Trinity-River-RC-2012-2013.Pdf
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Chapter 307: Texas Surface Water Quality Standards (4/9/2008)
Revisions to §307 - Texas Surface Water Quality Standards (updated November 12, 2009) EPA has not approved the revised definition of “surface water in the state” in the TX WQS, which includes an area out 10.36 miles into the Gulf of Mexico. Under the CWA, Texas does not have jurisdiction to regulate water standards more than three miles from the coast. Therefore, EPA’s approval of the items in the enclosure recognizes the state’s authority under the CWA out to three miles in the Gulf of Mexico, but does not extend past that point. Beyond three miles, EPA retains authority for CWA purposes EPA’s approval also does not include the application the TX WQS for the portions of the Red River and Lake Texoma that are located within the state of Oklahoma. Finally, EPA is not approving the TX WQS for those waters or portions of waters located in Indian Country, as defined in 18 U.S.C. 1151. The following sections have been approved by EPA and are therefore effective for CWA purposes: • §307.1. General Policy Statement • §307.2. Description of Standards • §307.3. Definitions and Abbreviations (see item under “no action” section below) • §307.4. General Criteria • §307.5. Antidegradation • §307.6. Toxic Materials. (see item under “no action” section below) • §307.7. Site-specific Uses and Criteria (see item under “no action” section below) • §307.8. Application of Standards • §307.9. Determination of Standards Attainment • Appendix C - Segment Descriptions • Appendix D - Site-specific Receiving Water Assessments The following sections have been partially approved by EPA: • Appendix A. -
The Proposed Fastrill Reservoir in East Texas: a Study Using
THE PROPOSED FASTRILL RESERVOIR IN EAST TEXAS: A STUDY USING GEOGRAPHIC INFORMATION SYSTEMS Michael Ray Wilson, B.S. Thesis Prepared for the Degree of MASTER OF SCIENCE UNIVERSITY OF NORTH TEXAS December 2009 APPROVED: Paul Hudak, Major Professor and Chair of the Department of Geography Samuel F. Atkinson, Minor Professor Pinliang Dong, Committee Member Michael Monticino, Dean of the Robert B. Toulouse School of Graduate Studies Wilson, Michael Ray. The Proposed Fastrill Reservoir in East Texas: A Study Using Geographic Information Systems. Master of Science (Applied Geography), December 2009, 116 pp., 26 tables, 14 illustrations, references, 34 titles. Geographic information systems and remote sensing software were used to analyze data to determine the area and volume of the proposed Fastrill Reservoir, and to examine seven alternatives. The controversial reservoir site is in the same location as a nascent wildlife refuge. Six general land cover types impacted by the reservoir were also quantified using Landsat imagery. The study found that water consumption in Dallas is high, but if consumption rates are reduced to that of similar Texas cities, the reservoir is likely unnecessary. The reservoir and its alternatives were modeled in a GIS by selecting sites and intersecting horizontal water surfaces with terrain data to create a series of reservoir footprints and volumetric measurements. These were then compared with a classified satellite imagery to quantify land cover types. The reservoir impacted the most ecologically sensitive land cover type the most. Only one alternative site appeared slightly less environmentally damaging. Copyright 2009 by Michael Ray Wilson ii ACKNOWLEDGMENTS I would like to acknowledge my thesis committee members, Dr. -
Stormwater Management Program 2013-2018 Appendix A
Appendix A 2012 Texas Integrated Report - Texas 303(d) List (Category 5) 2012 Texas Integrated Report - Texas 303(d) List (Category 5) As required under Sections 303(d) and 304(a) of the federal Clean Water Act, this list identifies the water bodies in or bordering Texas for which effluent limitations are not stringent enough to implement water quality standards, and for which the associated pollutants are suitable for measurement by maximum daily load. In addition, the TCEQ also develops a schedule identifying Total Maximum Daily Loads (TMDLs) that will be initiated in the next two years for priority impaired waters. Issuance of permits to discharge into 303(d)-listed water bodies is described in the TCEQ regulatory guidance document Procedures to Implement the Texas Surface Water Quality