Evaluation of EU ETS Monitoring, Reporting and Verification Administration Costs

Total Page:16

File Type:pdf, Size:1020Kb

Evaluation of EU ETS Monitoring, Reporting and Verification Administration Costs Evaluation of EU ETS Monitoring, Reporting and Verification Administration Costs Final report June 2016 Europe Direct is a service to help you find answers to your questions about the European Union. Freephone number (*): 00 800 6 7 8 9 10 11 (*) The information given is free, as are most calls (though some operators, phone boxes or hotels may charge you). LEGAL NOTICE This document has been prepared for the European Commission however it reflects the views only of the authors, and the Commission cannot be held responsible for any use which may be made of the information contained therein. More information on the European Union is available on the Internet (http://www.europa.eu). Luxembourg: Publications Office of the European Union, 2016 ISBN 978-92-79-64425-2 doi:10.2834/640029 © European Union, 2016 Reproduction is authorised provided the source is acknowledged. European Commission, DG CLIMA Evaluation of EU ETS Monitoring, Reporting and Verification Administration Costs Final Report June 2016 Amec Foster Wheeler Environment & Infrastructure UK Limited 2 © Amec Foster Wheeler Environment & Infrastructure UK Limited Report for Copyright and non-disclosure notice Robert Gemmill The contents and layout of this report are subject to copyright João Serrano Gomes owned by Amec Foster Wheeler (© Amec Foster Wheeler European Commission DG CLIMA Environment & Infrastructure UK Limited 2016) save to the Avenue de Beaulieu 24 extent that copyright has been legally assigned by us to B-1160 Auderghem another party or is used by Amec Foster Wheeler under Brussels licence. To the extent that we own the copyright in this report, Belgium it may not be copied or used without our prior written agreement for any purpose other than the purpose indicated in this report. The methodology (if any) contained in this report is provided to you in confidence and must not be disclosed or Main contributors copied to third parties without the prior written agreement of Amec Foster Wheeler. Disclosure of that information may Chris Green (Amec Foster Wheeler) constitute an actionable breach of confidence or may Amelia Sharman (Amec Foster Wheeler) otherwise prejudice our commercial interests. Any third party Juan Calero (Amec Foster Wheeler) who obtains access to this report by any means will, in any Hetty Menadue (Amec Foster Wheeler) event, be subject to the Third Party Disclaimer set out below. Mary Ann Kong (BIO) Lidia Wisniewska (BIO) Sebastien Soleille (BIO) Third-party disclaimer Any disclosure of this report to a third party is subject to this Issued by disclaimer. The report was prepared by Amec Foster Wheeler at the instruction of, and for use by, our client named on the front of the report. It does not in any way constitute advice to any third party who is able to access it by any means. Amec Foster Wheeler excludes to the fullest extent lawfully permitted all liability whatsoever for any loss or damage howsoever arising from reliance on the contents of this report. We do not ................................................................................. however exclude our liability (if any) for personal injury or Amelia Sharman death resulting from our negligence, for fraud or any other matter in relation to which we cannot legally exclude liability. Approved by Management systems This document has been produced by Amec Foster Wheeler Environment & Infrastructure UK Limited in full compliance with the management systems, which have been certified to ISO 9001, ISO 14001 and OHSAS 18001 by LRQA. ................................................................................. Chris Green Document revisions Amec Foster Wheeler No. Details Date Floor 4 1 Draft final report 24 May 2016 60 London Wall London EC2M 5TQ 2 Final report 30 June 2016 United Kingdom Tel +44 (0) 203 215 1610 3 Final report (Representative 05 July 2016 Doc Ref. 37474 data only) h:\projects\37474 ppcc evaluation of eu ets mrv compliance costs\c client\reports\5. final issued report\redacted version_representative data only\37474_final report_representative data only_05june2016.docx July 2016 Doc Ref. 37474 3 © Amec Foster Wheeler Environment & Infrastructure UK Limited Executive summary Subject This subject of this report is an evaluation of European Union Emissions Trading