2021 NACP Science Implementation Plan 5 6 Chapter 1: Introduction: Motivation, History, Goals, and Achievements (Lead: 7 Christopher A

Total Page:16

File Type:pdf, Size:1020Kb

2021 NACP Science Implementation Plan 5 6 Chapter 1: Introduction: Motivation, History, Goals, and Achievements (Lead: 7 Christopher A 1 **** INTERNAL DRAFT **** 2 **** SOFT RELEASE FOR COMMENTS BY NACP COMMUNITY**** 3 4 2021 NACP Science Implementation Plan 5 6 Chapter 1: Introduction: Motivation, History, Goals, and Achievements (Lead: 7 Christopher A. Williams1) 8 Chapter 2: Program Elements and Key Priorities for the Future (Lead: Christopher A. 9 Williams1) 10 Chapter 3: Science Implementation Plan Elements 11 3.1. Sustained and Expanded Observations (Lead: Arlyn Andrews2) 12 3.2. Assessment and Integration (Lead: Eric T. Sundquist3) 13 3.3. Processes and Attribution (Lead: Christopher A. Williams1) 14 3.4. Prediction (Leads: Benjamin Poulter4, Forrest M. Hoffman5, Kenneth J. Davis6) 15 3.5. Communication, Coordination & Decision Support (Lead: Molly Brown7) 16 Chapter 4: Partnerships and Collaborations: Institutional and International (Leads: 17 Elisabeth K. Larson8, Gyami Shrestha9) 18 Chapter 5: Data and Information Management (Lead: Yaxing Wei10) 19 20 Forthcoming Additions Before Final Release 21 Executive Summary 22 Appendices 23 24 Affiliations 25 26 1School of Geography, Clark University, Worcester, MA 01610, USA; [email protected] 27 2NOAA Global Monitoring Laboratory, Boulder, CO 80305, USA; [email protected] 28 3U.S. Geological Survey, Woods Hole, MA 02543, USA; [email protected] 29 4NASA Goddard Space Flight Center, Biospheric Sciences Lab., Greenbelt, MD 20771, USA; 30 [email protected] 31 5The Pennsylvania State University, Dept. of Meteorology and Atmospheric Science, University Park, PA, USA; 32 [email protected] 33 6U.S. Dept. of Energy, Oak Ridge National Laboratory, Computational Sciences & Engineering Division, ORNL, 34 Oak Ridge, TN 37831, USA; [email protected] 35 7Department of Geographical Sciences, University of Maryland, College Park, MD 20742, USA; 36 [email protected] 37 8NASA Goddard Space Flight Center/SSAI, Carbon Cycle & Ecosystems Office, Greenbelt, MD 20771, USA; 38 [email protected] 39 9U.S. Carbon Cycle Science Program Office & UCAR, U.S. Global Change Research Program, Washington, D.C. 40 20006, USA; [email protected] 41 10U.S. Dept. of Energy, Oak Ridge National Laboratory Distributed Active Archive Center (ORNL DAAC), 42 Environmental Sciences Division, ORNL, Oak Ridge, TN 37831, USA; [email protected] 43 1 44 45 **** INTERNAL DRAFT **** 46 **** SOFT RELEASE FOR COMMENTS BY NACP COMMUNITY**** 47 48 Chapter 1. Introduction 49 50 Lead Author: Christopher A. Williams; Contributing Authors: Arlyn Andrews, Molly Brown, 51 Kenneth J. Davis, Forrest M. Hoffman, Benjamin Poulter, Eric T. Sundquist 52 53 1.1 Motivation 54 55 Carbon is a building block of life, a central biogeochemical element in the earth system, and an 56 important constituent of Earth’s atmosphere as a greenhouse gas (GhG) that powerfully influences 57 global climate. Human activity has radically altered the global carbon balance in fundamental 58 ways, with severe consequences for Earth’s biosphere. Vast quantities of carbon have been emitted 59 as CO2 from oxidation of the primary carbon-containing fuels humans have used over the past two 60 centuries, and from the destruction of natural ecosystems for agriculture, resource extraction, 61 industry, transportation, and other human endeavors. Together these have significantly elevated 62 atmospheric greenhouse gas concentrations, leading to planetary warming and attendant climate 63 changes that are fundamentally altering ecosystems and environments worldwide. They have also 64 acidified the oceans, jeopardizing coral reefs, endangering fisheries, and threatening the extinction 65 of many species. Many of these impacts involve adverse natural feedbacks that release additional 66 greenhouse gases and accelerate climate change. There is a pressing need to understand these 67 changes to the global carbon cycle and their interactions with the climate system and biosphere, 68 so that we may stabilize and reverse their damaging impacts and safeguard human well-being and 69 life on planet Earth. The North American Carbon Program responds to continued and growing 70 urgency to understand the dynamics and drivers of the coupled carbon-climate system, and its 71 interactions with the health and sustainability of ecosystems, natural resources, and the provision 72 of goods and services. 