GENETIC RESISTANCE to ADZUKI BEAN BRUCHID (Callosobruchus Chinensis) in SOYBEAN

Total Page:16

File Type:pdf, Size:1020Kb

GENETIC RESISTANCE to ADZUKI BEAN BRUCHID (Callosobruchus Chinensis) in SOYBEAN GENETIC RESISTANCE TO ADZUKI BEAN BRUCHID (Callosobruchus chinensis) IN SOYBEAN BY MERCY ULEMU MSISKA MSc. AGRONOMY (UNIVERSITY OF MALAWI) BSc. AGRICULTURE (UNIVERSITY OF MALAWI) REG. NUMBER: 2014/HD02/2696X A DISSERTATION SUBMITTED TO THE DIRECTORATE OF RESEARCH AND GRADUATE TRAINING IN PARTIAL FULFILMENT FOR THE AWARD OF THE DEGREE OF DOCTOR OF PHILOSOPHY IN PLANT BREEDING AND BIOTECHNOLOGY OF MAKERERE UNIVERSITY AUGUST, 2019 i DECLARATION ii DOCTORAL COMMITTEE Emeritus Prof. Patrick R. Rubaihayo Makerere University Dr. Thomas Lapaka Odong Makerere University Dr Annette Namayanja National Crops Resources Research Institute Prof. Denis Mpairwe Makerere University iii COPY RIGHT No part of this thesis may be reproduced, stored in any retrieval system or transmitted in any form without the prior written permission of the author or Makerere University. iv DEDICATION This work is dedicated to my husband, Dr. Mavuto Denis Tembo and our children, Uchizi na Mtende Tembo, Ungweru Walumbike-Letitia Tembo and Urunji Denise Tembo for their unceasing prayers, love, support and patience during the entire period of my studies. To my father Maxwell Chibwatiko Msiska for always believing in me and protecting me. v ACKNOWLEDGEMENT My sincere gratitude goes to my supervisors, Prof. Phinehas Tukamuhabwa and Prof. Samuel Kyamanywa for their supervision, mentoring, guidance and encouragement. I am sincerely grateful to the other members of my doctoral committee, Prof. Patrick R. Rubaihayo, Dr. Annette Namayanja, Dr. Thomas L. Odong and the Head of Department of Agricultural Production, Dr. Dennis Mpairwe for their time, and guidance in shaping this work. I am greatly indebted to Intra ACP-CSAA Mobility Scheme for the doctoral scholarship, the Coordination Unit of the Scholarship at Makerere University Prof. Patrick Rubaihayo and Madam Ruthie Mutyaba deserve the honour. I am grateful for the partial doctoral research funding received from Carnegie Corporation of New York – Grant: RU/2016/INTA ACP/RG/013 through the Regional Universities Forum for Capacity Building in Agriculture (RUFORUM). I am grateful to my employer the Ministry of Agriculture, Irrigation and Water Development (Malawi Government) for granting me a paid study leave. I hold in high esteem the Principal Secretary of the MOAIWD, Madam Erica Maganga; the Director of Crop Development Department, Dr Godfrey Ching’oma and the Manager for Agricultural Productivity Program for Southern Africa (APPSA), Dr Tenyson Mzengeza for facilitating my PhD finalization grant from APPSA. I hold in high esteem the management and staff of Soybean Breeding and Seed Systems Programme (Makerere University) especially, Mr George Yiga, Mr Paul Kabayi, Ms Mercy Namara, Mr Tonny Obua and Ms Naziwa (mama Nasimbwa) for their immense support during germplasm collection, screen house crossing work and laboratory evaluation of the crop. I acknowledge the technical advice and supervision of Ms Daisy Winfred Akech and all the technicians in the Biotechnology Laboratory (Kabanyolo) during the molecular work, Dr Ephraim Nuwamanya, Mr Enoch Mwembabazi in the Nutrition and Bioanalytical Laboratory (NACRRI) during the biochemical analysis. I am grateful to Prof. Paul Gibson, Prof. Albert Z. Chiteka and Mr Bruno Awio for the guidance and untiring support throughout the experiments, data management and thesis writing. I am thankful to all my colleagues in the Plant Breeding and Biotechnology programme for sharing and critiquing my work to improve the research and write-up. Finally, my heart felt gratitude goes to my husband, Dr Mavuto Denis Tembo, my children; Uchizi na Mtende Tembo, Ungweru Walumbike Tembo and Urunji Denise Tembo and to my father; Mr Maxwell Chibwatiko Msiska for the love, patience, prayers and emotional support. Above all to the Most High God, thus far He has brought me. vi TABLE OF CONTENTS DECLARATION ...................................................................................................................... ii DOCTORAL COMMITTEE ................................................................................................... iii COPY RIGHT ........................................................................................................................... iv DEDICATION ........................................................................................................................... v ACKNOWLEDGEMENT ........................................................................................................ vi TABLE OF CONTENTS ........................................................................................................ vii LIST OF TABLES .................................................................................................................... ix LIST OF FIGURES ................................................................................................................... x LIST OF PLATES .................................................................................................................... xi PUBLICATIONS DECLARATION ...................................................................................... xii ABSTRACT ........................................................................................................................... xiii CHAPTER ONE ...................................................................................................................... 1 GENERAL INTRODUCTION........................................................................................................ 1 1.1 Background .............................................................................................................................. 