Mobilizing Crop Biodiversity

Total Page:16

File Type:pdf, Size:1020Kb

Mobilizing Crop Biodiversity University of Vermont ScholarWorks @ UVM College of Agriculture and Life Sciences Faculty Publications College of Agriculture and Life Sciences 10-5-2020 Mobilizing Crop Biodiversity Susan McCouch Cornell University Zahra Katy Navabi Global Institute for Food Security Michael Abberton International Institute of Tropical Agriculture (IITA), Ibadan Noelle L. Anglin Centro Internacional de la Papa, Peru Rosa Lia Barbieri Empresa Brasileira de Pesquisa Agropecuária - Embrapa See next page for additional authors Follow this and additional works at: https://scholarworks.uvm.edu/calsfac Part of the Agriculture Commons, Community Health Commons, Human Ecology Commons, Nature and Society Relations Commons, Place and Environment Commons, and the Sustainability Commons Recommended Citation McCouch S, Navabi ZK, Abberton M, Anglin NL, Barbieri RL, Baum M, Bett K, Booker H, Brown GL, Bryan GJ, Cattivelli L. Mobilizing Crop Biodiversity. Molecular Plant. 2020 Oct 5;13(10):1341-4. This Article is brought to you for free and open access by the College of Agriculture and Life Sciences at ScholarWorks @ UVM. It has been accepted for inclusion in College of Agriculture and Life Sciences Faculty Publications by an authorized administrator of ScholarWorks @ UVM. For more information, please contact [email protected]. Authors Susan McCouch, Zahra Katy Navabi, Michael Abberton, Noelle L. Anglin, Rosa Lia Barbieri, Michael Baum, Kirstin Bett, Helen Booker, Gerald L. Brown, Glenn J. Bryan, Luigi Cattivelli, David Charest, Kellye Eversole, Marcelo Freitas, Kioumars Ghamkhar, Dario Grattipaglia, Robert Henry, Maria Cleria Valadares Inglis, Tofazzal Islam, Zakaria Kehel, Paul J. Kersey, Graham J. King, Stephen Kresovich, Emily Marden, Sean Mayes, Marie Noelle Ndjiondjiop, Henry T. Nguyen, Samuel Rezende Paiva, Roberto Papa, Peter W.B. Phillips, and Awais Rasheed This article is available at ScholarWorks @ UVM: https://scholarworks.uvm.edu/calsfac/93 Molecular Plant ll Comment Mobilizing Crop Biodiversity Over the past 70 years, the world has witnessed extraordinary One reason for the limited use of genebank holdings is the paucity growth in crop productivity, enabled by a suite of technological of information about them, which increases the time, expense, advances, including higher yielding crop varieties, improved and risk associated with mining genebank diversity. To address farm management, synthetic agrochemicals, and agricultural this deficiency, we support the development of digital catalogs mechanization. While this ‘‘Green Revolution’’ intensified crop that provide essential information about the genetic composition, production, and is credited with reducing famine and malnutri- phenotypic diversity, and phylogenetic relationships of genebank tion, its benefits were accompanied by several undesirable collat- holdings, along with traditional passport data, images of whole eral effects (Pingali, 2012). These include a narrowing of plant morphology, growth habit, physiological data showing agricultural biodiversity, stemming from increased monoculture response to biotic/abiotic stress, nutrient profiles, and other infor- and greater reliance on a smaller number of crops and crop mation where available. Some genebanks have already begun varieties for the majority of our calories. This reduction in building catalogs of their collections to improve the efficiency of diversity has created vulnerabilities to pest and disease genebank management, as well as to permit users to pre- epidemics, climate variation, and ultimately to human health screen for traits of interest, thereby facilitating variety develop- (Harlan, 1972). ment (Konig€ et al., 2020). Another challenge to widespread use of genebank materials is The value of crop diversity has long been recognized (Vavilov, the nature of genetic variation itself. Exotic germplasm often con- 1992). A global system of genebanks (e.g., www.genebanks. tains valuable cryptic variation, which is revealed only after org/genebanks/) was established in the 1970s to conserve the crosses have been made with cultivated and elite breeding lines abundant genetic variation found in traditional ‘‘landrace’’ (Tanksley and McCouch, 1997). For example, wild populations varieties of crops and in crop wild relatives (Harlan, 1972). frequently carry alleles that increase seed, fruit, and tuber size While preserving crop