73 74 1.2 The NACP 75 76 With a focus on sources and sinks of carbon for North America and its coastal waters, the North 77 American Carbon Program emphasizes diagnosis of the contemporary carbon cycle, scientific 78 understanding of how it responds to natural and human forcings, and skillful predictions of its 79 likely future dynamics. The program also aims to provide scientific assessments of a range of 80 policy and management options being considered to mitigate climate change and ocean 81 acidification by protecting and expanding land, aquatic, or oceanic carbon stocks. As such, the 82 NACP plays a vital role in global carbon cycle research and its applications in service to society. 83 84 85 1.3 Program Foundation and Developmental History 86 87 The North American Carbon Program (NACP) is a principal activity of the US Carbon Cycle 88 Science Program (USCCSP), a Federal interagency partnership that operates under the aegis of the 89 U.S. Global Change Research Program (USGCRP). Born out of the 1999 US Carbon Cycle 2 90 Science Plan (Sarmiento and Wofsy 1999) (Figure 1), the NACP was established in 2002 in 91 response to the NACP Report (Wofsy and Harris 2002). Since its inception, the NACP has become 92 an essential venue for coordinated U.S. measurement and research concerning terrestrial, aquatic, 93 and coastal ocean carbon fluxes, their importance as sources and sinks of atmospheric greenhouse 94 gases (primarily CO2 and CH4), and the extent to which they both affect and are affected by natural 95 processes and human activities. While the NACP emphasizes U.S. contributions to global carbon 96 cycle science along with partners across North America including Canada, Mexico, and 97 Indigenous Nations, the program’s observations, analyses, and findings have relevance and impact 98 at the global scale. 99 100 Shortly after the program’s establishment, a 2005 NACP Science Implementation Strategy 101 (Denning et al. 2005) outlined an initial phase of activity that emphasized diagnostic studies to 102 uncover carbon source and sink trends, and attribution studies to identify the processes responsible 103 for these trends. The 2005 strategy document also identified activities needed to advance 104 predictive capability and to support decision makers, with an anticipated developmental 105 progression to expand the program’s scope in these areas over time. 106 107 In 2011, the US Carbon Cycle Science Plan revisited the USCCSP science goals (Michalak et al. 108 2011), reiterating broad research priorities and new directions. As a follow-on effort, this NACP 109 Science Implementation Plan (NSIP) revises and updates the 2005 NACP strategy document. It 110 responds to new scientific capabilities, the program’s developmental progression, and emergent 111 priorities. 112 113 114 Figure 1. Establishment of, and updates to, the North American 115 Carbon Program (NACP), from its origins in the US Carbon Cycle 3 116 Science Plan to its design laid out in science implementation 117 documents. 118 119 120 1.4. The 2021 NACP Science Implementation Plan 121 122 This 2021 NACP Science Implementation Plan highlights key gaps and offers strategies for 123 program implementation. The intention is to facilitate coordinated, complementary, and 124 comprehensive science research activities that address the major goals of the NACP (Chapter 2). 125 This new plan builds on the foundation of the 2005 NACP Science Implementation Strategy to 126 design an up-to-date research program that responds to emerging research needs, recent 127 discoveries, and new capabilities. 