1 1.2 Problem Statement ................................................................................................................... 8 1.3 Justification .............................................................................................................................. 9 1.4 Objectives ............................................................................................................................... 11 1.5 Hypotheses ............................................................................................................................. 11 CHAPTER TWO ................................................................................................................... 12 LITERATURE REVIEW .............................................................................................................. 12 2.1 Bruchids and their management ............................................................................................. 12 2.2 Sources of resistance to bruchids ........................................................................................... 14 2.3 Mechanism of resistance to storage insect pests .................................................................... 15 2.4 Basis of resistance to bruchids ............................................................................................... 17 2.5 Gene action and inheritance of resistance to bruchids ........................................................... 23 2.6 Summary ................................................................................................................................ 25 CHAPTER THREE ............................................................................................................... 27 RESISTANCE IN UGANDA SOYBEAN GERMPLASM TO ADZUKI BEAN BRUCHID . 27 3.1 Introduction ............................................................................................................................ 27 3.2 Materials and Methods ........................................................................................................... 28 3.3 Results .................................................................................................................................... 32 3.4 Discussion .............................................................................................................................. 44 3.5 Conclusions ............................................................................................................................ 48 CHAPTER FOUR .................................................................................................................. 49 BIOCHEMICALS ASSOCIATED WITH ADZUKI BEAN BRUCHID RESISTANCE IN SOYBEAN ....................................................................................................................................... 49 4.1 Introduction ............................................................................................................................ 49 4.2 Materials and methods ........................................................................................................... 51 vii 4.4 Results .................................................................................................................................... 58 4.5 Discussion .............................................................................................................................. 65 4.6 Conclusions ............................................................................................................................ 70 CHAPTER FIVE ................................................................................................................... 71 GENETICS OF RESISTANCE TO ADZUKI BEAN BRUCHID IN SOYBEAN POPULATIONS ............................................................................................................................
Recommended publications
  • Microstructural Differences Among Adzuki Bean (Vigna Angularis) Cultivars
    Food Structure Volume 11 Number 2 Article 9 1992 Microstructural Differences Among Adzuki Bean (Vigna Angularis) Cultivars Anup Engquist Barry G. Swanson Follow this and additional works at: https://digitalcommons.usu.edu/foodmicrostructure Part of the Food Science Commons Recommended Citation Engquist, Anup and Swanson, Barry G. (1992) "Microstructural Differences Among Adzuki Bean (Vigna Angularis) Cultivars," Food Structure: Vol. 11 : No. 2 , Article 9. Available at: https://digitalcommons.usu.edu/foodmicrostructure/vol11/iss2/9 This Article is brought to you for free and open access by the Western Dairy Center at DigitalCommons@USU. It has been accepted for inclusion in Food Structure by an authorized administrator of DigitalCommons@USU. For more information, please contact [email protected]. FOOD STRUCTURE, Vol. II (1992), pp. 171-179 1046-705X/92$3.00+ .00 Scanning Microscopy International , Chicago (AMF O'Hare), IL 60666 USA MICROSTRUCTURAL DIFFERENCES AMONG ADZUKI BEAN (Vigna angularis) CULTIVARS An up Engquist and Barry G. Swanson Department of Food Science and Human Nutrition Washington State University, Pullman, WA 99164-6376 Abstract Introduction Scanning electron microscopy (SEM) was used to Adzuki beans are one of the oldest cultivated beans study mi crostructural differences among five adzuki bean in the Orient, often used for human food, prepared as a cultivars: Erimo, Express, Hatsune, Takara and VBSC. bean paste used in soups and confections (Tjahjadi and Seed coat surfaces showed different patterns of cracks , Breene, 1984). The starch content of adzuki beans is pits and deposits . Cross-sections of the seed coats re­ about 50 %, while the protein content ranges between vealed well organized layers of elongated palisade cell s 20%-25% (Tjahjadi and Breene, 1984) .
