atmosphere Article Estimating CO2 Emissions from Large Scale Coal-Fired Power Plants Using OCO-2 Observations and Emission Inventories Yaqin Hu 1,2 and Yusheng Shi 1,* 1 Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100101, China;
[email protected] 2 University of Chinese Academy of Sciences, Beijing 101408, China * Correspondence:
[email protected]; Tel.: +86-138-1042-0401 Abstract: The concentration of atmospheric carbon dioxide (CO2) has increased rapidly world- wide, aggravating the global greenhouse effect, and coal-fired power plants are one of the biggest contributors of greenhouse gas emissions in China. However, efficient methods that can quantify CO2 emissions from individual coal-fired power plants with high accuracy are needed. In this study, we estimated the CO2 emissions of large-scale coal-fired power plants using Orbiting Carbon Observatory-2 (OCO-2) satellite data based on remote sensing inversions and bottom-up methods. First, we mapped the distribution of coal-fired power plants, displaying the total installed capac- ity, and identified two appropriate targets, the Waigaoqiao and Qinbei power plants in Shanghai and Henan, respectively. Then, an improved Gaussian plume model method was applied for CO2 emission estimations, with input parameters including the geographic coordinates of point sources, wind vectors from the atmospheric reanalysis of the global climate, and OCO-2 observations. The application of the Gaussian model was improved by using wind data with higher temporal and spatial resolutions, employing the physically based unit conversion method, and interpolating OCO-2 observations into different resolutions. Consequently, CO2 emissions were estimated to be Citation: Hu, Y.; Shi, Y.