128 129 The plan reviews key activities needed for a full implementation of the NACP’s broad science 130 goals, and highlights selected activities deemed to be of highest priority. The plan’s activities are 131 organized among five overarching program elements that are introduced in Chapter 2 and given 132 more detail in Chapter 3. Highest priority is based upon three main criteria: the largest 133 uncertainties, the weakest understanding, and the greatest public need. 134 135 The plan also reviews major achievements of the program to date (Chapter 2), provides a vision 136 for sustaining and strengthening collaborative linkages to diverse partners and institutions (Chapter 137 4), and identifies data and information management capabilities needed to support the overall 138 program (Chapter 5). An Executive Summary underscores the most important aspects of the 139 implementation plan. 140 141 142 1.5 Comments on Procedure, Audience, and Distribution 143 144 The NSIP was developed by a leadership team consisting of leads or co-leads for each of the major 145 implementation themes (Program Elements), and an overall chair who guided the activity, with 146 logistical support provided by the NACP Coordinator located in the Carbon Cycle & Ecosystems 147 Office at NASA Goddard Space Flight Center. Together, this team led the plan’s development to 148 design a balanced science program that considers advances in research and technology, program 149 gaps, and emerging issues while highlighting new activities of the highest priority. The team 150 engaged in discussions with the NACP Science Leadership Group (SLG), sought input from the 151 broad NACP community, assembled writing teams to draft the plan, facilitated public review by 152 the NACP community, and revised the plan in response to these reviews. As such, the NSIP 153 document has been prepared principally by the diverse community of scientists engaged with the 154 NACP. 155 156 The NSIP has been developed to guide the research science community of the NACP. It is also 157 available to provide information for interested government agencies including those participating 158 in the Carbon Cycle Interagency Working Group (CCIWG), the US Global Change Research 159 Program (USGCRP) science community and associated executive branch entities. and other 160 institutions in the private sector, NGOs, and science organizations.
Recommended publications
  • NASA's Carbon Monitoring System
    PAPER • OPEN ACCESS NASA’s carbon monitoring system (CMS) and arctic-boreal vulnerability experiment (ABoVE) social network and community of practice To cite this article: Molly E Brown et al 2020 Environ. Res. Lett. 15 115014 View the article online for updates and enhancements. This content was downloaded from IP address 185.169.255.37 on 03/12/2020 at 10:13 Environ. Res. Lett. 15 (2020) 115014 https://doi.org/10.1088/1748-9326/aba300 Environmental Research Letters PAPER NASA’s carbon monitoring system (CMS) and arctic-boreal OPEN ACCESS vulnerability experiment (ABoVE) social network and community RECEIVED 17 April 2020 of practice REVISED 23 June 2020 Molly E Brown1,∗, Matthew W Cooper1 and Peter C Griffith2 ACCEPTED FOR PUBLICATION 1 6 July 2020 Department of Geographical Sciences, University of Maryland College Park, Maryland, United States of America 2 Science Systems and Applications, Inc. and NASA Goddard Space Flight Center, Greenbelt, Maryland, United States of America ∗ PUBLISHED Author to whom any correspondence should be addressed 19 November 2020 E-mail: [email protected] Original content from this work may be used Keywords: social network, carbon monitoring, Arctic environment, carbon cycle and ecosystems under the terms of the Supplementary material for this article is available online Creative Commons Attribution 4.0 licence. Any further distribution of this work must Abstract maintain attribution to the author(s) and the title The NASA Carbon Monitoring System (CMS) and Arctic-Boreal Vulnerability Experiment of the work, journal citation and DOI. (ABoVE) have been planned and funded by the NASA Earth Science Division. Both programs have a focus on engaging stakeholders and developing science useful for decision making.