variation is a critical first step, the time or disease resistance when introduced into cultivars, but these has come to make use of this variation to breed more resilient are often masked by genes with opposing effects. Also, some crops. The DivSeek International Network (https://divseekintl. traits that look promising in wild or landrace populations may org/) is a scientific, not-for-profit organization that aims to accel- not be expressed in adapted genetic backgrounds due to erate such efforts. quantitative inheritance. CROP DIVERSITY: VALUE, BARRIERS TO In addition, strategies are needed to overcome crossing barriers USE, AND MITIGATION STRATEGIES and to ameliorate the impacts of genetic material that is inadver- tently introduced into cultivars along with traits/alleles of interest There are >1750 national and international genebanks worldwide. (i.e., linkage drag). Even when crosses are successful, specific They house 7 million crop germplasm accessions (http://www. chromosomal segments may fail to introgress if they underlie fao.org/3/i1500e/i1500e00.htm), including samples of diverse hybrid incompatibilities or experience reduced recombination, natural populations, with many more managed in situ. These ac- further exacerbating linkage drag (Canady et al., 2006). Finally, cessions arguably represent one of humanity’s greatest trea- traits and alleles introgressed from wild germplasm may exhibit sures, as they contain genetic variation that can be harnessed incomplete penetrance or unexpected epistatic interactions, to create better-tasting, higher-yielding, disease/pest-resistant, forfeiting expected gains from introgressions (Lippman et al., and climate-resilient cultivars that require fewer agricultural in- 2007). puts (Figure 1). Sorting through the myriad combinations of alleles generated in 3 Unfortunately, most genebank accessions are poorly character- wild elite crosses requires a systematic approach if it is to be ized, and a small proportion have been utilized in breeding. Yet productive. The use of structured populations, appropriate when a serious effort has been made to search genebanks for experimental designs, and effective use of reference varieties in traits of interest, the effort has been highly rewarded. Examples combination with cost-effective genotyping, high throughput include the discovery of a unique rice landrace used to breed phenotyping, automated data capture, and appropriate analyses submergence-tolerant varieties currently grown on tens of mil- make it possible to link genotype with phenotype, identify valu- lions of acres (Mackill et al., 2012) and durable resistance to able haplotypes, drive recombination, and make predictions late blight, a devastating disease of potato, derived from a wild about offspring phenotypes. Techniques that enhance recombi- relative (Bernal-Galeano et al., 2020). Given the high value of nation and mitigate crossability barriers offer additional means the genetic diversity found in crop wild relatives and traditional landraces, why are these genetic resources not more widely Published by the Molecular Plant Shanghai Editorial Office in association with used in breeding programs? Cell Press, an imprint of Elsevier Inc., on behalf of CSPB and IPPE, CAS. Molecular Plant 13, 1341–1344, October 5 2020 ª The Author 2020. 1341 Molecular Plant Comment Figure 1. Sunflower Pre-bred Line Contain- ing Introgressions from Wild Helianthus an- nuus Performing Well in Drought Stress Trial in Uganda. Pre-bred lines developed by Greg Baute and Lo- ren Rieseberg at the University of British Columbia. Drought stress trial performed by Walter Anyanga, National Semi-Arid Resources Research Institute, Uganda. Photo Credit: Walter Anyanga. how such resources and associated infor- mation are collected, stored, regenerated, shared, studied, and used, potentially creating additional obstacles to research and the utilization of crop diversity (McCouch et al., 2013; Marden, 2018). The International Treaty for Plant Genetic Resources in Food and Agriculture facilitates multi-lateral access to plant ge- netic resources under mutually agreed- upon terms. It currently covers 64 crops, but ambiguity regarding benefit-sharing re- for accessing diversity from divergent wild relatives while quirements limits the use of genebank holdings by many plant reducing linkage drag (Fernandes et al., 2018). breeders, researchers, and farmers (Sherman and Henry, 2020). There also are concerns that the