Newsletter 1

Total Page:16

File Type:pdf, Size:1020Kb

Newsletter 1 Volume 2 Issue 3 GRAMENE News May/June 2007 A New Era for Barley Genetics Recent developments in opments in barley genomics and diversity analysis platform sequencing and genotyping was the generation of a BAC based on more than 3,000 gene Gramene News technologies are changing the library from the American cul- sequence based markers and will landscape of scientific opportu- tivar, Morex. This was followed lay the foundation for a series FAQ . p3 nities for large genome cereal by the creation of significant of major new projects such as species such as wheat and barley. EST sequence resource (cur- the UK, SEERAD and BBSRC LINK Upcoming Outreach The existing sequence of rice, to- rently standing at >450,000; see funded, AGOUEB (http://www. p3 gether with the rapidly accumu- http://harvest.ucr.edu) which led agoueb.org) and the US, USDA lating sequence information from in turn to a series 5520-925 funded, Barley- 2.00 the maize, sorghum and Brachy- of sequence based 1.80 CAP (http://www. podium genomes, are providing genomics resourc- 1.60 barleyCAP.org) Community News 1.40 a valuable set of comparative es, including the 1.20 projects inte- R 1 A New Era for Barley rm cereal sequence and functional Barley1 Affymetrix o grated through a Genetics . p1 N0.80 genomics resources that can GeneChip (one 0.60 common infor- be exploited in large genome of the first major 0.40 matics infrastruc- High School Outreach 0.20 . p 2 species. Despite the inherent arrays for a crop 0 ture (Figure 3 34 0 62 difficulties that come from work- plant [see http:// -0.20 and http://germi- 0 0.20 0.40 0.60 0.80 1 Opportunities . .p 3 ing with a large genome, barley www.plexdb. Norm Theta nate.org.uk/). Figure 2. Single locus SNP genotypes (Hordeum vulgare), with with 5.3 org/]) and a series These de- Recommended Reading from a set of barley lines visualized us- . p4 billion letters of genetic code, has of Barley TILLING ing the Illumina Bead Studio software. velopments are many advantages - an extensive populations (e.g. bringing a new collection http://germinate. dimension to barley breeding of mutants scri.sari.ac.uk/barley/ and genetics which will lay the (http://ace. mutants/). foundation for our understand- untamo. The International ing of the barley genome and net/) and a Barley Sequencing increase the value of barley as continuum Consortium (IBSC) the temperate cereal crop of of interfertile (http://barleygen- choice to exploit major scientific germplasm ome.org/), formed developments in “model” plants that spans from a nucleus of such as Arabidopsis and rice. the range leading barley from wild H. Figure 1. A stand of wild barley (H. sponta- research groups, neum) in the foreground growing in a mixed spontaneum sward of other wild barley and wheat species is now working (Figure1 ) in a reserve in Northern Israel. to develop a material in physical map the Fertile Crescent to landraces based on BAC on High Infor- and advanced modern cultivated mation Content Fingerprint- DNA extracted from germplasm. It is also a simple ing and BAC end sequencing rice plants in High diploid with 7 chromosome pairs, from a recently extended School Labs - see page which are essentially equivalent series of Morex BAC libraries. 2. to those in each of the 3 ge- A recent major advance Figure 3. Barley chromosome 7H Illumina SNP graphical genotypes for a series of European (Photo by Claire Hebbard, nomes of hexaploid wheat. in barley genetics has come barley lines clustered by their similarity at 7H Gramene) One of the first major devel- from the development of a high telomeric markers, using the GVT Java applica- throughput SNP platform for tion (http://germinate.org.uk/) International Barley Sequencing Consortium (IBSC) (http://barleygenome. barley based on the Illumina org/) members: Golden Gate Assay (Proc Australian Centre for Plant Functional Genomics (ACPFG), AUS; USDA-Agri- Natl Acad Sci USA (Figure 2) Article and images contribut- cultural Research Service (USDA-ARS) at Iowa State University, USA; Leibniz 103:18656–18661). This high ed by Dr David Marshall, Genetics Institute of Plant Genetics and Crop Plant Research (IPK), DEU; National throughput SNP platform Programme, SCRI. Invergowrie, Institute of Agrobiological Sciences (NIAS), JPN; Okayama University (OU), will provide barley research- Dundee, DD6 5DA Scotland. JPN; Scottish Crop Research Institute (SCRI), GBR; MTT Agrifood Research ers around the world with a [email protected] unique integrated mapping (MTT) & University of Helsinki (UH), FIN Check out these educational resources: High School Outreach WheatCap http://maswheat.ucdavis.edu/education/ RiceCap http://www.ricecap.uark.edu/outreach.htm Encouraging the next generation Dolan DNA Learning Center http://www.dnalc.org/home.html An exciting