System (EU ETS) monitoring, reporting and verification (MRV) compliance costs. The study was completed for DG Climate Action at the European Commission (‘the Commission) by Amec Foster Wheeler, Environment and Infrastructure UK Limited (‘Amec Foster Wheeler’) in partnership with BIO by Deloitte (‘BIO’). Background The EU ETS applies to approximately 11,500 installations across the 28 EU Member States and three European Economic Area (EEA)-European Free Trade Area (EFTA) states (Iceland, Liechtenstein and Norway). It covers sectors responsible for approximately 45% of total EU greenhouse gas (GHG) emissions, including major industrial emitters, the power sector and, from 2012, the aviation sector.1 The EU ETS started operating in 2005, with a pilot phase (Phase I) running from 2005 to 2007, followed by a second trading period (Phase II) between 2008 and 2012. These two phases were governed by Directive 2003/87/EC and Directive 2004/101/EC. The EU ETS is now in its third phase, running from 2013 to 2020 (Directive 2009/29/EC). The fourth phase will follow in 2021. In the EU ETS, one allowance is equal to one tonne of carbon dioxide equivalent (CO2e) emission. Articles 14 and 15 of Directive 2003/87/EC provide the legal basis for the monitoring, reporting, verification and accreditation requirements. Additionally, Annex IV sets some basic principles for the monitoring and reporting of emissions in and Annex V outlines the verification criteria. Installations and aircraft operators are required to monitor their emissions falling under the scope of the EU ETS during each calendar year starting from 1 January through to 31 December. These data are then summarised in an annual emissions report, which is verified by an accredited third party verifier before submission to the Competent Authority (CA) by 31 March each year. Operators must annually surrender an equivalent number of allowances by 30 April to compensate for their emissions. Finally, should an improvement report be required, these must be submitted to the CA by 30 June. The first Monitoring and Reporting Guidelines (MRG) were adopted by the Commission in 2004 (Decision 2004/156/EC) and applied for the first trading period (2005-2007). In 2007, the Commission adopted a revised version of the guidelines (MRG 2007) (Decision 2007/589/EC) to be applied for the 2008-2012 trading period. For the third trading period, the reviewed ETS Directive (2009/29/EC) provided for the adoption of two new Regulations which replaced Commission Decision 2007/589/EC: Commission Regulation (EC) No 601/2012 on the monitoring and reporting of greenhouse gas emissions pursuant to Directive 2003/87/EC (MRR); and Commission Regulation (EC) No 600/2012 on the verification of greenhouse gas emissions reports and tonne-kilometre reports and the accreditation of verifiers pursuant to Directive 2003/87/EC (AVR). The MRR replaced the MRG 2007 with a particular emphasis on simplifying the monitoring process when possible and improving the overall cost-efficiency of the monitoring and reporting duties. The MRR takes into account best practices that were observed in different Member States. The success of the EU ETS resides on the full compliance by Member States. The MRV system enables a more transparent process for tracking implementation and for ensuring the enforcement of the operators’ obligation to surrender sufficient allowances. Issue MRV is fundamental to any functioning emission trading scheme as it ensures the integrity of the system and underpins the value of allowances. The integrity, credibility and success of the EU ETS requires that one tonne of CO2e, measured, reported and verified in one country is equivalent to one tonne measured, reported and verified in another country. The EU ETS MRV compliance cycle involves different elements 1 Note that this evaluation does not include aviation operators. July 2016 Doc Ref. 37474 4 © Amec Foster Wheeler Environment & Infrastructure UK Limited (permit, plant, emission data, reporting etc.) and different actors (Member States’ CA, operators, verifiers and national accreditation bodies). For the EU ETS to not be compromised there needs to be a high level of compliance and high level of consistency in the approach taken by all actors. While it is widely accepted that the EU ETS has enabled the reduction of GHG emissions at a relatively low cost, the issue of cost-efficiency is of primary importance. The introduction of the MRR and AVR) has provided some clear