Geomicrobiology Journal | Sjöberg Et

Total Page:16

File Type:pdf, Size:1020Kb

Geomicrobiology Journal | Sjöberg Et Geomicrobiology Journal ISSN: 0149-0451 (Print) 1521-0529 (Online) Journal homepage: http://www.tandfonline.com/loi/ugmb20 Microbial Communities Inhabiting a Rare Earth Element Enriched Birnessite-Type Manganese Deposit in the Ytterby Mine, Sweden Susanne Sjöberg, Nolwenn Callac, Bert Allard, Rienk H. Smittenberg & Christophe Dupraz To cite this article: Susanne Sjöberg, Nolwenn Callac, Bert Allard, Rienk H. Smittenberg & Christophe Dupraz (2018): Microbial Communities Inhabiting a Rare Earth Element Enriched Birnessite-Type Manganese Deposit in the Ytterby Mine, Sweden, Geomicrobiology Journal, DOI: 10.1080/01490451.2018.1444690 To link to this article: https://doi.org/10.1080/01490451.2018.1444690 © 2018 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group, followed by the correct licence statement Published online: 03 Apr 2018. Submit your article to this journal View related articles View Crossmark data Full Terms & Conditions of access and use can be found at http://www.tandfonline.com/action/journalInformation?journalCode=ugmb20 GEOMICROBIOLOGY JOURNAL, 2018 https://doi.org/10.1080/01490451.2018.1444690 Microbial Communities Inhabiting a Rare Earth Element Enriched Birnessite-Type Manganese Deposit in the Ytterby Mine, Sweden Susanne Sjoberg€ a, Nolwenn Callaca,c, Bert Allardb, Rienk H. Smittenberga and Christophe Dupraza aDepartment of Geological Sciences, Stockholm University, SE Stockholm, Sweden; bMan-Technology-Environment Research Centre (MTM), Orebro€ University, SE Orebro,€ Sweden; cDepartment of Paleobiology, Swedish Museum of Natural History, Stockholm, Sweden ABSTRACT ARTICLE HISTORY The dominant initial phase formed during microbially mediated manganese oxidation is a poorly Received 16 December 2017 crystalline birnessite-type phyllomanganate. The occurrence of manganese deposits containing this Accepted 20 February 2018 mineral is of interest for increased understanding of microbial involvement in the manganese cycle. A KEYWORDS fi culture independent molecular approach is used as a rst step to investigate the role of microorganisms in Birnessite; microbial forming rare earth element enriched birnessite-type manganese oxides, associated with water bearing diversity; manganese rock fractures in a tunnel of the Ytterby mine, Sweden. 16S rRNA gene results show that the chemotrophic oxidizing bacteria; bacterial communities are diverse and include a high percentage of uncultured unclassified bacteria while organomineralization; archaeal diversity is low with Thaumarchaeota almost exclusively dominating the population. Ytterby subsurface microbiology clones are frequently most similar to clones isolated from subsurface environments, low temperature milieus and/or settings rich in metals. Overall, bacteria are dominant compared to archaea. Both bacterial and archaeal abundances are up to four orders of magnitude higher in manganese samples than in fracture water. Potential players in the manganese cycling are mainly found within the ferromanganese genera Hyphomicrobium and Pedomicrobium, and a group of Bacteroidetes sequences that cluster within an uncultured novel genus most closely related to the Terrimonas. This study strongly suggest that the production of the YBS deposit is microbially mediated. Introduction deposits (Carmichael et al. 2013; Carmichael and Br€auer 2015, Microbially mediated and abiotic processes involved in manga- and references therein; Northup et al. 2003; Saiz-Jimenez et al. nese (Mn) cycling strongly interact at the biosphere-lithosphere 2012;Santellietal.2010;Spildeetal.2005). interface, allowing the investigation of cryptic cross-linkages The Ytterby mine, once a quartz and feldspar mine, known within the biogeochemical