US Carbon Emissions Trading Some Options That Include Downstream

Total Page:16

File Type:pdf, Size:1020Kb

US Carbon Emissions Trading Some Options That Include Downstream US CARBON EMISSIONS TRADING: SOME OPTIONS THAT INCLUDE DOWNSTREAM SOURCES Center for Clean Air Policy April 1998 Acknowledgments The primary author of this paper was David H. Festa, the Center’s Deputy Director. This paper was prepared under the direction of Ned Helme, Executive Director of the Center. This paper would not have been possible without the input of a number of people. In particular the author would like to thank the members of the Greenhouse Gas Emissions Trading Braintrust; Tim Hargrave of the Center for Clean Air Policy; and Jay Hakes and staff of the US Department of Energy’s Energy Information Administration, who provided their ideas and made themselves available for consultation. Alice LeBlanc was a driving force behind the transportation chapter. She contributed significantly to the formulation of the trading approach and the drafting of the transportation chapter. In addition, she improved the overall paper with her thoughtful commentary. Finally, the Center wishes to acknowledge the research and editing support provided by Jeff Fiedler. The Center for Clean Air Policy thanks the US Environmental Protection Agency’s Office of Policy, Planning and Evaluation for its support of the Greenhouse Gas Emissions Trading Braintrust project. The Center also extends it thanks to its Board of Directors whose dues provide some general support to the project. Cover photo: The main house at Airlie Center, the location of the Greenhouse Gas Emissions Trading Braintrust meetings. Photograph reproduced with the permission of Airlie Foundation. Additional papers in the Airlie series are available at the Center’s website, http://www.ccap.org. Printed copies can be ordered by contacting the Center for Clean Air Policy. phone: 202-408-9260, e-mail: [email protected] The Airlie Carbon Trading Papers The Airlie Carbon Trading Papers are intended to help lay the intellectual foundation for a US greenhouse gas emissions trading system, which is a leading policy option for realizing cost- effective reductions of greenhouse gas emissions. The papers are the product of a unique research, analysis and dialogue process directed by the Center for Clean Air Policy. Since November 1996, the Center has convened regular meetings of its “Greenhouse Gas Emissions Trading Braintrust”, a group of high-level representatives of industry, environmental organizations, state and federal government agencies and academe. The opinions expressed in these papers are those of the Center, though our views are informed by the extensive dialogue with Braintrust participants. Braintrust members and Center staff conduct research and analysis of key design and implementation questions, then bring their findings and proposals to the group for discussion. The purpose of this process is to investigate alternative design options in detail rather than to arrive at consensus on a preferred option. At the outset, the Braintrust identified a number of priority issues, including: definition of the instrument that would be traded, determination of who would be required to hold allowances, methods for allocating allowances, and the elements of the trading system compliance infrastructure. Braintrust members agreed to start with a focus on energy-related carbon dioxide emissions. Secondary issues identified by the Braintrust include the integration of additional greenhouse gases into the system, the incorporation of emissions reductions from forestry and land use activities and foreign countries, and the mitigation of any adverse impacts of carbon regulation on US industry. Why the “Airlie” Carbon Trading Papers? The Airlie Center serves as the backdrop for the Braintrust’s meetings. Situated outside the Washington, DC beltway in Warrenton, Virginia, Airlie provides an informal, congenial atmosphere that allows participants to leave their affiliations “at the door” and to build strong working relationships. These factors have been critical to the success of the Braintrust process. About the Center for Clean Air Policy Since its inception in 1985, the Center for Clean Air Policy has developed a strong record of designing and promoting market-based solutions to environmental problems. The Center’s dialogue on acid rain in the 1980s identified many of the elements of the SO2 control program that were adopted by the Bush Administration and eventually codified in the Clean Air Act Amendments of 1990. Since 1990, the Center has been active on the issue of global climate change. Center staff have participated in the Framework Convention on Climate Change negotiations and in domestic efforts to address greenhouse gases, analyzing and advocating market- based climate policies such as emissions trading and joint implementation. The Center brokered the world’s first energy sector joint implementation project. The Center is also active in the areas of air quality regulation, electricity industry restructuring, and transportation and land use. Table of Contents Executive Summary.....................................................................................................................1 1. Introduction .............................................................................................................................5 1.1.1 Familiar System..........................................................................................................6 1.1.2 Stimulus for Innovation...............................................................................................6 1.1.3 Non-Fossil Fuel Options .............................................................................................7 1.2 Challenges of a Downstream Approach ..............................................................................8 2. Electricity Generators ............................................................................................................12 2.1 Point of Regulation ..........................................................................................................12 2.2 Administrative Feasibility and Measurement Accuracy .....................................................13 2.3 Leakage...........................................................................................................................14 3. Industrial Sources ..................................................................................................................16 3.1 Point of Regulation ..........................................................................................................18 3.2 Measurement ...................................................................................................................21 3.3 Administrative Feasibility ................................................................................................23 3.3.1 Presence of Small Establishments..............................................................................23 3.3.2 Using the MECS for Regulatory and Enforcement Purposes ......................................24 3.3.3 Managing Changes over Time...................................................................................25 3.3.4 Coverage for the Non-Trading Establishments...........................................................25 3.3.5 Mechanism for Feedstocks and Offsets......................................................................27 3.4 Leakage...........................................................................................................................27 4. Commercial and Residential Sources ......................................................................................29 5. The Transportation Sector......................................................................................................30 5.1 Transportation Approaches ..............................................................................................32 5.1.1 Market Mechanisms in the Transportation Sector ......................................................32 5.1.2 Upstream Regulation ................................................................................................33 5.1.3 Downstream Regulation............................................................................................34 5.1.4 Integrating Upstream and Downstream Approaches..................................................36 5.2 Summary.........................................................................................................................37 6. Building a Downstream Program .........................................................................................37 Appendix 1: Research on the Impact of Changes in Gasoline Price and Increased Fuel Efficiency on Gasoline Consumption ...................................................................40 Appendix 2: Data Sources for Calculating Vehicle Manufacturer Greenhouse Gas Emissions ........................................................................................................43 Executive Summary A US greenhouse gas (GHG) emissions cap-and-trade system could be implemented either “upstream,” at the level of primary fuel producers, or “downstream,” at or near the point of emissions. While experiences with cap-and-trade programs have been good, a GHG program would be larger than existing programs. For that reason, design questions need careful evaluation. This paper accomplishes this for a downstream trading program that covers US carbon dioxide emissions. There are several reasons why a downstream system may be preferred over an upstream approach.
Recommended publications
  • The Potential for Biofuels Alongside the EU-ETS
    The potential for biofuels alongside the EU-ETS Stefan Boeters, Paul Veenendaal, Nico van Leeuwen and Hugo Rojas-Romagoza CPB Netherlands Bureau for Economic Policy Analysis Paper for presentation at the Eleventh Annual GTAP Conference ‘Future of Global Economy’, Helsinki, June 12-14, 2008 1 Table of contents Summary 3 1 The potential for biofuels alongside the EU-ETS 6 1.1 Introduction 6 1.2 Climate policy baseline 7 1.3 Promoting the use of biofuels 10 1.4 Increasing transport fuel excises as a policy alternative from the CO 2-emission reduction point of view 22 1.5 Conclusions 23 Appendix A: Characteristics of the WorldScan model and of the baseline scenario 25 A.1 WorldScan 25 A.2 Background scenario 27 A.3 Details of biofuel modelling 28 A.4 Sensitivity analysis with respect to land allocation 35 References 38 2 Summary The potential for biofuels alongside the EU-ETS On its March 2007 summit the European Council agreed to embark on an ambitious policy for energy and climate change that establishes several targets for the year 2020. Amongst others this policy aims to reduce greenhouse gas emissions by at least 20% compared to 1990 and to ensure that 20% of total energy use comes from renewable sources, partly by increasing the share of biofuels up to at least 10% of total fuel use in transportation. In meeting the 20% reduction ceiling for greenhouse gas emissions the EU Emissions Trading Scheme (EU-ETS) will play a central role as the ‘pricing engine’ for CO 2-emissions. The higher the emissions price will be, the sooner technological emission reduction options will tend to be commercially adopted.