benefit-sharing provisions of To address these challenges, we encourage communities of re- the Treaty somehow conflict with the long-accepted practice of searchers to undertake systematic pre-breeding efforts to providing open access to genetic sequence data (Marden, generate recombinant populations of introgressed lines in adapt- 2018). In our view, open sharing of information about plant ed cultivated backgrounds, evaluate them in diverse environ- genetic resources represents one essential form of benefit ments, and share the lines and associated information with sharing, and provides a critical foundation for capacity building breeders, farmers, researchers, and policy makers. The long strategies
Recommended publications
  • Download Catalog
    Transnational Learning Transnational Learning creates powerful educational digtal resources and experiences for its global partners. Transnational Learning College of Agriculture and Life Sciences Cornell University 443 Warren Hall Ithaca, New York 14853 Stefan Einarson Program Director 607.255.6115 [email protected] http://transnationallearning.cornell.edu © 2008 transnationallearning.cornell.edu 1 Transnational Learning Connecting Classrooms Around the Globe Started in 2003 and supported by International Pro- HUMAN RESOURCES grams of CALS, the Department of Plant Breeding and In addition to offering classroom content and follow- Genetics, and grants from the Rockefeller Foundation, up discussions, Transnational Learning allows Cor- and the Bill and Melina Gates Foundation, Cornell staff nell faculty members to offer professional expertise has videotaped nearly 1,000 hours of lectures and semi- and consultations to the faculty and students in its nars enhanced with synchronized PowerPoint presen- partner programs. Students in Africa may choose to tations. Graduate-level students and faculty members discuss their thesis research with a faculty member in less-developed nations access the lectures and later at Cornell—perhaps an instructor of one of the digi- participate in real-time videoconference discussions tal lectures. In consultation with the African student’s with Cornell faculty for face-to-face interactions. This local advisors, the Cornell professor might call on a opportunity creates an engaging, powerful educational panel of informal advisors from Cornell and elsewhere resource and experience for students in the partner in- in the U.S. and international community who can help stitutions as well as contributing to the internationaliza- guide the African student on the direction of his or her tion of Cornell students and faculty.
    [Show full text]
  • Computer-Assisted Discovery and Characterization of Rice
    COMPUTER-ASSISTED DISCOVERY AND CHARACTERIZATION OF RICE TRANSPOSABLE ELEMENTS INCLUDING THE FIRST ACTIVE MINIATURE- INVERTED REPEAT TRANSPOSABLE ELEMENT (MITE) by NING JIANG (Under the direction of Susan R. Wessler) ABSTRACT The availability of draft sequences for the two subspecies of rice (Oryza sativa, japonica cv. Nipponbare and indica cv. 93-11) has significantly accelerated our understanding of transposable elements in the rice genome. The research described in this dissertation was performed with the expanding rice genomic database. First, 30 Mb of rice genomic sequence was analyzed to study the insertion preference of rice miniature inverted-repeat transposable elements (MITEs), numerically the most abundant elements in rice. Among the 6600 MITEs identified, > 10% were present as nested insertions (multimers) with the proportion of multimers differing among MITE families. The data suggest possible mechanisms underlying the formation of MITE multimers. The second part of this dissertation concerns Dasheng, a novel non-autonomous long terminal repeat (LTR) element with over 1000 copies. Two hundred and fifteen elements were mapped to all twelve rice chromosomes, where more than half of the elements were located in the heterochromatic regions around centromeres. By searching 100 Mb rice genomic sequences including the almost completely assembled chromosome 1, Dasheng elements were found to have inserted five times more frequently into pericentromeric regions than other regions. These features suggest Dasheng may serve as molecular markers for this marker-poor region of the genome. Finally, 187 Mb of genomic sequence was analyzed in a computational approach to isolate the first active DNA transposons from rice and the first active MITE from any organism.