improvements from the MRG 2007 on proportional approaches in order to increase cost-efficiency such as provisions for simplified monitoring plans. However, relatively little reliable information is available on the costs of compliance with the EU ETS MRV, particularly as regards costs relating to implementation of Phase III under the MRR/AVR. Multiple analyses are available on the best carbon pricing strategy, but those studies do not focus on administrative and compliance costs. Where data are available, figures are however somewhat uncertain and vary between installations. Moreover, they are based on industry surveys, which contain many uncertainties such as biased sample size (with an overrepresentation of larger companies), approximate answers due to the lack of internal
Recommended publications
  • NASA's Carbon Monitoring System
    PAPER • OPEN ACCESS NASA’s carbon monitoring system (CMS) and arctic-boreal vulnerability experiment (ABoVE) social network and community of practice To cite this article: Molly E Brown et al 2020 Environ. Res. Lett. 15 115014 View the article online for updates and enhancements. This content was downloaded from IP address 185.169.255.37 on 03/12/2020 at 10:13 Environ. Res. Lett. 15 (2020) 115014 https://doi.org/10.1088/1748-9326/aba300 Environmental Research Letters PAPER NASA’s carbon monitoring system (CMS) and arctic-boreal OPEN ACCESS vulnerability experiment (ABoVE) social network and community RECEIVED 17 April 2020 of practice REVISED 23 June 2020 Molly E Brown1,∗, Matthew W Cooper1 and Peter C Griffith2 ACCEPTED FOR PUBLICATION 1 6 July 2020 Department of Geographical Sciences, University of Maryland College Park, Maryland, United States of America 2 Science Systems and Applications, Inc. and NASA Goddard Space Flight Center, Greenbelt, Maryland, United States of America ∗ PUBLISHED Author to whom any correspondence should be addressed 19 November 2020 E-mail: [email protected] Original content from this work may be used Keywords: social network, carbon monitoring, Arctic environment, carbon cycle and ecosystems under the terms of the Supplementary material for this article is available online Creative Commons Attribution 4.0 licence. Any further distribution of this work must Abstract maintain attribution to the author(s) and the title The NASA Carbon Monitoring System (CMS) and Arctic-Boreal Vulnerability Experiment of the work, journal citation and DOI. (ABoVE) have been planned and funded by the NASA Earth Science Division. Both programs have a focus on engaging stakeholders and developing science useful for decision making.
    [Show full text]
  • Estimating CO2 Emissions from Large Scale Coal-Fired Power Plants Using OCO-2 Observations and Emission Inventories
    atmosphere Article Estimating CO2 Emissions from Large Scale Coal-Fired Power Plants Using OCO-2 Observations and Emission Inventories Yaqin Hu 1,2 and Yusheng Shi 1,* 1 Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100101, China; [email protected] 2 University of Chinese Academy of Sciences, Beijing 101408, China * Correspondence: [email protected]; Tel.: +86-138-1042-0401 Abstract: The concentration of atmospheric carbon dioxide (CO2) has increased rapidly world- wide, aggravating the global greenhouse effect, and coal-fired power plants are one of the biggest contributors of greenhouse gas emissions in China. However, efficient methods that can quantify CO2 emissions from individual coal-fired power plants with high accuracy are needed. In this study, we estimated the CO2 emissions of large-scale coal-fired power plants using Orbiting Carbon Observatory-2 (OCO-2) satellite data based on remote sensing inversions and bottom-up methods. First, we mapped the distribution of coal-fired power plants, displaying the total installed capac- ity, and identified two appropriate targets, the Waigaoqiao and Qinbei power plants in Shanghai and Henan, respectively. Then, an improved Gaussian plume model method was applied for CO2 emission estimations, with input parameters including the geographic coordinates of point sources, wind vectors from the atmospheric reanalysis of the global climate, and OCO-2 observations. The application of the Gaussian model was improved by using wind data with higher temporal and spatial resolutions, employing the physically based unit conversion method, and interpolating OCO-2 observations into different resolutions. Consequently, CO2 emissions were estimated to be Citation: Hu, Y.; Shi, Y.