    [Show full text]
  • NASA's Carbon Monitoring System
    PAPER • OPEN ACCESS NASA’s carbon monitoring system (CMS) and arctic-boreal vulnerability experiment (ABoVE) social network and community of practice To cite this article: Molly E Brown et al 2020 Environ. Res. Lett. 15 115014 View the article online for updates and enhancements. This content was downloaded from IP address 185.169.255.37 on 03/12/2020 at 10:13 Environ. Res. Lett. 15 (2020) 115014 https://doi.org/10.1088/1748-9326/aba300 Environmental Research Letters PAPER NASA’s carbon monitoring system (CMS) and arctic-boreal OPEN ACCESS vulnerability experiment (ABoVE) social network and community RECEIVED 17 April 2020 of practice REVISED 23 June 2020 Molly E Brown1,∗, Matthew W Cooper1 and Peter C Griffith2 ACCEPTED FOR PUBLICATION 1 6 July 2020 Department of Geographical Sciences, University of Maryland College Park, Maryland, United States of America 2 Science Systems and Applications, Inc. and NASA Goddard Space Flight Center, Greenbelt, Maryland, United States of America ∗ PUBLISHED Author to whom any correspondence should be addressed 19 November 2020 E-mail: [email protected] Original content from this work may be used Keywords: social network, carbon monitoring, Arctic environment, carbon cycle and ecosystems under the terms of the Supplementary material for this article is available online Creative Commons Attribution 4.0 licence. Any further distribution of this work must Abstract maintain attribution to the author(s) and the title The NASA Carbon Monitoring System (CMS) and Arctic-Boreal Vulnerability Experiment of the work, journal citation and DOI. (ABoVE) have been planned and funded by the NASA Earth Science Division. Both programs have a focus on engaging stakeholders and developing science useful for decision making.
    [Show full text]
  • Phase-Out 2020: Monitoring Europe's Fossil Fuel Subsidies
    Phase-out 2020 Monitoring Europe’s fossil fuel subsidies Ipek Gençsü, Maeve McLynn, Matthias Runkel, Markus Trilling, Laurie van der Burg, Leah Worrall, Shelagh Whitley, and Florian Zerzawy September 2017 Report partners ODI is the UK’s leading independent think tank on international development and humanitarian issues. Climate Action Network (CAN) Europe is Europe’s largest coalition working on climate and energy issues. Readers are encouraged to reproduce material for their own publications, as long as they are not being sold commercially. As copyright holders, ODI and Overseas Development Institute CAN Europe request due acknowledgement and a copy of the publication. For 203 Blackfriars Road CAN Europe online use, we ask readers to link to the original resource on the ODI website. London SE1 8NJ Rue d’Edimbourg 26 The views presented in this paper are those of the author(s) and do not Tel +44 (0)20 7922 0300 1050 Brussels, Belgium necessarily represent the views of ODI or our partners. Fax +44 (0)20 7922 0399 Tel: +32 (0) 28944670 www.odi.org www.caneurope.org © Overseas Development Institute and CAN Europe 2017. This work is licensed [email protected] [email protected] under a Creative Commons Attribution-NonCommercial Licence (CC BY-NC 4.0). Cover photo: Oil refinery in Nordrhein-Westfalen, Germany – Ralf Vetterle (CC0 creative commons license). 2 Report Acknowledgements The authors are grateful for support and advice on the report from: Dave Jones of Sandbag UK, Colin Roche of Friends of the Earth Europe, Andrew Scott and Sejal Patel of the Overseas Development Institute, Helena Wright of E3G, and Andrew Murphy of Transport & Environment, and Alex Doukas of Oil Change International.
    [Show full text]
  • Paving the Way to Carbon-Neutral Transport: 10-Point Plan To
    Paving the way to carbon-neutral transport 10-point plan to help implement the European Green Deal January 2020 CONTEXT The transport sector is responsible for 22.3% of total EU greenhouse gas (GHG) emissions, with road transport representing 21.1% of total emissions. Breaking this down further, passenger cars account for 12.8% of Europe’s emissions, vans for 2.5%, while heavy-duty trucks and buses are responsible for 5.6%. Transport is therefore a key focus and driver for climate protection measures. The European Automobile Manufacturers’ Association (ACEA) strongly believes that carbon-neutral road transport is possible by 2050. This however will represent a seismic shift, requiring a holistic approach with increasing efforts from all stakeholders. * All CO2 equivalent ** Industry = ‘Manufacturing industries and construction’ + ‘Industrial processes and product use’ Source: European Environment Agency (EEA) AUTO INDUSTRY CONTRIBUTION Investing €57.4 billion in R&D annually, the automotive sector is Europe's largest private contributor to innovation, accounting for 28% of total EU spending. Much of this investment is dedicated to clean mobility solutions. The automobile industry embraces the Paris Agreement and its goals. Manufacturers also support the climate protection initiatives of the European Commission, such as the ‘Clean Planet for All’ strategy, provided all stakeholders contribute their share and the achievements to date are taken into account. ACEA’s 10-point plan to help implement the European Green Deal – January 2020 1 ACEA members are fully committed to deliver the ambitious 025 and 030 C2 reduction targets. In order to provide legal certainty for the industry as it moves towards carbon neutrality in 050, the 2022/2023 timeline for the revies of the regulations should be adhered to (as as endorsed by the European Council in December 201).