    [Show full text]
  • The Hub Volume 17, Issue 1
    March 2015 The Hub Volume 17, Issue 1 From the Hot Seat David Stern, President In This Issue... As everyone probably knows, in early January I “returned” from a six month sabbacal from the Presidency. This was a chance to reconnect with my lab and the scienfic community and to work closely with Bridget Rigas as she has developed BTI’s communicaons and fundraising Grants & Awards 2 strategy. Upon my return the leadership team was both old and new: Joan Curss and Karen Conference Rooms 2 Kindle had departed, and Eric Richards returned as Vice President for Research. The tenth anni‐ versary of my Presidency (August 1st, 2014) also occurred during this period. Paylocity 3 For the remainder of 2015, our main focus will be on bringing in the next generaon of faculty‐ Communications News 3 level sciensts, and ensuring their success. This will require appropriate infrastructure, direct Strategic Plan 4 support for research and importantly, increased opportunies for success in raising external funds. How can and should BTI lay the groundwork for renewing the staff that directs the most BTI Welcome 5 important thing we do – make discoveries in plant biology? The answer to this queson lies in both internal and external acvies. Silent Auctions 5 Password Safety 6 Recently, BTI faculty spent considerable me framing and discussing future hiring. Our intenon is to coordinate hiring with the School of Integrave Plant Sciences, while enriching BTI science Liz Brauer Wins 7 through the hiring of junior‐level researchers with excing ideas. Some areas of parcular inter‐ McClintock Award est are the microbiome/phytobiome, and also small molecule chemicals and their biological Promote Your Research 7 roles.
    [Show full text]
  • Whole-Plant Growth Stage Ontology for Angiosperms and Its Application in Plant Biology
    Whole-Plant Growth Stage Ontology for Angiosperms and Its Application in Plant Biology Pujar, A., Jaiswal, P., Kellogg, E. A., Ilic, K., Vincent, L., Avraham, S., ... & McCouch, S. (2006). Whole-plant growth stage ontology for angiosperms and its application in plant biology. Plant Physiology, 142(2), 414-428. doi:10.1104/pp.106.085720 10.1104/pp.106.085720 American Society of Plant Biologists Version of Record http://cdss.library.oregonstate.edu/sa-termsofuse Bioinformatics Whole-Plant Growth Stage Ontology for Angiosperms and Its Application in Plant Biology1[OA] Anuradha Pujar2, Pankaj Jaiswal2, Elizabeth A. Kellogg2,KaticaIlic2,LeszekVincent2, Shulamit Avraham2, Peter Stevens2, Felipe Zapata2,LeonoreReiser3, Seung Y. Rhee, Martin M. Sachs, Mary Schaeffer, Lincoln Stein, Doreen Ware, and Susan McCouch* Department of Plant Breeding, Cornell University, Ithaca, New York 14853 (A.P., P.J., S.M.); Department of Biology, University of Missouri, St. Louis, Missouri 63121 (E.A.K., P.S., F.Z.); Department of Plant Biology, Carnegie Institution, Stanford, California 94305 (K.I., L.R., S.Y.R.); Division of Plant Sciences, University of Missouri, Columbia, Missouri 65211 (L.V., M.S.); Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724 (S.A., L.S., D.W.); Missouri Botanical Garden, St. Louis, Missouri 63110 (P.S., F.Z.); Maize Genetics Cooperation-Stock Center, Department of Crop Sciences, University of Illinois, Urbana, Illinois 61801 (M.M.S.); and Agricultural Research Service, United States Department of Agriculture, Washington, DC 20250 (M.M.S., M.S., D.W.) Plant growth stages are identified as distinct morphological landmarks in a continuous developmental process.