    [Show full text]
  • Estimating CO2 Emissions from Large Scale Coal-Fired Power Plants Using OCO-2 Observations and Emission Inventories
    atmosphere Article Estimating CO2 Emissions from Large Scale Coal-Fired Power Plants Using OCO-2 Observations and Emission Inventories Yaqin Hu 1,2 and Yusheng Shi 1,* 1 Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100101, China; [email protected] 2 University of Chinese Academy of Sciences, Beijing 101408, China * Correspondence: [email protected]; Tel.: +86-138-1042-0401 Abstract: The concentration of atmospheric carbon dioxide (CO2) has increased rapidly world- wide, aggravating the global greenhouse effect, and coal-fired power plants are one of the biggest contributors of greenhouse gas emissions in China. However, efficient methods that can quantify CO2 emissions from individual coal-fired power plants with high accuracy are needed. In this study, we estimated the CO2 emissions of large-scale coal-fired power plants using Orbiting Carbon Observatory-2 (OCO-2) satellite data based on remote sensing inversions and bottom-up methods. First, we mapped the distribution of coal-fired power plants, displaying the total installed capac- ity, and identified two appropriate targets, the Waigaoqiao and Qinbei power plants in Shanghai and Henan, respectively. Then, an improved Gaussian plume model method was applied for CO2 emission estimations, with input parameters including the geographic coordinates of point sources, wind vectors from the atmospheric reanalysis of the global climate, and OCO-2 observations. The application of the Gaussian model was improved by using wind data with higher temporal and spatial resolutions, employing the physically based unit conversion method, and interpolating OCO-2 observations into different resolutions. Consequently, CO2 emissions were estimated to be Citation: Hu, Y.; Shi, Y.
    [Show full text]
  • The Hestia Fossil Fuel CO2 Emissions Data Product for the Los Angeles Megacity
    Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2018-162 Manuscript under review for journal Earth Syst. Sci. Data Discussion started: 25 February 2019 c Author(s) 2019. CC BY 4.0 License. 1 The Hestia Fossil Fuel CO2 Emissions Data Product for the Los 2 Angeles Megacity (Hestia-LA) 3 Kevin R. Gurney1, Risa Patarasuk4, Jianming Liang2,3, Yang Song2, Darragh O’Keeffe5, Preeti 4 Rao6, James R. Whetstone7, Riley M. Duren8, Annmarie Eldering8, Charles Miller8 5 1School of Informatics, Computing, and Cyber Systems, Northern Arizona University, Flagstaff, AZ, USA 6 2School of Life Sciences, Arizona State University, Tempe AZ USA 7 3Now at ESRI, Redlands, CA USA 8 4Citrus County, DePt. of Systems Management, Lecanto, FL, USA 9 5Contra Costa County, DePartment of Information Technology, Martinez, CA, USA 10 6School for Environment and Sustainability, University of Michigan, Ann Arbor, MI, USA 11 7National Institute for Standards and Technology, Gaithersburg, MD, USA 12 8NASA Jet ProPulsion Laboratory, California Institute of Technology, Pasadena, CA, USA 13 Correspondence to: Kevin R. Gurney ([email protected]) 14 Abstract. As a critical constraint to atmosPheric CO2 inversion studies, bottom-up spatiotemporally-explicit 15 emissions data products are necessary to construct comprehensive CO2 emission information systems useful for 16 trend detection and emissions verification. High-resolution bottom-up estimation is also useful as a guide to 17 mitigation oPtions, offering details that can increase mitigation efficiency and synergize with other Policy goals at 18 the national to sub-urban spatial scale. The ‘Hestia Project’ is an effort to provide bottom-up fossil fuel (FFCO2) 19 emissions at the urban scale with building/street and hourly space-time resolution.