cycles (e.g., Hansel et al. 2015). Oxi- for the discovery of scandium, yttrium, tantalum and five of the dation of reduced species of iron (Fe) and Mn may result in the rare earth elements (REE), was recently found to host a REE+Y precipitation and accumulation of brown to black insoluble enriched Mn deposit denoted YBS, Ytterby black substance oxides, often associated with seepages of reduced water into (Sjoberg€ et al. 2017). Elemental analysis and phase analysis by aerobic environments such as water-bearing rock fractures that XRD indicate that the dominant phase is a birnessite-type Mn crop out in caves or tunnels (Frierdich et al. 2011; Nealson oxide with low Fe content but with traces of organics. Poorly 2006; Pedersen 1997). This solid-liquid and oxic-anoxic inter- crystalline birnessite-like phyllomanganates often represent the face provides favorable conditions for biofilm development and initial phase precipitated by bacteria and fungi during micro- strong microbe-mineral interactions (Donlan 2002; Pedersen bially mediated Mn oxidation (Hansel and Learman 2016). 1997). Although thermodynamically favorable under oxic con- Electron paramagnetic resonance (EPR) spectroscopy indicates ditions (Ehrlich 1978; Stumm and Morgan 1981), oxidation of a microbial origin of a large fraction of the manganese oxide Mn is a slow process, which can take years to complete in envi- precipitates (Sjoberg€ et al. 2017). ronments at circumneutral pH (Krauskopf 1957;Teboetal. The Mn precipitates in the Ytterby mine provide a window 2004). The catalytic role that microbial communities and pro- into the complex Mn cycle and on the development of micro- cesses have in the Mn redox cycle is well documented (Hansel bial communities in special conditions, such as low constant and Learman 2016). Nevertheless, the microbial mechanisms temperature (8C), absence of light, low nutrient and carbon that are driving these processes remain to some extent unknown, sources, and high metal content. Here a culture independent but Mn oxidation involves direct (enzymatic) or indirect antioxi- molecular phylogenetic approach is used to characterize this dative (interactive with Reactive Oxygen Species (ROS)) pro- newly observed underground ecosystem. The objectives are to cesses and possibly also lithotrophy (Hansel and Learman 2016; provide further insight into the putative biogenic origin of the Nealson 2006;Teboetal.2004). Only a few molecular 16S rRNA YBS and to identify and characterize any associated microbial phylogenetic studies have been conducted on Mn cave or tunnel community. CONTACT Susanne Sjoberg€ [email protected] Department of Geological Sciences, Stockholm University, SE-106 91 Stockholm, Sweden. © 2018 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group, followed by the correct licence statement This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives License (http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited, and is not altered, transformed, or built upon in any way. 2 S. SJOBERG€ ET AL. Materials and methods carbon and silicon) was 82% Mn, 13.5% Ca and 2§0.5% REE +Y, with all other metals being less than 2% in total (Sjoberg€ Study site and geochemical data on the Ytterby black et al. 2017). The dominant mineral phase was a birnessite-type substance (YBS) phyllomanganate, as evidenced by XRD, with minor fractions The Ytterby mine is located on Resaro,€ about 25 km NE of of quartz, plagioclase and calcium carbonate (likely arising Stockholm, Sweden (Figure 1). The Mn accumulations (YBS) from the underlying bedrock and underlying mineralized cal- are associated with water-bearing rock fractures in a subterra- cium carbonate precipitate). nean tunnel leading to the main shaft of the mine (Figure 1). Characterization of the YBS by IR- and EPR-spectroscopy, The tunnel is located at