    [Show full text]
  • Genetic Dissection of Azuki Bean Weevil (Callosobruchus Chinensis L.) Resistance in Moth Bean (Vigna Aconitifolia [Jaqc.] Maréchal)
    G C A T T A C G G C A T genes Article Genetic Dissection of Azuki Bean Weevil (Callosobruchus chinensis L.) Resistance in Moth Bean (Vigna aconitifolia [Jaqc.] Maréchal) Prakit Somta 1,2,3,* , Achara Jomsangawong 4, Chutintorn Yundaeng 1, Xingxing Yuan 1, Jingbin Chen 1 , Norihiko Tomooka 5 and Xin Chen 1,* 1 Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, 50 Zhongling Street, Nanjing 210014, China; [email protected] (C.Y.); [email protected] (X.Y.); [email protected] (J.C.) 2 Department of Agronomy, Faculty of Agriculture at Kamphaeng Saen, Kasetsart University, Kamphaeng Saen Campus, Nakhon Pathom 73140, Thailand 3 Center for Agricultural Biotechnology (AG-BIO/PEDRO-CHE), Kasetsart University, Kamphaeng Saen Campus, Nakhon Pathom 73140, Thailand 4 Program in Plant Breeding, Faculty of Agriculture at Kamphaeng Saen, Kasetsart University, Kamphaeng Saen Campus, Nakhon Pathom 73140, Thailand; [email protected] 5 Genetic Resources Center, Gene Bank, National Agriculture and Food Research Organization, 2-1-2 Kannondai, Tsukuba, Ibaraki 305-8602, Japan; [email protected] * Correspondence: [email protected] (P.S.); [email protected] (X.C.) Received: 3 September 2018; Accepted: 12 November 2018; Published: 15 November 2018 Abstract: The azuki bean weevil (Callosobruchus chinensis L.) is an insect pest responsible for serious postharvest seed loss in leguminous crops. In this study, we performed quantitative trait locus (QTL) mapping of seed resistance to C. chinensis in moth bean (Vigna aconitifolia [Jaqc.] Maréchal). An F2 population of 188 plants developed by crossing resistant accession ‘TN67’ (wild type from India; male parent) and susceptible accession ‘IPCMO056’ (cultivated type from India; female parent) was used for mapping.
    [Show full text]
  • Callosobruchus Spp.) in Vigna Crops: a Review
    NU Science Journal 2007; 4(1): 01 - 17 Genetics and Breeding of Resistance to Bruchids (Callosobruchus spp.) in Vigna Crops: A Review Peerasak Srinives1*, Prakit Somta1 and Chanida Somta2 1Department of Agronomy, Faculty of Agriculture at Kamphaeng Saen, Kasetsart University, Nakhon Parham, 73140 Thailand 2Asian Regional Center, AVRDC-The World Vegetable Center, Kasetsart University, Kamphaeng Saen Campus, Nakhon Pathom, 73140 Thailand *Corresponding author. E-mail: [email protected] ABSTRACT Vigna crops include mungbean (V. radiata), blackgram (V. mungo), azuki bean (V. angularis) and cowpea (V. unguiculata) are agriculturally and economically important crops in tropical and subtropical Asia and/or Africa. Bruchid beetles, Callosobruchus chinensis (L.) and C. maculatus (F.) are the most serious insect pests of Vigna crops during storage. Use of resistant cultivars is the best way to manage the bruchids. Bruchid resistant cowpea and mungbean have been developed and comercially used, each with single resistance source. However, considering that enough time and evolutionary pressure may lead bruchids to overcome the resistance, new resistance sources are neccessary. Genetics and mechanism of the resistance should be clarified and understood to develop multiple resistance cultivars. Gene technology may be a choice to develop bruchid resistance in Vigna. In this paper we review sources, mechanism, genetics and breeding of resistance to C. chinensis and C. maculatus in Vigna crops with the emphasis on mungbean, blackgram, azuki bean and cowpea. Keywords: Bruchid resistance, Callosobruchus spp., Legumes, Vigna spp. INTRODUCTION The genus Vigna falls within the tribe Phaseoleae and family Fabaceae. Species in this taxon mainly distribute in pan-tropical Asia and Africa. Seven Vigna species are widely cultivated and known as food legume crops.