    [Show full text]
  • 4. Markets for Carbon Offsets
    4. Markets for carbon offsets Widely dismissed as far-fetched only a few years ago, today there is a strengthening scientific consensus that global warming is a real and dangerous phenomenon. Global warming results from what scientists refer to as the Greenhouse Effect, which is caused by the build up of greenhouse gases (GHGs) including carbon dioxide, methane, nitrous oxides, chlorofluorocarbons, hydrofluorocarbons, perfluorocarbons and sulphur hexafluoride, in the atmosphere. GHGs absorb heat radiated from the Earth’s surface and, in the past, have been responsible for maintaining the Earth’s temperature at an average 15 degrees Celsius. Over the twentieth century the Inter-governmental Panel on Climate Change, an international group of leading climate scientists set up to advise the United Nations’ Framework Convention on Climate Change (UNFCCC), estimates that a 30% increase in atmospheric GHG levels has caused world temperatures to rise 0.6 degrees Celsius. By far the largest contributor has been fossil fuel burning, which accounts for about 75% of the increase in GHG, followed by forest degradation and deforestation, accounting for an estimated 20%. The Inter-governmental Panel on Climate Change has predicted that at present rates, temperatures will increase by a further 1.4 – 5.8 degrees Celsius over the next 100 years (IPCC, 2001). The increase in global temperatures will have uncertain implications for humans, but the Inter-governmental Panel on Climate Change posits several potential impacts including rising sea levels, more severe climatic events, coastal erosion, increased salinisation, loss of protective coral reefs, increased desertification, damaged forest ecosystems and increased disease. Poor people are particularly vulnerable to global warming.
    [Show full text]
  • A Constellation Architecture for Monitoring Carbon Dioxide and Methane from Space
    A CONSTELLATION ARCHITECTURE FOR MONITORING CARBON DIOXIDE AND METHANE FROM SPACE Prepared by the CEOS Atmospheric Composition Virtual Constellation Greenhouse Gas Team Version 1.0 – 8 October 2018 © 2018. All rights reserved Contributors: David Crisp1, Yasjka Meijer2, Rosemary Munro3, Kevin Bowman1, Abhishek Chatterjee4,5, David Baker6, Frederic Chevallier7, Ray Nassar8, Paul I. Palmer9, Anna Agusti-Panareda10, Jay Al-Saadi11, Yotam Ariel12. Sourish Basu13,14, Peter Bergamaschi15, Hartmut Boesch16, Philippe Bousquet7, Heinrich Bovensmann17, François-Marie Bréon7, Dominik Brunner18, Michael Buchwitz17, Francois Buisson19, John P. Burrows17, Andre Butz20, Philippe Ciais7, Cathy Clerbaux21, Paul Counet3, Cyril Crevoisier22, Sean Crowell23, Philip L. DeCola24, Carol Deniel25, Mark Dowell26, Richard Eckman11, David Edwards13, Gerhard Ehret27, Annmarie Eldering1, Richard Engelen10, Brendan Fisher1, Stephane Germain28, Janne Hakkarainen29, Ernest Hilsenrath30, Kenneth Holmlund3, Sander Houweling31,32, Haili Hu31, Daniel Jacob33, Greet Janssens-Maenhout15, Dylan Jones34, Denis Jouglet19, Fumie Kataoka35, Matthäus Kiel36, Susan S. Kulawik37, Akihiko Kuze38, Richard L. Lachance12, Ruediger Lang3, Jochen Landgraf 31, Junjie Liu1, Yi Liu39,40, Shamil Maksyutov41, Tsuneo Matsunaga41, Jason McKeever28, Berrien Moore23, Masakatsu Nakajima38, Vijay Natraj1, Robert R. Nelson42, Yosuke Niwa41, Tomohiro Oda4,5, Christopher W. O’Dell6, Leslie Ott5, Prabir Patra43, Steven Pawson5, Vivienne Payne1, Bernard Pinty26, Saroja M. Polavarapu8, Christian Retscher44,
    [Show full text]
  • NASA Carbon Monitoring System Phase 1 Report Prepared By: NASA Carbon Monitoring
    NASA Carbon Monitoring System Phase 1 Report Prepared by: NASA Carbon Monitoring System Science Team George Hurtt, Science Team Leader Christine Kang, Research Assistant May 16, 2014 1 TABLE OF CONTENTS INTRODUCTION ........................................................................................................................ 4 PROJECT TEAM MEMBERS .................................................................................................... 6 Science Definition Team .................................................................................................................. 6 Pilot Project Team .............................................................................................................................. 6 Scoping Studies Team ....................................................................................................................... 7 SCIENCE DEFINITION TEAM (SDT) ASSESSMENT & RECOMMENDATIONS ........... 8 2.1 Assessment of Phase 1 Activities ........................................................................................... 8 2.2 Recommendations for Phase 2: .............................................................................................. 9 PILOT PROJECTS ................................................................................................................... 11 3.1 Biomass- local (R. Dubayah et al.) ...................................................................................... 11 3.2 Biomass national (S. Saatchi et al) .....................................................................................