shallow depth, 29 m below ground sur- analysis of concentrations and isotopic signatures of carbon face and 5 m above the Baltic Sea mean sea level, and was built and nitrogen, sequential extraction procedures and lipid analy- to convert the former mine into a fuel deposit for the Swedish sis indicated the presence of about 1.8% carbon, one third of Armed Forces. The 400 m long tunnel links the old mine shaft which was organic (Sjoberg€ et al, 2017). In a previous study by with a quay located to the NE of the quarry along the Baltic Sea Sjoberg€ et al. (2017), a microbial origin of a major fraction of coastline. In this stretch the tunnel passes through granitic and the manganese oxide precipitation was suggested by the EPR- mafic rocks of varying chemical composition and metamorphic spectroscopy: none of the metals appeared to be present as grade. The YBS occur as rock wall deposits in association with metal-organic or humic bound species. The organic matter was – a2 3 mm thick underlying blanket of mineralized calcium car- predominantly hopanoids, and the presence of C31 to C35 bonate precipitate (Figure 1). extended side chain species was a distinct indication of bacterial The YBS deposit is located in the unsaturated zone of the presence. Environmental scanning electron microscopy tunnel section where water bearing fractures provide a continu- (ESEM-EDS) confirmed the elemental analysis and showed ous supply of water to the fully oxidized tunnel environment three dominant microstructures in the YBS: (1) Dendritic/ which holds a nearly constant temperature of 8C year round. shrub-like, (2) microspherolitic/botryoidal, and (3) filaments of Artificial lighting is used for purposes of mine maintenance, in various thicknesses. Cross-sections of the dendritic
Recommended publications
  • The 2014 Golden Gate National Parks Bioblitz - Data Management and the Event Species List Achieving a Quality Dataset from a Large Scale Event
    National Park Service U.S. Department of the Interior Natural Resource Stewardship and Science The 2014 Golden Gate National Parks BioBlitz - Data Management and the Event Species List Achieving a Quality Dataset from a Large Scale Event Natural Resource Report NPS/GOGA/NRR—2016/1147 ON THIS PAGE Photograph of BioBlitz participants conducting data entry into iNaturalist. Photograph courtesy of the National Park Service. ON THE COVER Photograph of BioBlitz participants collecting aquatic species data in the Presidio of San Francisco. Photograph courtesy of National Park Service. The 2014 Golden Gate National Parks BioBlitz - Data Management and the Event Species List Achieving a Quality Dataset from a Large Scale Event Natural Resource Report NPS/GOGA/NRR—2016/1147 Elizabeth Edson1, Michelle O’Herron1, Alison Forrestel2, Daniel George3 1Golden Gate Parks Conservancy Building 201 Fort Mason San Francisco, CA 94129 2National Park Service. Golden Gate National Recreation Area Fort Cronkhite, Bldg. 1061 Sausalito, CA 94965 3National Park Service. San Francisco Bay Area Network Inventory & Monitoring Program Manager Fort Cronkhite, Bldg. 1063 Sausalito, CA 94965 March 2016 U.S. Department of the Interior National Park Service Natural Resource Stewardship and Science Fort Collins, Colorado The National Park Service, Natural Resource Stewardship and Science office in Fort Collins, Colorado, publishes a range of reports that address natural resource topics. These reports are of interest and applicability to a broad audience in the National Park Service and others in natural resource management, including scientists, conservation and environmental constituencies, and the public. The Natural Resource Report Series is used to disseminate comprehensive information and analysis about natural resources and related topics concerning lands managed by the National Park Service.