    [Show full text]
  • Us-Uk Scientific Forumon
    US-UK SCIENTIFIC FORUM ON Sustainable Agriculture March 5-6, 2020 and Photo Credit: Tompkins Conservation Archive Forum Attendees Bojana Bajzelj Andrew Balmford David Baulcombe Tim Benton Researcher Professor, Zoology Royal Society Research Research Director Swedish University of University of Cambridge Professor, Plant Sciences Environment and Resources Agricultural Sciences Cambridge, UK Cambridge University Program • Chatham House Uppsala, Sweden Cambridge, UK London, UK Ian Boyd Daniel Brooks Connie Burdge Ranveer Chandra Professor Sir, Biology Professor Emeritus, Ecology Policy Adviser Chief Scientist University of St Andrews and Evolutionary Biology Science Policy Microsoft Azure Global St Andrews, UK University of Toronto The Royal Society Redmond, WA Asheville, NC London, UK Parag Chitnis Luke Clarke Jennifer Clements Amanda Collis Associate Director, National Head of International Affairs Program Coordinator Executive Director, Research Institute of Food and (Americas, International National Academy of Sciences Strategy and Program Agriculture • United States Organisations and Africa) Irvine, CA Biotechnology and Biological Department of Agriculture The Royal Society Sciences Research Council Kansas City, MO London, UK Swindon, UK Sebsebe Demissew Cornelia Flora Ken Fulton Sarah Garland Professor, Department Distinguished Professor Executive Director Recent PhD Graduate of Plant Biology and Emerita/Research Professor National Academy of Sciences Plant Sciences Biodiversity Management Sociology Irvine, CA University of Cambridge
    [Show full text]
  • Evolutionary History of GS3, a Gene Conferring Grain Length in Rice
    Copyright Ó 2009 by the Genetics Society of America DOI: 10.1534/genetics.109.103002 Evolutionary History of GS3, a Gene Conferring Grain Length in Rice Noriko Takano-Kai,*,1 Hui Jiang,†,1,2 Takahiko Kubo,*,3 Megan Sweeney,†,4 Takashi Matsumoto,§ Hiroyuki Kanamori,** Badri Padhukasahasram,†† Carlos Bustamante,†† Atsushi Yoshimura,* Kazuyuki Doi*,5 and Susan McCouch†,6 *Faculty of Agriculture, Kyushu University, Fukuoka 812-8581, Japan, †Department of Plant Breeding and Genetics, Cornell University, Ithaca, New York 14853, §Division of Genome and Biodiversity Research, National Institute of Agrobiological Sciences, Tsukuba, Ibaraki 305-8602, Japan, **Institute of Society for Techno-Innovation of Agriculture, Forestry, and Fisheries, Tsukuba, 305-0854, Japan and ††Department of Biological Statistics and Computational Biology, Cornell University, Ithaca, New York 14853 Manuscript received March 27, 2009 Accepted for publication May 24, 2009 ABSTRACT Unlike maize and wheat, where artificial selection is associated with an almost uniform increase in seed or grain size, domesticated rice exhibits dramatic phenotypic diversity for grain size and shape. Here we clone and characterize GS3, an evolutionarily important gene controlling grain size in rice. We show that GS3 is highly expressed in young panicles in both short- and long-grained varieties but is not expressed in leaves or panicles after flowering, and we use genetic transformation to demonstrate that the dominant allele for short grain complements the long-grain phenotype. An association study revealed that a C to A mutation in the second exon of GS3 (A allele) was associated with enhanced grain length in Oryza sativa but was absent from other Oryza species.
    [Show full text]
  • 19Th New Phytologist Symposium
    19th New Phytologist Symposium PPhhyyssiioollooggiiccaall ssccuullppttuurree ooff ppllaannttss:: nneeww vviissiioonnss aanndd ccaappaabbiilliittiieess ffoorr ccrroopp ddeevveellooppmmeenntt Timberline Lodge, Mount Hood, Oregon, USA 17–20 September 2008 Program, abstracts and participants 19th New Phytologist Symposium Physiological sculpture of plants: new visions and capabilities for crop development Timberline Lodge, Mount Hood, Oregon, USA Organizing committee Steve Strauss (Oregon State University, OR, USA) Richard Amasino (University of Wisconsin-Madison, WI, USA) Richard Flavell (Ceres Inc., CA, USA) Richard Jorgensen (University of Arizona, USA) Harry Klee (University of Florida, FL, USA) Holly Slater (New Phytologist, Lancaster, UK) Acknowledgements The 19th New Phytologist Symposium is funded by the New Phytologist Trust and sponsored, in part, by Bayer CropScience; Center for Genome Research and Biocomputing, Oregon St U; GreenWood Resources, Inc.; The Lois and Wait Rising Lectureship Fund, College of Agricultural Sciences, Oregon St U; Mendel Biotechnology, Inc.; Monsanto Company and Pioneer Hi-Bred, a DuPont Business. New Phytologist Trust The New Phytologist Trust is a non-profit-making organization dedicated to the promotion of plant science, facilitating projects from symposia to open access for our Tansley reviews. Complete information is available at www.newphytologist.org Program, abstracts and participant list compiled by Jill Brooke. Physiological sculpture of plants illustration by Gretchen Bracher, College of Forestry,