    [Show full text]
  • Evaluation of EU ETS Monitoring, Reporting and Verification Administration Costs
    Evaluation of EU ETS Monitoring, Reporting and Verification Administration Costs Final report June 2016 Europe Direct is a service to help you find answers to your questions about the European Union. Freephone number (*): 00 800 6 7 8 9 10 11 (*) The information given is free, as are most calls (though some operators, phone boxes or hotels may charge you). LEGAL NOTICE This document has been prepared for the European Commission however it reflects the views only of the authors, and the Commission cannot be held responsible for any use which may be made of the information contained therein. More information on the European Union is available on the Internet (http://www.europa.eu). Luxembourg: Publications Office of the European Union, 2016 ISBN 978-92-79-64425-2 doi:10.2834/640029 © European Union, 2016 Reproduction is authorised provided the source is acknowledged. European Commission, DG CLIMA Evaluation of EU ETS Monitoring, Reporting and Verification Administration Costs Final Report June 2016 Amec Foster Wheeler Environment & Infrastructure UK Limited 2 © Amec Foster Wheeler Environment & Infrastructure UK Limited Report for Copyright and non-disclosure notice Robert Gemmill The contents and layout of this report are subject to copyright João Serrano Gomes owned by Amec Foster Wheeler (© Amec Foster Wheeler European Commission DG CLIMA Environment & Infrastructure UK Limited 2016) save to the Avenue de Beaulieu 24 extent that copyright has been legally assigned by us to B-1160 Auderghem another party or is used by Amec Foster Wheeler under Brussels licence. To the extent that we own the copyright in this report, Belgium it may not be copied or used without our prior written agreement for any purpose other than the purpose indicated in this report.
    [Show full text]
  • A Remote Sensing Technique for Global Monitoring of Power Plant CO2 Emissions from Space and Related Applications
    Atmos. Meas. Tech., 3, 781–811, 2010 www.atmos-meas-tech.net/3/781/2010/ Atmospheric doi:10.5194/amt-3-781-2010 Measurement © Author(s) 2010. CC Attribution 3.0 License. Techniques A remote sensing technique for global monitoring of power plant CO2 emissions from space and related applications H. Bovensmann1, M. Buchwitz1, J. P. Burrows1, M. Reuter1, T. Krings1, K. Gerilowski1, O. Schneising1, J. Heymann1, A. Tretner2, and J. Erzinger2 1Institute of Environmental Physics (IUP), University of Bremen FB1, Otto Hahn Allee 1, 28334 Bremen, Germany 2Helmholtz Centre Potsdam – GFZ German Research Centre for Geosciences, Telegrafenberg, 14473 Potsdam, Germany Received: 6 November 2009 – Published in Atmos. Meas. Tech. Discuss.: 7 January 2010 Revised: 14 June 2010 – Accepted: 15 June 2010 – Published: 1 July 2010 Abstract. Carbon dioxide (CO2) is the most important an- PP CO2 emission due to instrument noise is in the range thropogenic greenhouse gas (GHG) causing global warming. 1.6–4.8 MtCO2/yr for single overpasses. This corresponds The atmospheric CO2 concentration increased by more than to 12–36% of the emission of a mid-size PP (13 MtCO2/yr). 30% since pre-industrial times – primarily due to burning of We have also determined the sensitivity to parameters which fossil fuels – and still continues to increase. Reporting of may result in systematic errors such as atmospheric transport CO2 emissions is required by the Kyoto protocol. Indepen- and aerosol related parameters. We found that the emission dent verification of reported emissions, which are typially not error depends linearly on wind speed, i.e., a 10% wind speed directly measured, by methods such as inverse modeling of error results in a 10% emission error, and that neglecting en- measured atmospheric CO2 concentrations is currently not hanced aerosol concentrations in the PP plume may result possible globally due to lack of appropriate observations.