part of working at a University is to do out- reach to local schools and to get kids excited about science. crops, all with larger genomes than rice. Teachers commented For the past 5 years about feedback from the students on the the McCouch Rice presentation. “They are always amazed Lab group from by her (McCouch’s) presentation, because Cornell (http:// they have not previously been forced to ricelab.plbr.cornell. see food and water as a privilege.” edu/) has worked The students learned about techniques with three upstate that molecular biologists and geneticists NY schools to bring use in their labs everyday to try to solve equipment, re- some of the problems that the world is sources and experi- facing. This challenge was accepted Susan McCouch teaching rice genomics to high school students. enced researchers by grinning students, who froze and into the classroom to benefit their students taking the Living crushed plant leaves in liquid nitrogen and used finely cali- Environment course, usually students in 9th or 10th grade. Once brated pipettes to measure DNA into the agarose gel plates. again, early in May, Dr. Susan McCouch worked with students Their interest was obvious as they asked questions about how who participated in two laboratory exercises - DNA extraction genomics and biotechnology affect them. A student from one and gel electrophoresis – that helped them to understand the school stated, “That was cool, everything we did in lab I saw on biological concepts behind modern DNA testing procedures. CSI (a television drama) last week.” A ninth grader said “I’m go- The teachers participate because students get the oppor- ing to go home and tell my father about this, and he isn’t going tunity to do college level activities while gaining insight into to believe it!” Some students also had the option to grow a rice future roles that science plays in the world. Traditionally the plant and to view a rice flower under a microscope. concepts of genomic DNA are taught to high school students in One of the senior teachers said that guest presenters are abstract form – through discussion and reading. “This lab allows important in order to keep the students’ interest. His comment, the students to apply it in real life, to understand the process, “There are so many job opportunities in science . When you and to work with tools that are otherwise unavailable to them,“ tell kids about them they don’t ‘get it’, but when they see it they one teacher reported. “It also allows them to interact with pro- get excited,” proved true as many students remarked that grind- fessionals in the field - to ask them about their experiences and ing rice leaves and using pipettes was fun, and they were inter- get answers to questions they have about working in a lab.” ested in doing further laboratory work. Another teacher had his McCouch captivated students as she set the background for students participate in the event because “This class puts it all the lab work. She told of how rice and rice genomics together – taking are crucial to addressing the challenges facing the the different con- world today. Although agricultural grain production cepts and units has more than tripled since 1945, the world popula- that we teach tion growth has outgrown grain production. And and putting them many of the world’s poorest people consume the into one lab.” less nutritional white rice because it uses less fuel for McCouch and cooking and has better storage characteristics in hot her laboratory moist climates. With over 250,000 germplasm acces- staff - includ- sions of rice available to researchers, the genomic ing graduate diversity from these varieties can be used to breed students - plan rice cultivars adaptable to a wide range of environ- A student pipettes DNA into an agarose gel as Prof. McCouch, Mr Knight (principal) and Mrs Krichbaum-Stenger (teacher) observe. on continuing ments and with better nutritional quality and higher to offer this lab yield production. For example, in Africa flooded rice fields would experience to the local schools, and are looking forward to new harbor diseases such as malaria – which is the number -one students and new experiences next year. killer of children under the age of five, so current work is on de- veloping better varieties for the production needs of Africa. Im- Share your lab experiences here. Send them to provements in rice can also direct improvements in other cereal the GrameneNews editor at [email protected] Upcoming Outreach: Gramene FAQ Gramene will be at these upcoming meetings. Contact Gramene through the “Feedback” link at the top of any page to ask ques- You may attend these workshops and post- tions. Here are some recent questions that have been answered. ers to learn about Gramene or get answers to questions. See the Calendar below for dates and locations.
