pattern of methanotrophy and methylotrophy genes within these families. Conversely, many lateral gene transfer (LGT) events were detected for genes encoding carbohydrate transport and metabolism, energy production and conversion, and transcriptional regulation in the genome of B. indica, suggesting that it has recently acquired these genes. A key difference between the generalist B. indica and its specialist methanotrophic relatives was an abundance of transporter elements, particularly periplasmic-binding proteins and major facilitator transporters. The most parsimonious scenario for the evolution of methanotrophy in the Alphaproteobacteria is that it occurred only once, when a methylotroph acquired methane monooxygenases (MMOs) via LGT.
    [Show full text]
  • Genetic and Phenetic Analyses of Bradyrhizobium Strains Nodulating Peanut (Arachis Hypogaea L.) Roots DIMAN VAN ROSSUM,1 FRANK P
    APPLIED AND ENVIRONMENTAL MICROBIOLOGY, Apr. 1995, p. 1599–1609 Vol. 61, No. 4 0099-2240/95/$04.0010 Copyright q 1995, American Society for Microbiology Genetic and Phenetic Analyses of Bradyrhizobium Strains Nodulating Peanut (Arachis hypogaea L.) Roots DIMAN VAN ROSSUM,1 FRANK P. SCHUURMANS,1 MONIQUE GILLIS,2 ARTHUR MUYOTCHA,3 1 1 1 HENK W. VAN VERSEVELD, ADRIAAN H. STOUTHAMER, AND FRED C. BOOGERD * Department of Microbiology, Institute for Molecular Biological Sciences, Vrije Universiteit, BioCentrum Amsterdam, 1081 HV Amsterdam, The Netherlands1; Laboratorium voor Microbiologie, Universiteit Gent, B-9000 Ghent, Belgium2; and Soil Productivity Research Laboratory, Marondera, Zimbabwe3 Received 15 August 1994/Accepted 10 January 1995 Seventeen Bradyrhizobium sp. strains and one Azorhizobium strain were compared on the basis of five genetic and phenetic features: (i) partial sequence analyses of the 16S rRNA gene (rDNA), (ii) randomly amplified DNA polymorphisms (RAPD) using three oligonucleotide primers, (iii) total cellular protein profiles, (iv) utilization of 21 aliphatic and 22 aromatic substrates, and (v) intrinsic resistances to seven antibiotics. Partial 16S rDNA analysis revealed the presence of only two rDNA homology (i.e., identity) groups among the 17 Bradyrhizobium strains. The partial 16S rDNA sequences of Bradyrhizobium sp. strains form a tight similarity (>95%) cluster with Rhodopseudomonas palustris, Nitrobacter species, Afipia species, and Blastobacter denitrifi- cans but were less similar to other members of the a-Proteobacteria, including other members of the Rhizobi- aceae family. Clustering the Bradyrhizobium sp. strains for their RAPD profiles, protein profiles, and substrate utilization data revealed more diversity than rDNA analysis. Intrinsic antibiotic resistance yielded strain- specific patterns that could not be clustered.
    [Show full text]