    [Show full text]
  • NASA Carbon Monitoring System Prototype Monitoring, Reporting
    NASA CARBON MONITORING SYSTEM: Prototype Monitoring, Reporting, and Verification PROGRESS REPORT AND FUTURE PLANS George Hurtt, Diane Wickland, Kenneth Jucks, Kevin Bowman, Molly Brown, Riley Duren, Stephen Hagen, and Ariane Verdy October 2014 NASA Carbon Monitoring System Executive Summary This report summarizes progress to date within the Carbon Monitoring System (CMS) project and describes NASA’s longer-term strategy for CMS worK and its vision regarding the NASA’s role in Monitoring, Reporting, and Verification (MRV). The NASA CMS project is forward-looKing and designed to maKe significant contributions in characterizing, quantifying, understanding, and predicting the evolution of global carbon sources and sinKs through improved monitoring of carbon stocks and fluxes. The approaches developed have emphasized the exploitation of NASA satellite remote sensing resources, computational capabilities, airborne science capabilities, scientific Knowledge, and end-to-end system expertise in combination with effective use of commercial off-the-shelf (COTS) measurement capabilities in order to prototype Key data products for MRV. Significant effort is being devoted to rigorous evaluation of the carbon monitoring products being produced, as well as to the characterization and quantification of errors and uncertainties in those products. Accomplishments to date include the development of a continental U.S. biomass data product and a global carbon flux product; demonstrations of MRV in support of local- and regional-scale carbon management projects; scoping of potential new ocean carbon monitoring products; and engagement of carbon monitoring staKeholders to better understand their needs for carbon data and information products. The CMS project has developed one of the most advanced carbon data assimilation systems in the world that integrates satellite and surface observations related to anthropogenic, oceanic, terrestrial and atmospheric carbon.
    [Show full text]
  • Methane Mapping with Future Satellite Imaging Spectrometers
    remote sensing Article Methane Mapping with Future Satellite Imaging Spectrometers Alana K. Ayasse 1,*, Philip E. Dennison 2 , Markus Foote 4 , Andrew K. Thorpe 3, Sarang Joshi 4, Robert O. Green 3, Riley M. Duren 3,5, David R. Thompson 3 and Dar A. Roberts 1 1 Department of Geography, University of California Santa Barbara, Santa Barbara, CA 93106, USA; [email protected] 2 Department of Geography, University of Utah, Salt Lake City, UT 84112, USA; [email protected] 3 Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA; [email protected] (A.K.T.); [email protected] (R.O.G.); [email protected] (R.M.D.); [email protected] (D.R.T.) 4 Scientific Computing and Imaging Institute, University of Utah, Salt Lake City, UT 84112, USA; [email protected] (M.F.); [email protected] (S.J.) 5 Office for Research, Innovation and Impact, University of Arizona, Tucson, AZ 85721, USA * Correspondence: [email protected] Received: 14 November 2019; Accepted: 13 December 2019; Published: 17 December 2019 Abstract: This study evaluates a new generation of satellite imaging spectrometers to measure point source methane emissions from anthropogenic sources. We used the Airborne Visible and Infrared Imaging Spectrometer Next Generation(AVIRIS-NG) images with known methane plumes to create two simulated satellite products. One simulation had a 30 m spatial resolution with ~200 Signal-to-Noise Ratio (SNR) in the Shortwave Infrared (SWIR) and the other had a 60 m spatial resolution with ~400 SNR in the SWIR; both products had a 7.5 nm spectral spacing.