    [Show full text]
  • A Study on the Phototrophic Microbial Mat Communities of Sulphur Mountain Thermal Springs and Their Association with the Endangered, Endemic Snail Physella Johnsoni
    A Study on the Phototrophic Microbial Mat Communities of Sulphur Mountain Thermal Springs and their Association with the Endangered, Endemic Snail Physella johnsoni By Michael Bilyj A thesis submitted to the Faculty of Graduate Studies in partial fulfillment of the requirements for the degree of Master of Science Department of Microbiology Faculty of Science University of Manitoba Winnipeg, Manitoba October 2011 © Copyright 2011, Michael A. Bilyj 1 Abstract The seasonal population fluctuation of anoxygenic phototrophs and the diversity of cyanobacteria at the Sulphur Mountain thermal springs of Banff, Canada were investigated and compared to the drastic population changes of the endangered snail Physella johnsoni. A new species and two strains of Rhodomicrobium were taxonomically characterized in addition to new species of Rhodobacter and Erythromicrobium. Major mat-forming organisms included Thiothrix-like species, oxygenic phototrophs of genera Spirulina, Oscillatoria, and Phormidium and purple nonsulfur bacteria Rhodobacter, Rhodopseudomonas and Rhodomicrobium. Aerobic anoxygenic phototrophs comprised upwards of 9.6 x 104 CFU/cm2 of mat or 18.9% of total aerobic heterotrophic bacterial isolates at certain sites, while maximal purple nonsulfur and purple sulfur bacteria were quantified at 3.2 x 105 and 2.0 x 106 CFU/cm2 of mat, respectively. Photosynthetic activity measurements revealed incredibly productive carbon fixation rates averaging 40.5 mg C/cm2/24 h. A temporal mismatch was observed for mat area and prokaryote-based organics to P. johnsoni population flux in a ―tracking inertia‖ manner. 2 Acknowledgements It is difficult to express sufficient gratitude to my supervisor Dr. Vladimir Yurkov for his unfaltering patience, generosity and motivation throughout this entire degree.
    [Show full text]
  • Alpine Soil Bacterial Community and Environmental Filters Bahar Shahnavaz
    Alpine soil bacterial community and environmental filters Bahar Shahnavaz To cite this version: Bahar Shahnavaz. Alpine soil bacterial community and environmental filters. Other [q-bio.OT]. Université Joseph-Fourier - Grenoble I, 2009. English. tel-00515414 HAL Id: tel-00515414 https://tel.archives-ouvertes.fr/tel-00515414 Submitted on 6 Sep 2010 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. THÈSE Pour l’obtention du titre de l'Université Joseph-Fourier - Grenoble 1 École Doctorale : Chimie et Sciences du Vivant Spécialité : Biodiversité, Écologie, Environnement Communautés bactériennes de sols alpins et filtres environnementaux Par Bahar SHAHNAVAZ Soutenue devant jury le 25 Septembre 2009 Composition du jury Dr. Thierry HEULIN Rapporteur Dr. Christian JEANTHON Rapporteur Dr. Sylvie NAZARET Examinateur Dr. Jean MARTIN Examinateur Dr. Yves JOUANNEAU Président du jury Dr. Roberto GEREMIA Directeur de thèse Thèse préparée au sien du Laboratoire d’Ecologie Alpine (LECA, UMR UJF- CNRS 5553) THÈSE Pour l’obtention du titre de Docteur de l’Université de Grenoble École Doctorale : Chimie et Sciences du Vivant Spécialité : Biodiversité, Écologie, Environnement Communautés bactériennes de sols alpins et filtres environnementaux Bahar SHAHNAVAZ Directeur : Roberto GEREMIA Soutenue devant jury le 25 Septembre 2009 Composition du jury Dr.