Recommended publications
  • Download Catalog
    Transnational Learning Transnational Learning creates powerful educational digtal resources and experiences for its global partners. Transnational Learning College of Agriculture and Life Sciences Cornell University 443 Warren Hall Ithaca, New York 14853 Stefan Einarson Program Director 607.255.6115 [email protected] http://transnationallearning.cornell.edu © 2008 transnationallearning.cornell.edu 1 Transnational Learning Connecting Classrooms Around the Globe Started in 2003 and supported by International Pro- HUMAN RESOURCES grams of CALS, the Department of Plant Breeding and In addition to offering classroom content and follow- Genetics, and grants from the Rockefeller Foundation, up discussions, Transnational Learning allows Cor- and the Bill and Melina Gates Foundation, Cornell staff nell faculty members to offer professional expertise has videotaped nearly 1,000 hours of lectures and semi- and consultations to the faculty and students in its nars enhanced with synchronized PowerPoint presen- partner programs. Students in Africa may choose to tations. Graduate-level students and faculty members discuss their thesis research with a faculty member in less-developed nations access the lectures and later at Cornell—perhaps an instructor of one of the digi- participate in real-time videoconference discussions tal lectures. In consultation with the African student’s with Cornell faculty for face-to-face interactions. This local advisors, the Cornell professor might call on a opportunity creates an engaging, powerful educational panel of informal advisors from Cornell and elsewhere resource and experience for students in the partner in- in the U.S. and international community who can help stitutions as well as contributing to the internationaliza- guide the African student on the direction of his or her tion of Cornell students and faculty.
    [Show full text]
  • Computer-Assisted Discovery and Characterization of Rice
    COMPUTER-ASSISTED DISCOVERY AND CHARACTERIZATION OF RICE TRANSPOSABLE ELEMENTS INCLUDING THE FIRST ACTIVE MINIATURE- INVERTED REPEAT TRANSPOSABLE ELEMENT (MITE) by NING JIANG (Under the direction of Susan R. Wessler) ABSTRACT The availability of draft sequences for the two subspecies of rice (Oryza sativa, japonica cv. Nipponbare and indica cv. 93-11) has significantly accelerated our understanding of transposable elements in the rice genome. The research described in this dissertation was performed with the expanding rice genomic database. First, 30 Mb of rice genomic sequence was analyzed to study the insertion preference of rice miniature inverted-repeat transposable elements (MITEs), numerically the most abundant elements in rice. Among the 6600 MITEs identified, > 10% were present as nested insertions (multimers) with the proportion of multimers differing among MITE families. The data suggest possible mechanisms underlying the formation of MITE multimers. The second part of this dissertation concerns Dasheng, a novel non-autonomous long terminal repeat (LTR) element with over 1000 copies. Two hundred and fifteen elements were mapped to all twelve rice chromosomes, where more than half of the elements were located in the heterochromatic regions around centromeres. By searching 100 Mb rice genomic sequences including the almost completely assembled chromosome 1, Dasheng elements were found to have inserted five times more frequently into pericentromeric regions than other regions. These features suggest Dasheng may serve as molecular markers for this marker-poor region of the genome. Finally, 187 Mb of genomic sequence was analyzed in a computational approach to isolate the first active DNA transposons from rice and the first active MITE from any organism.
    [Show full text]
  • The Hub Volume 17, Issue 1
    March 2015 The Hub Volume 17, Issue 1 From the Hot Seat David Stern, President In This Issue... As everyone probably knows, in early January I “returned” from a six month sabbacal from the Presidency. This was a chance to reconnect with my lab and the scienfic community and to work closely with Bridget Rigas as she has developed BTI’s communicaons and fundraising Grants & Awards 2 strategy. Upon my return the leadership team was both old and new: Joan Curss and Karen Conference Rooms 2 Kindle had departed, and Eric Richards returned as Vice President for Research. The tenth anni‐ versary of my Presidency (August 1st, 2014) also occurred during this period. Paylocity 3 For the remainder of 2015, our main focus will be on bringing in the next generaon of faculty‐ Communications News 3 level sciensts, and ensuring their success. This will require appropriate infrastructure, direct Strategic Plan 4 support for research and importantly, increased opportunies for success in raising external funds. How can and should BTI lay the groundwork for renewing the staff that directs the most BTI Welcome 5 important thing we do – make discoveries in plant biology? The answer to this queson lies in both internal and external acvies. Silent Auctions 5 Password Safety 6 Recently, BTI faculty spent considerable me framing and discussing future hiring. Our intenon is to coordinate hiring with the School of Integrave Plant Sciences, while enriching BTI science Liz Brauer Wins 7 through the hiring of junior‐level researchers with excing ideas. Some areas of parcular inter‐ McClintock Award est are the microbiome/phytobiome, and also small molecule chemicals and their biological Promote Your Research 7 roles.