    [Show full text]
  • Identification of Lentil Genotypes Resistant to Bruchid (Callosobruchus Chinensis L.) and Selection of Diverse Parental Pair A
    Journal of Crop and Weed, 14(3): 136-143 (2018) Identification of lentil genotypes resistant to bruchid (Callosobruchus chinensis L.) and selection of diverse parental pair A. K. SAHA, S. SARKAR AND S. BHATTACHARYYA Department of Genetics and Plant Breeding, Crop Research Unit Bidhan Chandra Krishi Viswavidyalaya, Mohanpur-741252, Nadia, West Bengal Received : 27-08-18 ; Revised : 28-11-18 ; Accepted : 02-12-18 ABSTRACT Bruchid (Callosobruchus chinensis L.) is the most devastating storage pest of the pulses in storage condition. Lentil is one of the important pulse cropsand scanty of literature is available regarding the bruchid resistance in this crop. Climatic condition of West Bengal favours the pulse beetle infestation during storage of pulses. Therefore, we investigated the potential resistant sources among 94 lentil cultivated genotypes by feeding assay against this pest in laboratory condition. Ten high yielding genotypes were screened based on their resistance. Diversity analysis was performed by utilizing 12 phenotypic markers and 12 SSR markers to decipher the best possible parental pair. Based on this study it was found that WBL-77 and Precoz is the best parental pair. Keywords: Bruchid, diversity, lentil, resistance and SSR Lentil is the most preferred pulse in West Bengal as pod wall and feed within the seeds (Southgate, 1979). the Bengali people consume it as dal, almost daily, along Male has a longer life span than the female beetle. with their vaat i.e. rice. Although lentil productivity in Longevity of adults for males ranged from 9 to 14 days West Bengal (963 kg ha-1) is higher than that of national with average of 11.0±1.87 days and for females was average (705 kg ha-1), astonishingly it is produced very ranged 9 to 12 days with an average of 9.6±1.14 days.
    [Show full text]
  • Effect of Hot and Cold Treatments for the Management of Pulse Beetle Callosobruchus Maculatus (Fab) in Pulses
    IOSR Journal of Agriculture and Veterinary Science (IOSR-JAVS) e-ISSN: 2319-2380, p-ISSN: 2319-2372. Volume 3, Issue 3 (May. - Jun. 2013), PP 29-33 www.iosrjournals.org Effect of hot and cold treatments for the management of Pulse beetle Callosobruchus maculatus (Fab) in pulses J.Alice R.P.Sujeetha1 and N.Srikanth2 1Department of Food Microbiology,Indian Institute of Crop ProcessingTechnology,Thanjavur, 613 005,Tamil Nadu,India 2Department of Entomology,Pandit Jawaharlal Nehru College of Agriculture & Research Institute,Karaikal, Puducherry , 609 603 -India Abstract: The pulse beetle C. maculatus (Fab.) is a major pest of economically important leguminous grains, such as cow peas, lentils, green gram, and black gram. Effect of sun drying on oviposition of pulse beetle, C. maculatus showed 100 per cent egg mortality during the second, third and fourth months. It was observed that there is no significant difference among the exposure periods .Effect of sun drying on adult emergence of pulse beetle, C. maculatus, indicated that 100 per cent adult mortality was recorded during the second, third and fourth months and significant difference was not observed among the exposure periods.Effect of cold treatment on oviposition of the pulse beetle, C. maculatus recorded with 100 per cent mortality and no significant difference was noticed among the exposure periods in which was observed. Effect of cold treatment on adult emergence of the pulse beetle, C. maculatus revealed 100 per cent adult mortality was observed in all the exposure period during the second, third and fourth months. Key words: Adult beetles,Bruchids,Black Gram,Cold treatment ,Oviposition,Sun drying I.