    [Show full text]
  • 17, 3203–3222, 2020 © Author(S) 2020
    Biogeosciences, 17, 3203–3222, 2020 https://doi.org/10.5194/bg-17-3203-2020 © Author(s) 2020. This work is distributed under the Creative Commons Attribution 4.0 License. The contribution of microbial communities in polymetallic nodules to the diversity of the deep-sea microbiome of the Peru Basin (4130–4198 m depth) Massimiliano Molari1, Felix Janssen1,2, Tobias R. Vonnahme1,a, Frank Wenzhöfer1,2, and Antje Boetius1,2 1Max Planck Institute for Marine Microbiology, Bremen, Germany 2HGF MPG Joint Research Group for Deep-Sea Ecology and Technology, Alfred Wegener Institute for Polar and Marine Research, Bremerhaven, Germany apresent address: UiT the Arctic University of Tromsø, Tromsø, Norway Correspondence: Massimiliano Molari ([email protected]) Received: 16 January 2020 – Discussion started: 3 February 2020 Revised: 27 April 2020 – Accepted: 15 May 2020 – Published: 25 June 2020 Abstract. Industrial-scale mining of deep-sea polymetal- tween the Clarion–Clipperton Fracture Zone (CCZ) and the lic nodules will remove nodules in large areas of the sea Peru Basin suggest that changes in environmental setting floor. The regrowth of the nodules by metal precipita- (e.g. sedimentation rates) also play a significant role in struc- tion is estimated to take millions of years. Thus, for fu- turing the nodule microbiome. ture mining impact studies, it is crucial to understand the role of nodules in shaping microbial diversity and function in deep-sea environments. Here we investigated microbial- community composition based on 16S rRNA gene sequences 1 Introduction retrieved from sediments and nodules of the Peru Basin (4130–4198 m water depth). The nodule field of the Peru Polymetallic nodules (or manganese nodules) occur in Basin showed a typical deep-sea microbiome, with domi- abyssal plains (4000–6000 m water depth) and consist pri- nance of the classes Gammaproteobacteria, Alphaproteobac- marily of manganese and iron as well as many other metals teria, Deltaproteobacteria, and Acidimicrobiia.
    [Show full text]
  • DNA and RNA-SIP Reveal Nitrospira Spp. As Key Drivers of Nitrification in 2 Groundwater-Fed Biofilters
    bioRxiv preprint doi: https://doi.org/10.1101/703868; this version posted July 16, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 DNA and RNA-SIP reveal Nitrospira spp. as key drivers of nitrification in 2 groundwater-fed biofilters 3 4 Running title: Nitrospira drives nitrification in groundwater-fed biofilters 5 Authors: Arda Gülay1,4*, Jane Fowler1, Karolina Tatari1, Bo Thamdrup3, Hans-Jørgen Albrechtsen1, 6 Waleed Abu Al-Soud2, Søren J. Sørensen2 and Barth F. Smets1* 7 1 Department of Environmental Engineering, Technical University of Denmark, Building 113, Miljøvej, 2800 8 Kgs Lyngby, Denmark. Phone: +45 45251600. FAX: +45 45932850. e-mail: [email protected], jfow@ 9 env.dtu.dk, [email protected], [email protected]* 10 2 Department of Biology, University of Copenhagen, Universitetsparken 15, Building 1, 2100 Copenhagen, 11 Denmark. Phone: +45 35323710. FAX: +45 35322128. e-mail: [email protected], [email protected] 12 3 Nordic Center for Earth Evolution, Department of Biology, University of Southern Denmark, Campusvej 55, 13 5230 Odense, Denmark. Phone: +45 35323710. FAX: +45 35322128. e-mail: [email protected] 14 4 Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, United States, 15 26 Oxford St, Cambridge, MA 02138, Phone: +1 (617)4951564. e-mail: [email protected] 16 17 *Corresponding authors 18 Keywords: Nitrification, comammox, Nitrospira, DNA SIP, RNA SIP 19 bioRxiv preprint doi: https://doi.org/10.1101/703868; this version posted July 16, 2019.
    [Show full text]
  • Information to Users
    INFORMATION TO USERS This manuscript has been reproduced from themicrofilm master. UMI films the text directly from the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter face, while others may be from any type of computer printer. The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, prim bleedthrough, substandard margins, and improper alignment can adversely affect reproduction. In the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note win indicate the deletion. Oversize materials (e.g^ maps, drawings, charts) are reproduced by sectioning the original, beginning at the upper left-hand comer and continuing from left to right in equal sections with small overlaps. Each original is also photographed in one exposure and is included in reduced form at the back of the book. Photographs inchiried in the original manuscript have been reproduced xerographically in this copy. Higher quality 6" x 9" black and white photographic prints are available for any photographs or illustrations appearing in this copy for an additional charge. Contact UMI directly to order. A Be<l & Howell Information Company 300 North ZeeO Road. Ann Arbor. Ml 48106-1346 USA 313.- 761-4700 800/ 521-0600 BACTERIA ASSOCIATED WITH WELL WATER: BIOGEOCHEMICAL TRANSFORMATION OF FE AND MN, AND CHARACTERIZATION AND CHEMOTAXIS OF A METHYLOTROPHIC HYPHOMICROBIUM SP. DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy in the Graduate School of The Ohio State University By Laura Tuhela, B.S., M.S.