    [Show full text]
  • A New Era for Wind Power in the United States
    Chapter 3 Wind Vision: A New Era for Wind Power in the United States 1 Photo from iStock 7943575 1 This page is intentionally left blank 3 Impacts of the Wind Vision Summary Chapter 3 of the Wind Vision identifies and quantifies an array of impacts associated with continued deployment of wind energy. This 3 | Summary Chapter chapter provides a detailed accounting of the methods applied and results from this work. Costs, benefits, and other impacts are assessed for a future scenario that is consistent with economic modeling outcomes detailed in Chapter 1 of the Wind Vision, as well as exist- ing industry construction and manufacturing capacity, and past research. Impacts reported here are intended to facilitate informed discus- sions of the broad-based value of wind energy as part of the nation’s electricity future. The primary tool used to evaluate impacts is the National Renewable Energy Laboratory’s (NREL’s) Regional Energy Deployment System (ReEDS) model. ReEDS is a capacity expan- sion model that simulates the construction and operation of generation and transmission capacity to meet electricity demand. In addition to the ReEDS model, other methods are applied to analyze and quantify additional impacts. Modeling analysis is focused on the Wind Vision Study Scenario (referred to as the Study Scenario) and the Baseline Scenario. The Study Scenario is defined as wind penetration, as a share of annual end-use electricity demand, of 10% by 2020, 20% by 2030, and 35% by 2050. In contrast, the Baseline Scenario holds the installed capacity of wind constant at levels observed through year-end 2013.
    [Show full text]
  • Estimating CO2 Emissions from Large Scale Coal-Fired Power Plants Using OCO-2 Observations and Emission Inventories
    atmosphere Article Estimating CO2 Emissions from Large Scale Coal-Fired Power Plants Using OCO-2 Observations and Emission Inventories Yaqin Hu 1,2 and Yusheng Shi 1,* 1 Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100101, China; [email protected] 2 University of Chinese Academy of Sciences, Beijing 101408, China * Correspondence: [email protected]; Tel.: +86-138-1042-0401 Abstract: The concentration of atmospheric carbon dioxide (CO2) has increased rapidly world- wide, aggravating the global greenhouse effect, and coal-fired power plants are one of the biggest contributors of greenhouse gas emissions in China. However, efficient methods that can quantify CO2 emissions from individual coal-fired power plants with high accuracy are needed. In this study, we estimated the CO2 emissions of large-scale coal-fired power plants using Orbiting Carbon Observatory-2 (OCO-2) satellite data based on remote sensing inversions and bottom-up methods. First, we mapped the distribution of coal-fired power plants, displaying the total installed capac- ity, and identified two appropriate targets, the Waigaoqiao and Qinbei power plants in Shanghai and Henan, respectively. Then, an improved Gaussian plume model method was applied for CO2 emission estimations, with input parameters including the geographic coordinates of point sources, wind vectors from the atmospheric reanalysis of the global climate, and OCO-2 observations. The application of the Gaussian model was improved by using wind data with higher temporal and spatial resolutions, employing the physically based unit conversion method, and interpolating OCO-2 observations into different resolutions. Consequently, CO2 emissions were estimated to be Citation: Hu, Y.; Shi, Y.
    [Show full text]
  • Benefits of Emissions Trading
    BENEFITS OF EMISSIONS TRADING E M I S S I O N S T R A D I N G A C H I E V E S T H E E N V I R O N M E N T A L O B J E C T I V E – R E D U C E D E M I S S I O N S – A T T H E L O W E S T C O S T Cap and trade is designed to deliver an environmental outcome; the cap must be met, or there are sanctions such as fines. Allowing trading within that cap is the most effective way of minimising the cost – which is good for business and good for households. Determining physical actions that companies must take, with no flexibility, is not guaranteed to achieve the necessary reductions. Nor is establishing a regulated price, since the price required to drive reductions may take policy-makers several years to determine. Cap and trade also provides a way of establishing rigour around emissions monitoring, reporting and verification – essential for any climate policy to preserve integrity. E M I S S I O N S T R A D I N G I S B E T T E R A B L E T O R E S P O N D T O E C O N O M I C F L U C T U A T I O N S T H A N O T H E R P O L I C Y T O O L S Allowing the open market to set the price of carbon translates to better flexibility and avoids price shocks or undue burdens.