    [Show full text]
  • Sprout Production in California
    PUBLICATION 8060 Sprout Production in California WAYNE L. SCHRADER, University of California Cooperative Extension Farm Advisor, San Diego County Sprouts have been used for food since before recorded history. Sprouts vary in texture and taste. Some are spicy (e.g., radish and onions), some are used in Asian foods (e.g., mung bean [Phaseolus aureus]), and others are delicate (e.g., alfalfa) and are UNIVERSITY OF used in salads and sandwiches to add texture. Vegetable sprouts grown for food are CALIFORNIA baby plants that are harvested just after germination. Various crop seeds may be Agriculture sprouted. The most common are adzuki, alfalfa, buckwheat, Brassica spp. (broccoli, and Natural Resources etc.), cabbage, clover, cress, garbanzo, green peas, lentils, mung bean, radish, rye, http://anrcatalog.ucdavis.edu sesame, wheat, and triticale. Production practices should provide appropriate ger- mination conditions, moisture, and temperatures that allow for the “harvesting” of the sprouts at their optimal eating quality. Production practices should also allow for efficient cleaning and packaging of sprouts. VARIETIES Mung bean seed are used to produce bean sprouts; some soybeans and adzuki beans are also used to produce bean sprouts. The preferred varieties are those that have smaller-sized seed. With small seed, the cotyledons and seed coats are less objec- tionable or are more easily removed from the finished product. The smallest-seeded varieties of mung bean are Oklahoma 12 and Oriental; larger-seeded types are Jumbo and Berken. Any small-seeded adzuki may be used for sprouts; a variety called Chinese Red Adzuki is sometimes substituted for adzuki bean even though it is not a true adzuki bean.
    [Show full text]
  • Bacterial Sequences in an Invertebrate Genome
    The genomes of many nematodes and arthropods contain bacterial Bacterial sequences. How did they get there? Julie sequences in C. Dunning Hotopp and Jason Rasgon an invertebrate explain. Wolbachia infect the most abundant animal phyla including nematodes and arthropods. This includes some bees and butterflies like genome those shown here. J.C. Dunning Hotopp olbachia pipientis is the most prolific into reproductively capable females, and (4) cytoplasmic Unlike infections in arthropods, that Wolbachia provide the host with the obligate symbioses between these intracellular endosymbiont on earth. incompatibility, the most common phenotype, whereby the treatment of nematodes with anti- necessary nucleotides, cofactors and bacteria and their hosts. These bacteria infect not only 70% of offspring of uninfected females and infected males fail to biotics that are targeted at elimin- vitamins. insects, but also the most abundant develop. Wolbachia are maternally inherited, being transferred ating the Wolbachia infection also Despite maternal inheritance in Interdomain lateral gene animal phyla, including nematodes and through the egg cytoplasm. Therefore, these reproductive kills the host. This suggests that Wol- arthropods, arthropod-borne Wolbachia transfer arthropods. phenotypes favouring Wolbachia-infected females increase bachia form an obligate mutualistic do not evolve with the host. Instead, the In 2001, Natsuko Kondo and W The arthropod-infecting Wolbachia exert unusual effects on the proliferation of Wolbachia-infected arthropods. Wolbachia symbiosis with filarial nematodes, bacteria are transmitted horizontally colleagues described a variant of a host reproduction, including: (1) parthenogenesis, whereby are parasitic endosymbionts, since the interaction benefits since neither organism can survive and infections are lost, although the bean beetle, Callosobruchus chinensis, infected virgin females produce infected female offspring, Wolbachia while exerting a negative effect on the host by without the other.