    [Show full text]
  • Whole-Plant Growth Stage Ontology for Angiosperms and Its Application in Plant Biology
    Whole-Plant Growth Stage Ontology for Angiosperms and Its Application in Plant Biology Pujar, A., Jaiswal, P., Kellogg, E. A., Ilic, K., Vincent, L., Avraham, S., ... & McCouch, S. (2006). Whole-plant growth stage ontology for angiosperms and its application in plant biology. Plant Physiology, 142(2), 414-428. doi:10.1104/pp.106.085720 10.1104/pp.106.085720 American Society of Plant Biologists Version of Record http://cdss.library.oregonstate.edu/sa-termsofuse Bioinformatics Whole-Plant Growth Stage Ontology for Angiosperms and Its Application in Plant Biology1[OA] Anuradha Pujar2, Pankaj Jaiswal2, Elizabeth A. Kellogg2,KaticaIlic2,LeszekVincent2, Shulamit Avraham2, Peter Stevens2, Felipe Zapata2,LeonoreReiser3, Seung Y. Rhee, Martin M. Sachs, Mary Schaeffer, Lincoln Stein, Doreen Ware, and Susan McCouch* Department of Plant Breeding, Cornell University, Ithaca, New York 14853 (A.P., P.J., S.M.); Department of Biology, University of Missouri, St. Louis, Missouri 63121 (E.A.K., P.S., F.Z.); Department of Plant Biology, Carnegie Institution, Stanford, California 94305 (K.I., L.R., S.Y.R.); Division of Plant Sciences, University of Missouri, Columbia, Missouri 65211 (L.V., M.S.); Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724 (S.A., L.S., D.W.); Missouri Botanical Garden, St. Louis, Missouri 63110 (P.S., F.Z.); Maize Genetics Cooperation-Stock Center, Department of Crop Sciences, University of Illinois, Urbana, Illinois 61801 (M.M.S.); and Agricultural Research Service, United States Department of Agriculture, Washington, DC 20250 (M.M.S., M.S., D.W.) Plant growth stages are identified as distinct morphological landmarks in a continuous developmental process.
    [Show full text]
  • Mobilizing Crop Biodiversity
    University of Vermont ScholarWorks @ UVM College of Agriculture and Life Sciences Faculty Publications College of Agriculture and Life Sciences 10-5-2020 Mobilizing Crop Biodiversity Susan McCouch Cornell University Zahra Katy Navabi Global Institute for Food Security Michael Abberton International Institute of Tropical Agriculture (IITA), Ibadan Noelle L. Anglin Centro Internacional de la Papa, Peru Rosa Lia Barbieri Empresa Brasileira de Pesquisa Agropecuária - Embrapa See next page for additional authors Follow this and additional works at: https://scholarworks.uvm.edu/calsfac Part of the Agriculture Commons, Community Health Commons, Human Ecology Commons, Nature and Society Relations Commons, Place and Environment Commons, and the Sustainability Commons Recommended Citation McCouch S, Navabi ZK, Abberton M, Anglin NL, Barbieri RL, Baum M, Bett K, Booker H, Brown GL, Bryan GJ, Cattivelli L. Mobilizing Crop Biodiversity. Molecular Plant. 2020 Oct 5;13(10):1341-4. This Article is brought to you for free and open access by the College of Agriculture and Life Sciences at ScholarWorks @ UVM. It has been accepted for inclusion in College of Agriculture and Life Sciences Faculty Publications by an authorized administrator of ScholarWorks @ UVM. For more information, please contact [email protected]. Authors Susan McCouch, Zahra Katy Navabi, Michael Abberton, Noelle L. Anglin, Rosa Lia Barbieri, Michael Baum, Kirstin Bett, Helen Booker, Gerald L. Brown, Glenn J. Bryan, Luigi Cattivelli, David Charest, Kellye Eversole, Marcelo Freitas, Kioumars Ghamkhar, Dario Grattipaglia, Robert Henry, Maria Cleria Valadares Inglis, Tofazzal Islam, Zakaria Kehel, Paul J. Kersey, Graham J. King, Stephen Kresovich, Emily Marden, Sean Mayes, Marie Noelle Ndjiondjiop, Henry T. Nguyen, Samuel Rezende Paiva, Roberto Papa, Peter W.B.