    [Show full text]
  • Hyphal Proteobacteria, Hirschia Baltica Gen. Nov. , Sp. Nov
    INTERNATIONALJOURNAL OF SYSTEMATICBACTERIOLOGY, Oct. 1990, p. 443451 Vol. 40. No. 4 0020-7713/9O/040443-O9$02.00/0 Copyright 0 1990, International Union of Microbiological Societies Taxonomic and Phylogenetic Studies on a New Taxon of Budding, Hyphal Proteobacteria, Hirschia baltica gen. nov. , sp. nov. HEINZ SCHLESNER," CHRISTINA BARTELS, MANUEL SITTIG, MATTHIAS DORSCH, AND ERKO STACKEBRANDTT Institut fur Allgemeine Mikrobiologie, Christian-Albrecht-Universitat, 2300 Kiel, Federal Republic of Germany Four strains of budding, hyphal bacteria, which had very similar chemotaxonomic properties, were isolated from the Baltic Sea. The results of DNA-DNA hybridization experiments, indicated that three of the new isolates were closely related, while the fourth was only moderately related to the other three. Sequence signature and higher-order structural detail analyses of the 16s rRNA of strain IFAM 141gT (T = type strain) indicated that this isolate is related to the alpha subclass of the class Proteobacteriu. Although our isolates resemble members of the genera Hyphomicrobium and Hyphomonas in morphology, assignment to either of these genera was excluded on the basis of their markedly lower DNA guanine-plus-cytosine contents. We propose that these organisms should be placed in a new genus, Hirschiu baltica is the type species of this genus, and the type strain of H. bdtica is strain IFAM 1418 (= DSM 5838). Since the first description of a hyphal, budding bacterium, no1 and formamide were tested at concentrations of 0.02 and Hyphomicrobium vulgare (53), only the following additional 0.1% (vol/vol). Utilization of nitrogen sources was tested in genera having this morphological type have been formally M9 medium containing glucose as the carbon source.
    [Show full text]
  • Oleomonas Sagaranensis Gen. Nov., Sp. Nov., Represents a Novel Genus in the K-Proteobacteria
    FEMS Microbiology Letters 217 (2002) 255^261 www.fems-microbiology.org Oleomonas sagaranensis gen. nov., sp. nov., represents a novel genus in the K-Proteobacteria Takeshi Kanamori a, Naeem Rashid a, Masaaki Morikawa b, Haruyuki Atomi a, a;Ã Tadayuki Imanaka Downloaded from https://academic.oup.com/femsle/article/217/2/255/502948 by guest on 01 October 2021 a Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Yoshida-Honmachi, Sakyo-ku, Kyoto 606-8501, Japan, and Core Research for Evolutional Science and Technology Program of Japan Science and Technology Corporation (CREST-JST), Kawaguchi, Saitama 332-0012, Japan b Department of Material and Life Science, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan Received 13 July 2002; received in revised form 7 October 2002; accepted 21 October 2002 First published online 7 November 2002 Abstract A Gram-negative bacterium was previously isolated from an oil field in Shizuoka, Japan, and designated strain HD-1. Here we have performed detailed characterization of the strain, and have found that it represents a novel genus. The 16S rRNA sequence of strain HD-1 displayed highest similarity to various uncultured species (86.7V99.7%), along with 86.2V88.2% similarity to sequences from Azospirillum, Methylobacterium, Rhizobium, and Hyphomicrobium, all members of the K-Proteobacteria. Phylogeneticanalysis revealed that HD-1 represented a deep-branched lineage among the K-Proteobacteria. DNA^DNA hybridization analysis with Azospirillum lipoferum and Hyphomicrobium vulgare revealed low levels of similarity among the strains. We further examined the biochemical properties of the strain under aerobic conditions.