    [Show full text]
  • The Hestia Fossil Fuel CO2 Emissions Data Product for the Los Angeles Megacity
    Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2018-162 Manuscript under review for journal Earth Syst. Sci. Data Discussion started: 25 February 2019 c Author(s) 2019. CC BY 4.0 License. 1 The Hestia Fossil Fuel CO2 Emissions Data Product for the Los 2 Angeles Megacity (Hestia-LA) 3 Kevin R. Gurney1, Risa Patarasuk4, Jianming Liang2,3, Yang Song2, Darragh O’Keeffe5, Preeti 4 Rao6, James R. Whetstone7, Riley M. Duren8, Annmarie Eldering8, Charles Miller8 5 1School of Informatics, Computing, and Cyber Systems, Northern Arizona University, Flagstaff, AZ, USA 6 2School of Life Sciences, Arizona State University, Tempe AZ USA 7 3Now at ESRI, Redlands, CA USA 8 4Citrus County, DePt. of Systems Management, Lecanto, FL, USA 9 5Contra Costa County, DePartment of Information Technology, Martinez, CA, USA 10 6School for Environment and Sustainability, University of Michigan, Ann Arbor, MI, USA 11 7National Institute for Standards and Technology, Gaithersburg, MD, USA 12 8NASA Jet ProPulsion Laboratory, California Institute of Technology, Pasadena, CA, USA 13 Correspondence to: Kevin R. Gurney ([email protected]) 14 Abstract. As a critical constraint to atmosPheric CO2 inversion studies, bottom-up spatiotemporally-explicit 15 emissions data products are necessary to construct comprehensive CO2 emission information systems useful for 16 trend detection and emissions verification. High-resolution bottom-up estimation is also useful as a guide to 17 mitigation oPtions, offering details that can increase mitigation efficiency and synergize with other Policy goals at 18 the national to sub-urban spatial scale. The ‘Hestia Project’ is an effort to provide bottom-up fossil fuel (FFCO2) 19 emissions at the urban scale with building/street and hourly space-time resolution.
    [Show full text]
  • 2021 NACP Science Implementation Plan 5 6 Chapter 1: Introduction: Motivation, History, Goals, and Achievements (Lead: 7 Christopher A
    1 **** INTERNAL DRAFT **** 2 **** SOFT RELEASE FOR COMMENTS BY NACP COMMUNITY**** 3 4 2021 NACP Science Implementation Plan 5 6 Chapter 1: Introduction: Motivation, History, Goals, and Achievements (Lead: 7 Christopher A. Williams1) 8 Chapter 2: Program Elements and Key Priorities for the Future (Lead: Christopher A. 9 Williams1) 10 Chapter 3: Science Implementation Plan Elements 11 3.1. Sustained and Expanded Observations (Lead: Arlyn Andrews2) 12 3.2. Assessment and Integration (Lead: Eric T. Sundquist3) 13 3.3. Processes and Attribution (Lead: Christopher A. Williams1) 14 3.4. Prediction (Leads: Benjamin Poulter4, Forrest M. Hoffman5, Kenneth J. Davis6) 15 3.5. Communication, Coordination & Decision Support (Lead: Molly Brown7) 16 Chapter 4: Partnerships and Collaborations: Institutional and International (Leads: 17 Elisabeth K. Larson8, Gyami Shrestha9) 18 Chapter 5: Data and Information Management (Lead: Yaxing Wei10) 19 20 Forthcoming Additions Before Final Release 21 Executive Summary 22 Appendices 23 24 Affiliations 25 26 1School of Geography, Clark University, Worcester, MA 01610, USA; [email protected] 27 2NOAA Global Monitoring Laboratory, Boulder, CO 80305, USA; [email protected] 28 3U.S. Geological Survey, Woods Hole, MA 02543, USA; [email protected] 29 4NASA Goddard Space Flight Center, Biospheric Sciences Lab., Greenbelt, MD 20771, USA; 30 [email protected] 31 5The Pennsylvania State University, Dept. of Meteorology and Atmospheric Science, University Park, PA, USA; 32 [email protected] 33 6U.S. Dept. of Energy, Oak Ridge National Laboratory, Computational Sciences & Engineering Division, ORNL, 34 Oak Ridge, TN 37831, USA; [email protected] 35 7Department of Geographical Sciences, University of Maryland, College Park, MD 20742, USA; 36 [email protected] 37 8NASA Goddard Space Flight Center/SSAI, Carbon Cycle & Ecosystems Office, Greenbelt, MD 20771, USA; 38 [email protected] 39 9U.S.