    [Show full text]
  • Us-Uk Scientific Forumon
    US-UK SCIENTIFIC FORUM ON Sustainable Agriculture March 5-6, 2020 and Photo Credit: Tompkins Conservation Archive Forum Attendees Bojana Bajzelj Andrew Balmford David Baulcombe Tim Benton Researcher Professor, Zoology Royal Society Research Research Director Swedish University of University of Cambridge Professor, Plant Sciences Environment and Resources Agricultural Sciences Cambridge, UK Cambridge University Program • Chatham House Uppsala, Sweden Cambridge, UK London, UK Ian Boyd Daniel Brooks Connie Burdge Ranveer Chandra Professor Sir, Biology Professor Emeritus, Ecology Policy Adviser Chief Scientist University of St Andrews and Evolutionary Biology Science Policy Microsoft Azure Global St Andrews, UK University of Toronto The Royal Society Redmond, WA Asheville, NC London, UK Parag Chitnis Luke Clarke Jennifer Clements Amanda Collis Associate Director, National Head of International Affairs Program Coordinator Executive Director, Research Institute of Food and (Americas, International National Academy of Sciences Strategy and Program Agriculture • United States Organisations and Africa) Irvine, CA Biotechnology and Biological Department of Agriculture The Royal Society Sciences Research Council Kansas City, MO London, UK Swindon, UK Sebsebe Demissew Cornelia Flora Ken Fulton Sarah Garland Professor, Department Distinguished Professor Executive Director Recent PhD Graduate of Plant Biology and Emerita/Research Professor National Academy of Sciences Plant Sciences Biodiversity Management Sociology Irvine, CA University of Cambridge
    [Show full text]
  • Evolutionary History of GS3, a Gene Conferring Grain Length in Rice
    Copyright Ó 2009 by the Genetics Society of America DOI: 10.1534/genetics.109.103002 Evolutionary History of GS3, a Gene Conferring Grain Length in Rice Noriko Takano-Kai,*,1 Hui Jiang,†,1,2 Takahiko Kubo,*,3 Megan Sweeney,†,4 Takashi Matsumoto,§ Hiroyuki Kanamori,** Badri Padhukasahasram,†† Carlos Bustamante,†† Atsushi Yoshimura,* Kazuyuki Doi*,5 and Susan McCouch†,6 *Faculty of Agriculture, Kyushu University, Fukuoka 812-8581, Japan, †Department of Plant Breeding and Genetics, Cornell University, Ithaca, New York 14853, §Division of Genome and Biodiversity Research, National Institute of Agrobiological Sciences, Tsukuba, Ibaraki 305-8602, Japan, **Institute of Society for Techno-Innovation of Agriculture, Forestry, and Fisheries, Tsukuba, 305-0854, Japan and ††Department of Biological Statistics and Computational Biology, Cornell University, Ithaca, New York 14853 Manuscript received March 27, 2009 Accepted for publication May 24, 2009 ABSTRACT Unlike maize and wheat, where artificial selection is associated with an almost uniform increase in seed or grain size, domesticated rice exhibits dramatic phenotypic diversity for grain size and shape. Here we clone and characterize GS3, an evolutionarily important gene controlling grain size in rice. We show that GS3 is highly expressed in young panicles in both short- and long-grained varieties but is not expressed in leaves or panicles after flowering, and we use genetic transformation to demonstrate that the dominant allele for short grain complements the long-grain phenotype. An association study revealed that a C to A mutation in the second exon of GS3 (A allele) was associated with enhanced grain length in Oryza sativa but was absent from other Oryza species.