    [Show full text]
  • Deterioration of an Etruscan Tomb by Bacteria from the Order Rhizobiales
    OPEN Deterioration of an Etruscan tomb by SUBJECT AREAS: bacteria from the order Rhizobiales SOIL MICROBIOLOGY Marta Diaz-Herraiz1*, Valme Jurado1*, Soledad Cuezva2, Leonila Laiz1, Pasquino Pallecchi3, Piero Tiano4, MICROBIOLOGY TECHNIQUES Sergio Sanchez-Moral5 & Cesareo Saiz-Jimenez1 Received 1Instituto de Recursos Naturales y Agrobiologia, IRNAS-CSIC, Avda. Reina Mercedes 10, 41012 Sevilla, Spain, 2Departamento de 23 September 2013 Ciencias de la Tierra y del Medio Ambiente, Universidad de Alicante, 03690 San Vicente del Raspeig, Spain, 3Soprintendenza per i Beni Archeologici della Toscana, 50143 Firenze, Italy, 4CNR Istituto per la Conservazione e Valorizzazione dei Beni Culturali, Accepted 50019 Sesto Fiorentino, Italy, 5Museo Nacional de Ciencias Naturales, MNCN-CSIC, 28006 Madrid, Spain. 10 December 2013 Published The Etruscan civilisation originated in the Villanovan Iron Age in the ninth century BC and was absorbed by 9 January 2014 Rome in the first century BC. Etruscan tombs, many of which are subterranean, are one of the best representations of this culture. The principal importance of these tombs, however, lies in the wall paintings and in the tradition of rich burial, which was unique in the Mediterranean Basin, with the exception of Correspondence and Egypt. Relatively little information is available concerning the biodeterioration of Etruscan tombs, which is caused by a colonisation that covers the paintings with white, circular to irregular aggregates of bacteria or requests for materials biofilms that tend to connect each other. Thus, these colonisations sometimes cover extensive surfaces. Here should be addressed to we show that the colonisation of paintings in Tomba del Colle is primarily due to bacteria of the order C.S.-J.
    [Show full text]
  • GRAS Notice 701, Pyrroloquinoline Quinone Disodium Salt
    Pyrroloquinoline quinone (PQQ) disodium salt GRAS Notice (GRN) No. 701 https://www.fda.gov/Food/IngredientsPackagingLabeling/GRAS/NoticeInventory/default.htm GENERALLY RECOGNIZED AS SAFE (GRAS) NOTICE OF PYRROLOQUINOLINE QUINONE DISODIUM SALT AS A FOOD INGREDIENT Prepared for: Nutraland USA, Inc. Prepared by: NutraSource, Inc. 6309 Morning Dew Court Clarksville, MD 21029 Tel: 410-531-3336; [email protected] 1 Pyrroloquinoline quinone (PQQ) disodium salt GENERALLY RECOGNIZED AS SAFE (GRAS) STATUS OF Pyrroloquinoline quinone (PQQ) AS A FOOD INGREDIENT Table of contents PART 1. SIGNED STATEMENTS AND A CERTIFICATION 4 1.A. Name and Address of the Notifier 4 1.B. Common or Trade Name 4 1.C. Applicable Conditions of Use of the Notified Substance 4 1.C.1. Foods in Which the Substance is to be Used 4 1.C.2. Levels of Use in Such Foods 4 1.C.3. Purpose for Which the Substance is Used 5 1.C.4. Description of the Potential Population Expected to Consume the Substance 5 1.D. Basis for the GRAS Determination 5 1.E. Availability of Information 5 1.F. Availability of FOIA Exemption 5 1.G. Certification 5 PART 2. INFORMATION ABOUT THE IDENTITY OF THE NOTIFIED SUBSTANCE 6 2.A. Scientific Information About the Identity of the Notified Substance 6 2.A.1. Scientific Information Sufficient to Identify the Biological Source 6 2.A.2. Potential Toxicants in the Source of the Notified Substance 7 2.A.3. Particle Size 7 2.B. Method of Manufacture 7 2.C. Specifications of Pyrroloquinoline quinone disodium salt 12 2.D.