    [Show full text]
  • 4. Markets for Carbon Offsets
    4. Markets for carbon offsets Widely dismissed as far-fetched only a few years ago, today there is a strengthening scientific consensus that global warming is a real and dangerous phenomenon. Global warming results from what scientists refer to as the Greenhouse Effect, which is caused by the build up of greenhouse gases (GHGs) including carbon dioxide, methane, nitrous oxides, chlorofluorocarbons, hydrofluorocarbons, perfluorocarbons and sulphur hexafluoride, in the atmosphere. GHGs absorb heat radiated from the Earth’s surface and, in the past, have been responsible for maintaining the Earth’s temperature at an average 15 degrees Celsius. Over the twentieth century the Inter-governmental Panel on Climate Change, an international group of leading climate scientists set up to advise the United Nations’ Framework Convention on Climate Change (UNFCCC), estimates that a 30% increase in atmospheric GHG levels has caused world temperatures to rise 0.6 degrees Celsius. By far the largest contributor has been fossil fuel burning, which accounts for about 75% of the increase in GHG, followed by forest degradation and deforestation, accounting for an estimated 20%. The Inter-governmental Panel on Climate Change has predicted that at present rates, temperatures will increase by a further 1.4 – 5.8 degrees Celsius over the next 100 years (IPCC, 2001). The increase in global temperatures will have uncertain implications for humans, but the Inter-governmental Panel on Climate Change posits several potential impacts including rising sea levels, more severe climatic events, coastal erosion, increased salinisation, loss of protective coral reefs, increased desertification, damaged forest ecosystems and increased disease. Poor people are particularly vulnerable to global warming.
    [Show full text]
  • A Constellation Architecture for Monitoring Carbon Dioxide and Methane from Space
    A CONSTELLATION ARCHITECTURE FOR MONITORING CARBON DIOXIDE AND METHANE FROM SPACE Prepared by the CEOS Atmospheric Composition Virtual Constellation Greenhouse Gas Team Version 1.0 – 8 October 2018 © 2018. All rights reserved Contributors: David Crisp1, Yasjka Meijer2, Rosemary Munro3, Kevin Bowman1, Abhishek Chatterjee4,5, David Baker6, Frederic Chevallier7, Ray Nassar8, Paul I. Palmer9, Anna Agusti-Panareda10, Jay Al-Saadi11, Yotam Ariel12. Sourish Basu13,14, Peter Bergamaschi15, Hartmut Boesch16, Philippe Bousquet7, Heinrich Bovensmann17, François-Marie Bréon7, Dominik Brunner18, Michael Buchwitz17, Francois Buisson19, John P. Burrows17, Andre Butz20, Philippe Ciais7, Cathy Clerbaux21, Paul Counet3, Cyril Crevoisier22, Sean Crowell23, Philip L. DeCola24, Carol Deniel25, Mark Dowell26, Richard Eckman11, David Edwards13, Gerhard Ehret27, Annmarie Eldering1, Richard Engelen10, Brendan Fisher1, Stephane Germain28, Janne Hakkarainen29, Ernest Hilsenrath30, Kenneth Holmlund3, Sander Houweling31,32, Haili Hu31, Daniel Jacob33, Greet Janssens-Maenhout15, Dylan Jones34, Denis Jouglet19, Fumie Kataoka35, Matthäus Kiel36, Susan S. Kulawik37, Akihiko Kuze38, Richard L. Lachance12, Ruediger Lang3, Jochen Landgraf 31, Junjie Liu1, Yi Liu39,40, Shamil Maksyutov41, Tsuneo Matsunaga41, Jason McKeever28, Berrien Moore23, Masakatsu Nakajima38, Vijay Natraj1, Robert R. Nelson42, Yosuke Niwa41, Tomohiro Oda4,5, Christopher W. O’Dell6, Leslie Ott5, Prabir Patra43, Steven Pawson5, Vivienne Payne1, Bernard Pinty26, Saroja M. Polavarapu8, Christian Retscher44,
    [Show full text]
  • NASA Carbon Monitoring System Phase 1 Report Prepared By: NASA Carbon Monitoring