    [Show full text]
  • 19Th New Phytologist Symposium
    19th New Phytologist Symposium PPhhyyssiioollooggiiccaall ssccuullppttuurree ooff ppllaannttss:: nneeww vviissiioonnss aanndd ccaappaabbiilliittiieess ffoorr ccrroopp ddeevveellooppmmeenntt Timberline Lodge, Mount Hood, Oregon, USA 17–20 September 2008 Program, abstracts and participants 19th New Phytologist Symposium Physiological sculpture of plants: new visions and capabilities for crop development Timberline Lodge, Mount Hood, Oregon, USA Organizing committee Steve Strauss (Oregon State University, OR, USA) Richard Amasino (University of Wisconsin-Madison, WI, USA) Richard Flavell (Ceres Inc., CA, USA) Richard Jorgensen (University of Arizona, USA) Harry Klee (University of Florida, FL, USA) Holly Slater (New Phytologist, Lancaster, UK) Acknowledgements The 19th New Phytologist Symposium is funded by the New Phytologist Trust and sponsored, in part, by Bayer CropScience; Center for Genome Research and Biocomputing, Oregon St U; GreenWood Resources, Inc.; The Lois and Wait Rising Lectureship Fund, College of Agricultural Sciences, Oregon St U; Mendel Biotechnology, Inc.; Monsanto Company and Pioneer Hi-Bred, a DuPont Business. New Phytologist Trust The New Phytologist Trust is a non-profit-making organization dedicated to the promotion of plant science, facilitating projects from symposia to open access for our Tansley reviews. Complete information is available at www.newphytologist.org Program, abstracts and participant list compiled by Jill Brooke. Physiological sculpture of plants illustration by Gretchen Bracher, College of Forestry,
    [Show full text]
  • Association Genetics for Agronomic Traits in Rice and Cloning of ALS
    Louisiana State University LSU Digital Commons LSU Doctoral Dissertations Graduate School 2006 Association Genetics for Agronomic Traits in Rice and Cloning of ALS Herbicide Resistant Genes from Coreopsis Tinctoria Nutt Nengyi Zhang Louisiana State University and Agricultural and Mechanical College, [email protected] Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_dissertations Recommended Citation Zhang, Nengyi, "Association Genetics for Agronomic Traits in Rice and Cloning of ALS Herbicide Resistant Genes from Coreopsis Tinctoria Nutt" (2006). LSU Doctoral Dissertations. 3847. https://digitalcommons.lsu.edu/gradschool_dissertations/3847 This Dissertation is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU Doctoral Dissertations by an authorized graduate school editor of LSU Digital Commons. For more information, please [email protected]. ASSOCIATION GENETICS FOR AGRONOMIC TRAITS IN RICE AND CLONING OF ALS HERBICIDE RESISTANT GENES FROM COREOPSIS TINCTORIA NUTT. A Dissertation Submitted to the Graduate Faculty of the Louisiana State University and Agricultural and Mechanical College in partial fulfillment of the requirements for the degree of Doctor of Philosophy In The Department of Agronomy and Environmental Management By Nengyi Zhang B.S., Hangzhou University, 1991 M.S., Zhejiang Agricultural University, 1994 August 2006 This work is dedicated to my father, Xingjian Zhang and my mother, Fengnu Zhang ii ACKNOWLEDGEMENTS I wish to express my profound gratitude to Dr. James Oard, my major professor, for his support, encouragement, guidance and useful suggestions throughout the period of this research. Without his help, it would be impossible for me to complete any portion of this work.