    [Show full text]
  • Association Genetics for Agronomic Traits in Rice and Cloning of ALS
    Louisiana State University LSU Digital Commons LSU Doctoral Dissertations Graduate School 2006 Association Genetics for Agronomic Traits in Rice and Cloning of ALS Herbicide Resistant Genes from Coreopsis Tinctoria Nutt Nengyi Zhang Louisiana State University and Agricultural and Mechanical College, [email protected] Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_dissertations Recommended Citation Zhang, Nengyi, "Association Genetics for Agronomic Traits in Rice and Cloning of ALS Herbicide Resistant Genes from Coreopsis Tinctoria Nutt" (2006). LSU Doctoral Dissertations. 3847. https://digitalcommons.lsu.edu/gradschool_dissertations/3847 This Dissertation is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU Doctoral Dissertations by an authorized graduate school editor of LSU Digital Commons. For more information, please [email protected]. ASSOCIATION GENETICS FOR AGRONOMIC TRAITS IN RICE AND CLONING OF ALS HERBICIDE RESISTANT GENES FROM COREOPSIS TINCTORIA NUTT. A Dissertation Submitted to the Graduate Faculty of the Louisiana State University and Agricultural and Mechanical College in partial fulfillment of the requirements for the degree of Doctor of Philosophy In The Department of Agronomy and Environmental Management By Nengyi Zhang B.S., Hangzhou University, 1991 M.S., Zhejiang Agricultural University, 1994 August 2006 This work is dedicated to my father, Xingjian Zhang and my mother, Fengnu Zhang ii ACKNOWLEDGEMENTS I wish to express my profound gratitude to Dr. James Oard, my major professor, for his support, encouragement, guidance and useful suggestions throughout the period of this research. Without his help, it would be impossible for me to complete any portion of this work.
    [Show full text]
  • The Pennsylvania State University
    The Pennsylvania State University The Graduate School College of Agricultural Sciences NUTRITIONAL AND GENETIC ARCHITECTURE OF ROOT TRAITS IN RICE (Oryza sativa) A Dissertation in Horticulture by Phanchita Vejchasarn 2014 Phanchita Vejchasarn Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy May 2014 The dissertation of Phanchita Vejchasarn was reviewed and approved* by the following: Kathleen Brown Professor of Plant Stress Biology Dissertation Advisor Chair of Committee Graduate Program Officer Jonathan Lynch Professor of Plant Nutrition Dawn Luthe Professor of Plant Stress Biology Yinong Yang Associate Professor of Plant Pathology *Signatures are on file in the Graduate School iii ABSTRACT As the global population continues to grow, especially in the developing nations, about 870 million people are food insecure and experiencing chronic malnutrition. Rice is the most important cereal crop of the developing world and a staple food source of more than half of the world’s population, providing 20-70% of total daily caloric intake. Rainfed lowland rice is the dominant rice production system in areas of greatest poverty: South Asia, parts of Southeast Asia, and essentially all of Africa, where its production is limited by multiple abiotic stresses, uncertain moisture supply and decreasing soil fertility. Phosphorus deficiency is considered to be one of the major constraints limiting rice production in those areas. Most farmers still plant traditional rice varieties that produce poor plant growth and low yields. Adding to the problem is that resource- poor farmers are largely unable to afford the cost of fertilizers, thus, they remain trapped in poverty. An alternative strategy is to develop phosphorus efficient varieties with enhanced genetic adaptation to phosphorus-stressed soils, defined as improved yield ability in low-input agricultural systems coupled with better phosphorus acquisition and use efficiency.
    [Show full text]
  • Oryza Sativa L.)