    NASA Carbon Monitoring System Phase 1 Report Prepared by: NASA Carbon Monitoring System Science Team George Hurtt, Science Team Leader Christine Kang, Research Assistant May 16, 2014 1 TABLE OF CONTENTS INTRODUCTION ........................................................................................................................ 4 PROJECT TEAM MEMBERS .................................................................................................... 6 Science Definition Team .................................................................................................................. 6 Pilot Project Team .............................................................................................................................. 6 Scoping Studies Team ....................................................................................................................... 7 SCIENCE DEFINITION TEAM (SDT) ASSESSMENT & RECOMMENDATIONS ........... 8 2.1 Assessment of Phase 1 Activities ........................................................................................... 8 2.2 Recommendations for Phase 2: .............................................................................................. 9 PILOT PROJECTS ................................................................................................................... 11 3.1 Biomass- local (R. Dubayah et al.) ...................................................................................... 11 3.2 Biomass national (S. Saatchi et al) .....................................................................................
    [Show full text]
  • A Remote Sensing Technique for Global Monitoring of Power Plant CO2 Emissions from Space and Related Applications
    Atmos. Meas. Tech., 3, 781–811, 2010 www.atmos-meas-tech.net/3/781/2010/ Atmospheric doi:10.5194/amt-3-781-2010 Measurement © Author(s) 2010. CC Attribution 3.0 License. Techniques A remote sensing technique for global monitoring of power plant CO2 emissions from space and related applications H. Bovensmann1, M. Buchwitz1, J. P. Burrows1, M. Reuter1, T. Krings1, K. Gerilowski1, O. Schneising1, J. Heymann1, A. Tretner2, and J. Erzinger2 1Institute of Environmental Physics (IUP), University of Bremen FB1, Otto Hahn Allee 1, 28334 Bremen, Germany 2Helmholtz Centre Potsdam – GFZ German Research Centre for Geosciences, Telegrafenberg, 14473 Potsdam, Germany Received: 6 November 2009 – Published in Atmos. Meas. Tech. Discuss.: 7 January 2010 Revised: 14 June 2010 – Accepted: 15 June 2010 – Published: 1 July 2010 Abstract. Carbon dioxide (CO2) is the most important an- PP CO2 emission due to instrument noise is in the range thropogenic greenhouse gas (GHG) causing global warming. 1.6–4.8 MtCO2/yr for single overpasses. This corresponds The atmospheric CO2 concentration increased by more than to 12–36% of the emission of a mid-size PP (13 MtCO2/yr). 30% since pre-industrial times – primarily due to burning of We have also determined the sensitivity to parameters which fossil fuels – and still continues to increase. Reporting of may result in systematic errors such as atmospheric transport CO2 emissions is required by the Kyoto protocol. Indepen- and aerosol related parameters. We found that the emission dent verification of reported emissions, which are typially not error depends linearly on wind speed, i.e., a 10% wind speed directly measured, by methods such as inverse modeling of error results in a 10% emission error, and that neglecting en- measured atmospheric CO2 concentrations is currently not hanced aerosol concentrations in the PP plume may result possible globally due to lack of appropriate observations.