    [Show full text]
  • Hydroelectric Power -- What Is It? It=S a Form of Energy … a Renewable Resource
    INTRODUCTION Hydroelectric Power -- what is it? It=s a form of energy … a renewable resource. Hydropower provides about 96 percent of the renewable energy in the United States. Other renewable resources include geothermal, wave power, tidal power, wind power, and solar power. Hydroelectric powerplants do not use up resources to create electricity nor do they pollute the air, land, or water, as other powerplants may. Hydroelectric power has played an important part in the development of this Nation's electric power industry. Both small and large hydroelectric power developments were instrumental in the early expansion of the electric power industry. Hydroelectric power comes from flowing water … winter and spring runoff from mountain streams and clear lakes. Water, when it is falling by the force of gravity, can be used to turn turbines and generators that produce electricity. Hydroelectric power is important to our Nation. Growing populations and modern technologies require vast amounts of electricity for creating, building, and expanding. In the 1920's, hydroelectric plants supplied as much as 40 percent of the electric energy produced. Although the amount of energy produced by this means has steadily increased, the amount produced by other types of powerplants has increased at a faster rate and hydroelectric power presently supplies about 10 percent of the electrical generating capacity of the United States. Hydropower is an essential contributor in the national power grid because of its ability to respond quickly to rapidly varying loads or system disturbances, which base load plants with steam systems powered by combustion or nuclear processes cannot accommodate. Reclamation=s 58 powerplants throughout the Western United States produce an average of 42 billion kWh (kilowatt-hours) per year, enough to meet the residential needs of more than 14 million people.
    [Show full text]
  • Are Biofuels an Effective and Viable Energy Strategy for Industrialized Societies? a Reasoned Overview of Potentials and Limits
    Sustainability 2015, 7, 8491-8521; doi:10.3390/su7078491 OPEN ACCESS sustainability ISSN 2071-1050 www.mdpi.com/journal/sustainability Article Are Biofuels an Effective and Viable Energy Strategy for Industrialized Societies? A Reasoned Overview of Potentials and Limits Tiziano Gomiero Independent Consultant and Researcher on Multi-Criteria Farming and Food System Analysis, Agro-Energies, Environmental Issues, Treviso 30121, Italy; E-Mail: [email protected]; Tel.: +39-32-0464-3496 Academic Editor: Andrew Kusiak Received: 7 April 2015 / Accepted: 26 June 2015 / Published: 30 June 2015 Abstract: In this paper, I analyze the constraints that limit biomass from becoming an alternative, sustainable and efficient energy source, at least in relation to the current metabolism of developed countries. In order to be termed sustainable, the use of an energy source should be technically feasible, economically affordable and environmentally and socially viable, considering society as a whole. Above all, it should meet society’s “metabolic needs,” a fundamental issue that is overlooked in the mainstream biofuels narrative. The EROI (Energy Return on Investment) of biofuels reaches a few units, while the EROI of fossil fuels is 20–30 or higher and has a power density (W/m2) thousands of times higher than the best biofuels, such as sugarcane in Brazil. When metabolic approaches are used it becomes clear that biomass cannot represent an energy carrier able to meet the metabolism of industrialized societies. For our industrial society to rely on “sustainable biofuels” for an important fraction of its energy, most of the agricultural and non-agricultural land would need to be used for crops, and at the same time a radical cut to our pattern of energy consumption would need to be implemented, whilst also achieving a significant population reduction.