    [Show full text]
  • The Evolution and Genomic Basis of Beetle Diversity
    The evolution and genomic basis of beetle diversity Duane D. McKennaa,b,1,2, Seunggwan Shina,b,2, Dirk Ahrensc, Michael Balked, Cristian Beza-Bezaa,b, Dave J. Clarkea,b, Alexander Donathe, Hermes E. Escalonae,f,g, Frank Friedrichh, Harald Letschi, Shanlin Liuj, David Maddisonk, Christoph Mayere, Bernhard Misofe, Peyton J. Murina, Oliver Niehuisg, Ralph S. Petersc, Lars Podsiadlowskie, l m l,n o f l Hans Pohl , Erin D. Scully , Evgeny V. Yan , Xin Zhou , Adam Slipinski , and Rolf G. Beutel aDepartment of Biological Sciences, University of Memphis, Memphis, TN 38152; bCenter for Biodiversity Research, University of Memphis, Memphis, TN 38152; cCenter for Taxonomy and Evolutionary Research, Arthropoda Department, Zoologisches Forschungsmuseum Alexander Koenig, 53113 Bonn, Germany; dBavarian State Collection of Zoology, Bavarian Natural History Collections, 81247 Munich, Germany; eCenter for Molecular Biodiversity Research, Zoological Research Museum Alexander Koenig, 53113 Bonn, Germany; fAustralian National Insect Collection, Commonwealth Scientific and Industrial Research Organisation, Canberra, ACT 2601, Australia; gDepartment of Evolutionary Biology and Ecology, Institute for Biology I (Zoology), University of Freiburg, 79104 Freiburg, Germany; hInstitute of Zoology, University of Hamburg, D-20146 Hamburg, Germany; iDepartment of Botany and Biodiversity Research, University of Wien, Wien 1030, Austria; jChina National GeneBank, BGI-Shenzhen, 518083 Guangdong, People’s Republic of China; kDepartment of Integrative Biology, Oregon State
    [Show full text]
  • The Seed Coat of Phaseolus Vulgaris Interferes with the Development Of
    Anais da Academia Brasileira de Ciências ISSN: 0001-3765 [email protected] Academia Brasileira de Ciências Brasil Silva, Luciana B.; Sales, Maurício P.; Oliveira, Antônia E. A.; Machado, Olga L. T.; Fernandes, Kátia V. S.; Xavier-Filho, José The seed coat of Phaseolus vulgaris interferes with the development of the cowpea weevil [Callosobruchus maculatus (F.) (Coleoptera: Bruchidae)] Anais da Academia Brasileira de Ciências, vol. 76, núm. 1, março, 2004, pp. 57-65 Academia Brasileira de Ciências Rio de Janeiro, Brasil Available in: http://www.redalyc.org/articulo.oa?id=32776106 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative Anais da Academia Brasileira de Ciências (2004) 76(1): 57-65 (Annals of the Brazilian Academy of Sciences) ISSN 0001-3765 www.scielo.br/aabc The seed coat of Phaseolus vulgaris interferes with the development of the cowpea weevil [Callosobruchus maculatus (F.) (Coleoptera: Bruchidae)] LUCIANA B. SILVA1, MAURÍCIO P. SALES2, ANTÔNIA E.A. OLIVEIRA1, OLGA L.T. MACHADO1, KÁTIA V.S. FERNANDES1 and JOSÉ XAVIER-FILHO1 1Laboratório de Química e Função de Proteínas e Peptídeos, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense, 28015-620 Campos dos Goytacazes, RJ, Brasil 2Departamento de Bioquímica, Universidade Federal do Rio Grande do Norte, 59072-970 Natal, RN, Brasil Manuscript received on August 21, 2003; accepted for publication on October 1, 2003; contributed by José Xavier-Filho* ABSTRACT We have confirmed here that the seeds of the common bean (Phaseolus vulgaris, L.) do not support develop- ment of the bruchid Callosobruchus maculatus (F.), a pest of cowpea [Vigna unguiculata (L.) Walp] seeds.
    [Show full text]
  • Evaluating the Agricultural, Historical, Nutritional, and Sustainable Uses of Pulse Grains and Legumes
    EVALUATING THE AGRICULTURAL, HISTORICAL, NUTRITIONAL, AND SUSTAINABLE USES OF PULSE GRAINS AND LEGUMES A THESIS SUBMITTED TO THE FACULTY OF UNIVERSITY OF MINNESOTA BY Stefanie Marie Havemeier IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE June 2018 ©Stefanie Marie Havemeier 2018 Acknowledgements First and foremost, I would like to extend my sincerest appreciation to my advisor, Dr. Joanne Slavin, for her guidance, trust, and support throughout my graduate degree. She is a role model to all, especially her graduate students, and her positive attitude brings life to any arduous task. I would undoubtedly not be where I am today if it were not for Dr. Slavin providing me with the opportunity to work alongside her. I would also like to thank my other advisory committee members: Dr. Dave Smith and Dr. Renee Korczak. Thank you, Dr. Dave Smith, for providing me with fundamental information that forms the basis of food science and always a good laugh in the classroom. Thank you, Dr. Korczak, for allowing me to work beside you as your teacher’s assistant, barreling through endless student emails together. I thank my lab mates, Alexis, Hannah, Jennifer, Julie, Justin, and Rylee, for providing guidance and advice and for always listening. I would not have been able to complete this journey without your constant support. To my parents, David and Jeane, I would like to thank you for your encouragement and unending support not only throughout this process but, throughout my entire life. To my sister, Stacie, thank you for listening to me talk, “about my beans,” endlessly.