    [Show full text]
  • NASA Carbon Monitoring System Prototype Monitoring, Reporting
    NASA CARBON MONITORING SYSTEM: Prototype Monitoring, Reporting, and Verification PROGRESS REPORT AND FUTURE PLANS George Hurtt, Diane Wickland, Kenneth Jucks, Kevin Bowman, Molly Brown, Riley Duren, Stephen Hagen, and Ariane Verdy October 2014 NASA Carbon Monitoring System Executive Summary This report summarizes progress to date within the Carbon Monitoring System (CMS) project and describes NASA’s longer-term strategy for CMS worK and its vision regarding the NASA’s role in Monitoring, Reporting, and Verification (MRV). The NASA CMS project is forward-looKing and designed to maKe significant contributions in characterizing, quantifying, understanding, and predicting the evolution of global carbon sources and sinKs through improved monitoring of carbon stocks and fluxes. The approaches developed have emphasized the exploitation of NASA satellite remote sensing resources, computational capabilities, airborne science capabilities, scientific Knowledge, and end-to-end system expertise in combination with effective use of commercial off-the-shelf (COTS) measurement capabilities in order to prototype Key data products for MRV. Significant effort is being devoted to rigorous evaluation of the carbon monitoring products being produced, as well as to the characterization and quantification of errors and uncertainties in those products. Accomplishments to date include the development of a continental U.S. biomass data product and a global carbon flux product; demonstrations of MRV in support of local- and regional-scale carbon management projects; scoping of potential new ocean carbon monitoring products; and engagement of carbon monitoring staKeholders to better understand their needs for carbon data and information products. The CMS project has developed one of the most advanced carbon data assimilation systems in the world that integrates satellite and surface observations related to anthropogenic, oceanic, terrestrial and atmospheric carbon.
    [Show full text]
  • Methane Mapping with Future Satellite Imaging Spectrometers
    remote sensing Article Methane Mapping with Future Satellite Imaging Spectrometers Alana K. Ayasse 1,*, Philip E. Dennison 2 , Markus Foote 4 , Andrew K. Thorpe 3, Sarang Joshi 4, Robert O. Green 3, Riley M. Duren 3,5, David R. Thompson 3 and Dar A. Roberts 1 1 Department of Geography, University of California Santa Barbara, Santa Barbara, CA 93106, USA; [email protected] 2 Department of Geography, University of Utah, Salt Lake City, UT 84112, USA; [email protected] 3 Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA; [email protected] (A.K.T.); [email protected] (R.O.G.); [email protected] (R.M.D.); [email protected] (D.R.T.) 4 Scientific Computing and Imaging Institute, University of Utah, Salt Lake City, UT 84112, USA; [email protected] (M.F.); [email protected] (S.J.) 5 Office for Research, Innovation and Impact, University of Arizona, Tucson, AZ 85721, USA * Correspondence: [email protected] Received: 14 November 2019; Accepted: 13 December 2019; Published: 17 December 2019 Abstract: This study evaluates a new generation of satellite imaging spectrometers to measure point source methane emissions from anthropogenic sources. We used the Airborne Visible and Infrared Imaging Spectrometer Next Generation(AVIRIS-NG) images with known methane plumes to create two simulated satellite products. One simulation had a 30 m spatial resolution with ~200 Signal-to-Noise Ratio (SNR) in the Shortwave Infrared (SWIR) and the other had a 60 m spatial resolution with ~400 SNR in the SWIR; both products had a 7.5 nm spectral spacing.