    [Show full text]
  • Analytical Environmental Agency 2 21St Century Frontiers 3 22 Four 4
    # Official Name of Organization Name of Organization in English 1 "Greenwomen" Analytical Environmental Agency 2 21st Century Frontiers 3 22 Four 4 350 Vermont 5 350.org 6 A Seed Japan Acao Voluntaria de Atitude dos Movimentos por Voluntary Action O Attitude of Social 7 Transparencia Social Movements for Transparency Acción para la Promoción de Ambientes Libres Promoting Action for Smokefree 8 de Tabaco Environments Ações para Preservação dos Recursos Naturais e 9 Desenvolvimento Economico Racional - APRENDER 10 ACT Alliance - Action by Churches Together 11 Action on Armed Violence Action on Disability and Development, 12 Bangladesh Actions communautaires pour le développement COMMUNITY ACTIONS FOR 13 integral INTEGRAL DEVELOPMENT 14 Actions Vitales pour le Développement durable Vital Actions for Sustainable Development Advocates coalition for Development and 15 Environment 16 Africa Youth for Peace and Development 17 African Development and Advocacy Centre African Network for Policy Research and 18 Advocacy for Sustainability 19 African Women's Alliance, Inc. Afrique Internationale pour le Developpement et 20 l'Environnement au 21è Siècle 21 Agência Brasileira de Gerenciamento Costeiro Brazilian Coastal Management Agency 22 Agrisud International 23 Ainu association of Hokkaido 24 Air Transport Action Group 25 Aldeota Global Aldeota Global - (Global "small village") 26 Aleanca Ekologjike Europiane Rinore Ecological European Youth Alliance Alianza de Mujeres Indigenas de Centroamerica y 27 Mexico 28 Alianza ONG NGO Alliance ALL INDIA HUMAN
    [Show full text]
  • Update on Recent Progress in Reform of Inefficient Fossil-Fuel Subsidies That Encourage Wasteful Consumption
    UPDATE ON RECENT PROGRESS IN REFORM OF INEFFICIENT FOSSIL-FUEL SUBSIDIES THAT ENCOURAGE WASTEFUL CONSUMPTION Contribution by the International Energy Agency (IEA) and the Organisation for Economic Co-operation and Development (OECD) to the G20 Energy Transitions Working Group in consultation with: International Energy Forum (IEF), Organization of Petroleum Exporting Countries (OPEC) and the World Bank 2nd Energy Transitions Working Group Meeting Toyama, 18-19 April 2019 Update on Recent Progress in Reform of Inefficient Fossil-Fuel Subsidies that Encourage Wasteful Consumption This document, as well as any data and any map included herein, are without prejudice to the status of or sovereignty over any territory, to the delimitation of international frontiers and boundaries and to the name of any territory, city or area. This update does not necessarily express the views of the G20 countries or of the IEA, IEF, OECD, OPEC and the World Bank or their member countries. The G20 countries, IEA, IEF, OECD, OPEC and the World Bank assume no liability or responsibility whatsoever for the use of data or analyses contained in this document, and nothing herein shall be construed as interpreting or modifying any legal obligations under any intergovernmental agreement, treaty, law or other text, or as expressing any legal opinion or as having probative legal value in any proceeding. Please cite this publication as: OECD/IEA (2019), "Update on recent progress in reform of inefficient fossil-fuel subsidies that encourage wasteful consumption", https://oecd.org/fossil-fuels/publication/OECD-IEA-G20-Fossil-Fuel-Subsidies-Reform-Update-2019.pdf │ 3 Summary This report discusses recent trends and developments in the reform of inefficient fossil- fuel subsidies that encourage wasteful consumption, within the G20 and beyond.
    [Show full text]
  • IFC Carbon Neutrality Committment Factsheet
    Carbon Neutral Commitment for IFC’s Own Operations IFC, along with the World Bank, are committed to making our internal business operations carbon neutral by: IFC’s Carbon Neutrality 1. Calculating greenhouse gas (GHG) emissions from our operations Commitment is an integral 2. Reducing carbon emissions through both familiar and innovative conservation measures part of IFC's corporate 3. Purchasing carbon offsets to balance our remaining internal carbon footprint after our reduction efforts response to climate change. IFC’s carbon neutrality commitment encourages continual improvement towards more efficient business operations that help mitigate climate change. It is also consistent with IFC’s strategy of guiding our investment work to address climate change and ensure environmental and social sustainability of projects that IFC finances. This factsheet focuses on the carbon footprint of our internal operations rather than the footprint of IFC’s portfolio. IFC uses the ‘operational control approach’ for setting its CALCULATING OUR GHG EMISSIONS organizational boundaries for its GHG inventory. Emissions are included from all locations for which IFC has direct control over IFC has calculated the annual GHG emissions for its internal business operations, and where it can influence decisions that impact GHG operations for headquarters in Washington, D.C. since 2006, and for emissions. IFC’s global operations since 2008 including global business travel. IFC’s annual GHG inventory includes the following sources of The methodology IFC formally used is based on the Greenhouse Gas GHG emissions from IFC’s leased and owned facilities and air Protocol Initiative (GHG Protocol), an internationally recognized GHG travel: accounting and reporting standard.
    [Show full text]