    [Show full text]
  • Carbon Monitoring System Flux Net Biosphere Exchange 2020 (CMS-Flux NBE 2020)
    Earth Syst. Sci. Data, 13, 299–330, 2021 https://doi.org/10.5194/essd-13-299-2021 © Author(s) 2021. This work is distributed under the Creative Commons Attribution 4.0 License. Carbon Monitoring System Flux Net Biosphere Exchange 2020 (CMS-Flux NBE 2020) Junjie Liu1,2, Latha Baskaran1, Kevin Bowman1, David Schimel1, A. Anthony Bloom1, Nicholas C. Parazoo1, Tomohiro Oda3,4, Dustin Carroll5, Dimitris Menemenlis1, Joanna Joiner6, Roisin Commane7, Bruce Daube8, Lucianna V. Gatti9, Kathryn McKain10,11, John Miller10, Britton B. Stephens12, Colm Sweeney10, and Steven Wofsy8 1Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA 2California Institute of Technology, Pasadena, CA, USA 3Global Modeling and Assimilation Office, NASA Goddard Space Flight Center, Greenbelt, USA 4Goddard Earth Sciences Technology and Research, Universities Space Research Association, Columbia, MD, USA 5Moss Landing Marine Laboratories, San José State University, Moss Landing, CA, USA 6Laboratory for Atmospheric Chemistry and Dynamics, NASA Goddard Space Flight Center, Greenbelt, USA 7Lamont-Doherty Earth Observatory of Columbia University, Palisades, NY, USA 8Department of Earth and Planetary Sciences, Harvard University, Cambridge, MA, USA 9LaGEE, CCST, INPE – National Institute for Space Research, São José dos Campos, SP, Brazil 10NOAA, Global Monitoring Laboratory, Boulder, CO 80305, USA 11Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, CO, USA 12National Center for Atmospheric Research, Boulder, CO 80301, USA Correspondence: Junjie Liu ([email protected]) Received: 20 May 2020 – Discussion started: 7 July 2020 Revised: 21 December 2020 – Accepted: 23 December 2020 – Published: 10 February 2021 Abstract. Here we present a global and regionally resolved terrestrial net biosphere exchange (NBE) dataset with corresponding uncertainties between 2010–2018: Carbon Monitoring System Flux Net Biosphere Exchange 2020 (CMS-Flux NBE 2020).
    [Show full text]
  • The Potential of CO2 Capture and Storage Technology in South Africa’S Coal-Fired Thermal Power Plants
    environments Review The Potential of CO2 Capture and Storage Technology in South Africa’s Coal-Fired Thermal Power Plants Kelvin O. Yoro * and Patrick T. Sekoai Sustainable Energy & Environment Research Unit, Faculty of Engineering and the Built Environment, School of Chemical and Metallurgical Engineering, University of the Witwatersrand, Johannesburg 2050, South Arica; [email protected] * Correspondence: [email protected]; Tel.: +27-74-299-5917 Academic Editors: Jason K. Levy and Peiyong Yu Received: 10 July 2016; Accepted: 6 September 2016; Published: 15 September 2016 Abstract: The global atmospheric concentration of anthropogenic gases, such as carbon dioxide, has increased substantially over the past few decades due to the high level of industrialization and urbanization that is occurring in developing countries, like South Africa. This has escalated the challenges of global warming. In South Africa, carbon capture and storage (CCS) from coal-fired power plants is attracting increasing attention as an alternative approach towards the mitigation of carbon dioxide emission. Therefore, innovative strategies and process optimization of CCS systems is essential in order to improve the process efficiency of this technology in South Africa. This review assesses the potential of CCS as an alternative approach to reducing the amount CO2 emitted from the South African coal-fired power plants. It examines the various CCS processes that could be used for capturing the emitted CO2. Finally, it proposes the use of new adsorbents that could be incorporated towards the improvement of CCS technology. Keywords: CO2 capture and storage; climate change; coal-fired power plants; South Africa 1.
    [Show full text]