    [Show full text]
  • Research Collection
    Research Collection Doctoral Thesis Development and application of molecular tools to investigate microbial alkaline phosphatase genes in soil Author(s): Ragot, Sabine A. Publication Date: 2016 Permanent Link: https://doi.org/10.3929/ethz-a-010630685 Rights / License: In Copyright - Non-Commercial Use Permitted This page was generated automatically upon download from the ETH Zurich Research Collection. For more information please consult the Terms of use. ETH Library DISS. ETH NO.23284 DEVELOPMENT AND APPLICATION OF MOLECULAR TOOLS TO INVESTIGATE MICROBIAL ALKALINE PHOSPHATASE GENES IN SOIL A thesis submitted to attain the degree of DOCTOR OF SCIENCES of ETH ZURICH (Dr. sc. ETH Zurich) presented by SABINE ANNE RAGOT Master of Science UZH in Biology born on 25.02.1987 citizen of Fribourg, FR accepted on the recommendation of Prof. Dr. Emmanuel Frossard, examiner PD Dr. Else Katrin Bünemann-König, co-examiner Prof. Dr. Michael Kertesz, co-examiner Dr. Claude Plassard, co-examiner 2016 Sabine Anne Ragot: Development and application of molecular tools to investigate microbial alkaline phosphatase genes in soil, c 2016 ⃝ ABSTRACT Phosphatase enzymes play an important role in soil phosphorus cycling by hydrolyzing organic phosphorus to orthophosphate, which can be taken up by plants and microorgan- isms. PhoD and PhoX alkaline phosphatases and AcpA acid phosphatase are produced by microorganisms in response to phosphorus limitation in the environment. In this thesis, the current knowledge of the prevalence of phoD and phoX in the environment and of their taxonomic distribution was assessed, and new molecular tools were developed to target the phoD and phoX alkaline phosphatase genes in soil microorganisms.
    [Show full text]
  • Appendices Physico-Chemical
    http://researchcommons.waikato.ac.nz/ Research Commons at the University of Waikato Copyright Statement: The digital copy of this thesis is protected by the Copyright Act 1994 (New Zealand). The thesis may be consulted by you, provided you comply with the provisions of the Act and the following conditions of use: Any use you make of these documents or images must be for research or private study purposes only, and you may not make them available to any other person. Authors control the copyright of their thesis. You will recognise the author’s right to be identified as the author of the thesis, and due acknowledgement will be made to the author where appropriate. You will obtain the author’s permission before publishing any material from the thesis. An Investigation of Microbial Communities Across Two Extreme Geothermal Gradients on Mt. Erebus, Victoria Land, Antarctica A thesis submitted in partial fulfilment of the requirements for the degree of Master’s Degree of Science at The University of Waikato by Emily Smith Year of submission 2021 Abstract The geothermal fumaroles present on Mt. Erebus, Antarctica, are home to numerous unique and possibly endemic bacteria. The isolated nature of Mt. Erebus provides an opportunity to closely examine how geothermal physico-chemistry drives microbial community composition and structure. This study aimed at determining the effect of physico-chemical drivers on microbial community composition and structure along extreme thermal and geochemical gradients at two sites on Mt. Erebus: Tramway Ridge and Western Crater. Microbial community structure and physico-chemical soil characteristics were assessed via metabarcoding (16S rRNA) and geochemistry (temperature, pH, total carbon (TC), total nitrogen (TN) and ICP-MS elemental analysis along a thermal gradient 10 °C–64 °C), which also defined a geochemical gradient.
    [Show full text]