    WHOLE GENOME TRANSCRIPTOME PROFILING FOR HEAT TOLERANCE AND GENOME-WIDE ASSOCIATION FOR EXOTIC TRAITS IN RICE (ORYZA SATIVA L.) A Thesis by WARDAH KHURSHIDA MUSTAHSAN Submitted to the Office of Graduate and Professional Studies of Texas A&M University in partial fulfillment of requirements for the degree of MASTER OF SCIENCE Chair of Committee, Michael J. Thomson Committee Members, Lee Tarpley Endang M. Septiningsih Head of Department, David D. Baltensperger May 2018 Major Subject: Plant Breeding Copyright 2018 Wardah K. Mustahsan ABSTRACT High night temperature (HNT) has strong negative effects on rice plant growth and development. HNT also impacts many physiological characteristics of rice which affect the grain quality of rice grown around the world. One potential mechanism of HNT damage is from the induction of ethylene-triggered reactive oxygen species that can lead to increased membrane damage and negatively impact yield and grain quality. In this study, the changes in physiological behavior due to the interaction between HNT and the ethylene-inhibitor 1-MCP was investigated. Furthermore, genome-wide expression analysis under HNT was performed using RNA-Seq to gain insights into the gene functions underlying tolerance to HNT. Plants were grown under ambient night temperature (ANT) (25 °C) or HNT (30 °C) with or without 1-MCP treatment. RNA extraction was performed on two phenotype-contrasting rice cultivars (Antonio and Colorado) from which in-depth RNA-Seq analysis was used to identify differentially expressed genes involved in heat tolerance in these varieties. Results from this experiment showed a total of 25 transcripts derived from analyzing the effects of various comparisons of treatments on the genotypes used in this study.
    [Show full text]
  • USDA and DOE Project Director Meeting
    USDA and DOE Project Director Meeting AFRI Plant Genome, Genetics and Breeding Program AFRI Plant Breeding and Education Program USDA-DOE Feedstock Genomics for Bioenergy Program Town and Country Resort and Convention Center San Diego, CA January 13, 2011 Table of Contents Speaker Abstracts (In Presentation Order) .................................................................................................. 7 Genomics-Based Breeding in Forest Trees: Are We There Yet and Why We Need a Reference Genome to Finish the Job; David B. Neale .............................................................................................................. 7 Genome-Wide Patterns of SNP Variation in Wheat: Tools and Resources for Breeding and Studying Genetics of Agronomic Traits; Eduard Akhunov ...................................................................................... 8 Oat SNP Development and Identification of Loci Affecting Key Traits in North American Oat Germplasm Using Association Genetics; Eric Jackson .............................................................................. 9 Advanced Pine Breeding Through Association Genetics and Biotechnology; Matias Kirst ................... 10 Improving Maize Against Aflatoxin and Drought: Translational Plant Breeding, Education, and Extension; Seth C. Murray ...................................................................................................................... 12 An Integrated Approach to Breeding Resistance to Phytophthora Capsici In Pepper; Allen Van Deynze ...............................................................................................................................................................
    [Show full text]
  • Genetic Analysis and Dissection of Crown Rust Resistance in Diploid Avena Gong-Xin Yu Iowa State University
    Iowa State University Capstones, Theses and Retrospective Theses and Dissertations Dissertations 1999 Genetic analysis and dissection of crown rust resistance in diploid Avena Gong-Xin Yu Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/rtd Part of the Agricultural Science Commons, Agriculture Commons, Agronomy and Crop Sciences Commons, and the Genetics Commons Recommended Citation Yu, Gong-Xin, "Genetic analysis and dissection of crown rust resistance in diploid Avena " (1999). Retrospective Theses and Dissertations. 12187. https://lib.dr.iastate.edu/rtd/12187 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. INFORMATION TO USERS This manuscript has been reproduced from the microfilm master. UMI films the text directly from the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter face, while others may be from any type of computer printer. The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleedthrough, substandard margins, and improper alignment can adversely affect reproduction. In the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion. Oversize materials (e.g., maps, drawings, charts) are reproduced by sectioning the original, beginning at the upper left-hand comer and continuing from left to right in equal sections with small overlaps.
    [Show full text]