    [Show full text]
  • Carbon Monitoring System Flux Net Biosphere Exchange 2020 (CMS-Flux NBE 2020)
    Earth Syst. Sci. Data, 13, 299–330, 2021 https://doi.org/10.5194/essd-13-299-2021 © Author(s) 2021. This work is distributed under the Creative Commons Attribution 4.0 License. Carbon Monitoring System Flux Net Biosphere Exchange 2020 (CMS-Flux NBE 2020) Junjie Liu1,2, Latha Baskaran1, Kevin Bowman1, David Schimel1, A. Anthony Bloom1, Nicholas C. Parazoo1, Tomohiro Oda3,4, Dustin Carroll5, Dimitris Menemenlis1, Joanna Joiner6, Roisin Commane7, Bruce Daube8, Lucianna V. Gatti9, Kathryn McKain10,11, John Miller10, Britton B. Stephens12, Colm Sweeney10, and Steven Wofsy8 1Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA 2California Institute of Technology, Pasadena, CA, USA 3Global Modeling and Assimilation Office, NASA Goddard Space Flight Center, Greenbelt, USA 4Goddard Earth Sciences Technology and Research, Universities Space Research Association, Columbia, MD, USA 5Moss Landing Marine Laboratories, San José State University, Moss Landing, CA, USA 6Laboratory for Atmospheric Chemistry and Dynamics, NASA Goddard Space Flight Center, Greenbelt, USA 7Lamont-Doherty Earth Observatory of Columbia University, Palisades, NY, USA 8Department of Earth and Planetary Sciences, Harvard University, Cambridge, MA, USA 9LaGEE, CCST, INPE – National Institute for Space Research, São José dos Campos, SP, Brazil 10NOAA, Global Monitoring Laboratory, Boulder, CO 80305, USA 11Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, CO, USA 12National Center for Atmospheric Research, Boulder, CO 80301, USA Correspondence: Junjie Liu ([email protected]) Received: 20 May 2020 – Discussion started: 7 July 2020 Revised: 21 December 2020 – Accepted: 23 December 2020 – Published: 10 February 2021 Abstract. Here we present a global and regionally resolved terrestrial net biosphere exchange (NBE) dataset with corresponding uncertainties between 2010–2018: Carbon Monitoring System Flux Net Biosphere Exchange 2020 (CMS-Flux NBE 2020).
    [Show full text]
  • The Potential of CO2 Capture and Storage Technology in South Africa’S Coal-Fired Thermal Power Plants
    environments Review The Potential of CO2 Capture and Storage Technology in South Africa’s Coal-Fired Thermal Power Plants Kelvin O. Yoro * and Patrick T. Sekoai Sustainable Energy & Environment Research Unit, Faculty of Engineering and the Built Environment, School of Chemical and Metallurgical Engineering, University of the Witwatersrand, Johannesburg 2050, South Arica; [email protected] * Correspondence: [email protected]; Tel.: +27-74-299-5917 Academic Editors: Jason K. Levy and Peiyong Yu Received: 10 July 2016; Accepted: 6 September 2016; Published: 15 September 2016 Abstract: The global atmospheric concentration of anthropogenic gases, such as carbon dioxide, has increased substantially over the past few decades due to the high level of industrialization and urbanization that is occurring in developing countries, like South Africa. This has escalated the challenges of global warming. In South Africa, carbon capture and storage (CCS) from coal-fired power plants is attracting increasing attention as an alternative approach towards the mitigation of carbon dioxide emission. Therefore, innovative strategies and process optimization of CCS systems is essential in order to improve the process efficiency of this technology in South Africa. This review assesses the potential of CCS as an alternative approach to reducing the amount CO2 emitted from the South African coal-fired power plants. It examines the various CCS processes that could be used for capturing the emitted CO2. Finally, it proposes the use of new adsorbents that could be incorporated towards the improvement of CCS technology. Keywords: CO2 capture and storage; climate change; coal-fired power plants; South Africa 1.
    [Show full text]