    [Show full text]
  • The Pennsylvania State University
    The Pennsylvania State University The Graduate School College of Agricultural Sciences NUTRITIONAL AND GENETIC ARCHITECTURE OF ROOT TRAITS IN RICE (Oryza sativa) A Dissertation in Horticulture by Phanchita Vejchasarn 2014 Phanchita Vejchasarn Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy May 2014 The dissertation of Phanchita Vejchasarn was reviewed and approved* by the following: Kathleen Brown Professor of Plant Stress Biology Dissertation Advisor Chair of Committee Graduate Program Officer Jonathan Lynch Professor of Plant Nutrition Dawn Luthe Professor of Plant Stress Biology Yinong Yang Associate Professor of Plant Pathology *Signatures are on file in the Graduate School iii ABSTRACT As the global population continues to grow, especially in the developing nations, about 870 million people are food insecure and experiencing chronic malnutrition. Rice is the most important cereal crop of the developing world and a staple food source of more than half of the world’s population, providing 20-70% of total daily caloric intake. Rainfed lowland rice is the dominant rice production system in areas of greatest poverty: South Asia, parts of Southeast Asia, and essentially all of Africa, where its production is limited by multiple abiotic stresses, uncertain moisture supply and decreasing soil fertility. Phosphorus deficiency is considered to be one of the major constraints limiting rice production in those areas. Most farmers still plant traditional rice varieties that produce poor plant growth and low yields. Adding to the problem is that resource- poor farmers are largely unable to afford the cost of fertilizers, thus, they remain trapped in poverty. An alternative strategy is to develop phosphorus efficient varieties with enhanced genetic adaptation to phosphorus-stressed soils, defined as improved yield ability in low-input agricultural systems coupled with better phosphorus acquisition and use efficiency.
    [Show full text]
  • Oryza Sativa L.)
    WHOLE GENOME TRANSCRIPTOME PROFILING FOR HEAT TOLERANCE AND GENOME-WIDE ASSOCIATION FOR EXOTIC TRAITS IN RICE (ORYZA SATIVA L.) A Thesis by WARDAH KHURSHIDA MUSTAHSAN Submitted to the Office of Graduate and Professional Studies of Texas A&M University in partial fulfillment of requirements for the degree of MASTER OF SCIENCE Chair of Committee, Michael J. Thomson Committee Members, Lee Tarpley Endang M. Septiningsih Head of Department, David D. Baltensperger May 2018 Major Subject: Plant Breeding Copyright 2018 Wardah K. Mustahsan ABSTRACT High night temperature (HNT) has strong negative effects on rice plant growth and development. HNT also impacts many physiological characteristics of rice which affect the grain quality of rice grown around the world. One potential mechanism of HNT damage is from the induction of ethylene-triggered reactive oxygen species that can lead to increased membrane damage and negatively impact yield and grain quality. In this study, the changes in physiological behavior due to the interaction between HNT and the ethylene-inhibitor 1-MCP was investigated. Furthermore, genome-wide expression analysis under HNT was performed using RNA-Seq to gain insights into the gene functions underlying tolerance to HNT. Plants were grown under ambient night temperature (ANT) (25 °C) or HNT (30 °C) with or without 1-MCP treatment. RNA extraction was performed on two phenotype-contrasting rice cultivars (Antonio and Colorado) from which in-depth RNA-Seq analysis was used to identify differentially expressed genes involved in heat tolerance in these varieties. Results from this experiment showed a total of 25 transcripts derived from analyzing the effects of various comparisons of treatments on the genotypes used in this study.
    [Show full text]
  • USDA and DOE Project Director Meeting
    USDA and DOE Project Director Meeting AFRI Plant Genome, Genetics and Breeding Program AFRI Plant Breeding and Education Program USDA-DOE Feedstock Genomics for Bioenergy Program Town and Country Resort and Convention Center San Diego, CA January 13, 2011 Table of Contents Speaker Abstracts (In Presentation Order) .................................................................................................. 7 Genomics-Based Breeding in Forest Trees: Are We There Yet and Why We Need a Reference Genome to Finish the Job; David B. Neale .............................................................................................................. 7 Genome-Wide Patterns of SNP Variation in Wheat: Tools and Resources for Breeding and Studying Genetics of Agronomic Traits; Eduard Akhunov ...................................................................................... 8 Oat SNP Development and Identification of Loci Affecting Key Traits in North American Oat Germplasm Using Association Genetics; Eric Jackson .............................................................................. 9 Advanced Pine Breeding Through Association Genetics and Biotechnology; Matias Kirst ................... 10 Improving Maize Against Aflatoxin and Drought: Translational Plant Breeding, Education, and Extension; Seth C. Murray ...................................................................................................................... 12 An Integrated Approach to Breeding Resistance to Phytophthora Capsici In Pepper; Allen Van Deynze ...............................................................................................................................................................
    [Show full text]