    [Show full text]
  • (Coleoptera : Bruchidae) on Cowpea Seeds
    Available online a t www.pelagiaresearchlibrary.com Pelagia Research Library Advances in Applied Science Research, 2011, 2 (2): 295-302 ISSN: 0976-8610 CODEN (USA): AASRFC Bioecological studied and control of pulse beetle Callasobruchus chinensis (Coleoptera : Bruchidae) on cowpea seeds Ravinder Singh Institute of Biotechanology & Allied Sciences, Piparali road Sikar, Rajasthan (India) ______________________________________________________________________________ ABSTRACT A laboratory experiment was conducted to investigate the insecticidal activities of seven plant materials namely: citrus leaf powder (CLP), Acacia leaf powder (ALP), Occimum leaf powder (OLP), mahogany bark powder (MBP), hot pepper powder (HPP), ginger powder (GP) and mahogany wood ash (MWA); and a synthetic insecticide, pirimiphos-methyl dust (PMD) as check. The objective of the study was to investigate the comparative efficacy of the plant materials and PMD in the suppression of Callosobruchus chinensis. developmental durations and damage in cowpea seeds. Plant materials were evaluated at 1 g/20 g cowpea seeds (0.1 g PMD/20 g cowpea seeds). The experiment was laid out in a completely randomized design replicated four times. The results showed that MWA was more effective in causing adult C. chinensis s mortality, but CLP was significantly (P<0.05) more effective in reducing adult emergence, percentage hatching inhibition rate and per cent holed cowpea seeds. There were no significant differences among treatments on number of eggs lai d and developmental durations of C. chinensis s. Application of CLP at the rate of 50 g/kg of cowpea seeds is therefore be recommended for the control of C. chinensis development and damage to cowpea seeds while in storage. Key words: Callobruchus chinensis , Bruchid, Storage pest.
    [Show full text]
  • Susceptibility of Three Legume Species to Callosobruchus Maculatus
    Research Article Agri Res & Tech: Open Access J Volume 8 Issue 1 - June 2017 Copyright © All rights are reserved by D Kosini DOI: 10.19080/ARTOAJ.2017.08.555728 Susceptibility of Three Legume Species to Callosobruchus maculatus (Coleoptera: Chrysomelidae) Attack and Impact of Rearing Medium on Female Oviposition Host Preference D Kosini* and EN Nukenine Department of Biological Sciences, University of Ngaoundere, Africa Submission: May 24, 2017; Published: June 27, 2017 *Corresponding author: D Kosini, Department of Biological Sciences, University of Ngaoundere, Cameroon, Africa, Tel: Email: Abstract Experiments were conducted to determine the host preference of cowpea weevils Callosobruchus maculatus F. (Coleoptera: Chrysomelidae) using three pulses (Vigna unguiculata (L.) Walp., Vigna subterranea (L.) Verdc and Glycine max (L.) Merr.) and the susceptibility of these seeds to the beetle. Susceptibility was assessed using parameters like fecundity, developmental period and progeny production of bruchids. C. maculatus cultures were maintained separately on the three commodities for the host preference experiments and on cowpea for the susceptibility experiments. Seeds of each of the pulse species were introduced into partitioned petri dishes for the former and into glass jars for the latter experiments, and infested with C. maculatus. In the fecundity experiment, the maximum number of eggs was recorded on soybean and the minimum on cowpea. The developmental period of insects was two times longer in soybean than in cowpea and Bambara groundnut. Egg-to- adult survivorship was highest for eggs laid on cowpea and lowest for those ones laid on soybean. Thus, Cowpea and Bambara groundnut are more susceptible to C. maculatus, whereas soybean is far less susceptible.
    [Show full text]