Standards (January 2003, RG-194). Impairments are limited to the geographic area described by the Assessment Unit and identified with a six or seven-digit AU_ID. A TMDL for each impaired parameter will be developed to allocate pollutant loads from contributing sources that affect the parameter of concern in each Assessment Unit. The TMDL will be identified and counted using a six or seven-digit AU_ID. Water Quality permits that are issued before a TMDL is approved will not increase pollutant loading that would contribute to the impairment identified for the Assessment Unit. Explanation of Column Headings SegID and Name: The unique identifier (SegID), segment name, and location of the water body. The SegID may be one of two types of numbers. The first type is a classified segment number (4 digits, e.g., 0218), as defined in Appendix A of the Texas Surface Water Quality Standards (TSWQS). -
Houston-Galveston, Texas Managing Coastal Subsidence
HOUSTON-GALVESTON, TEXAS Managing coastal subsidence TEXAS he greater Houston area, possibly more than any other Lake Livingston A N D S metropolitan area in the United States, has been adversely U P L L affected by land subsidence. Extensive subsidence, caused T A S T A mainly by ground-water pumping but also by oil and gas extraction, O C T r has increased the frequency of flooding, caused extensive damage to Subsidence study area i n i t y industrial and transportation infrastructure, motivated major in- R i v vestments in levees, reservoirs, and surface-water distribution facili- e S r D N ties, and caused substantial loss of wetland habitat. Lake Houston A L W O Although regional land subsidence is often subtle and difficult to L detect, there are localities in and near Houston where the effects are Houston quite evident. In this low-lying coastal environment, as much as 10 L Galveston feet of subsidence has shifted the position of the coastline and A Bay T changed the distribution of wetlands and aquatic vegetation. In fact, S A Texas City the San Jacinto Battleground State Historical Park, site of the battle O Galveston that won Texas independence, is now partly submerged. This park, C Gulf of Mexico about 20 miles east of downtown Houston on the shores of Galveston Bay, commemorates the April 21, 1836, victory of Texans 0 20 Miles led by Sam Houston over Mexican forces led by Santa Ana. About 0 20 Kilometers 100 acres of the park are now under water due to subsidence, and A road (below right) that provided access to the San Jacinto Monument was closed due to flood- ing caused by subsidence. -
Habitat Restoration in the Middle Trinity River Basin When It Comes to Water, the Trinity River Is the Life Blood of People in Dallas/Fort Worth (DFW) and Houston
APRIL 2011 Habitat Restoration in the Middle Trinity River Basin When it comes to water, the Trinity River is the life blood of people in Dallas/Fort Worth (DFW) and Houston. Compromised flow, water quality impairments, and increasing water demands have forced municipalities within the Trinity River Basin to consider long-term solutions for clean water supply often from outside entities (e.g., purchase and transfer of water from other regions of the state). 1 Trinity River—Perspective of History When it comes to water, the Trinity River is the It must have been something to see the Trinity River life blood of people in Dallas/Fort Worth (DFW) prior to European settlement, when Native Americans and Houston. Compromised flow, water quality traveled its bends. One’s imagination can transport impairments, and increasing water demands have you to another time to see the river through the eyes forced municipalities within the Trinity River Basin of French explorer, René Robert La Salle, who stood on to consider long-term solutions for clean water supply its banks in 1687 and was inspired to call it the River often from outside entities (e.g., purchase and transfer of Canoes. of water from other regions of the state). There Rivers were once the highways of frontiersmen, are likely multiple strategies for water supply, but as these waterways afforded the easiest travel, linking maintaining a healthy Trinity River ecosystem is one land with sea and therefore becoming avenues of that is often overlooked. commerce. Over the years as commerce increased, the modest cow town of Fort Worth on the river’s Population Trends and Importance of the northern end combined with neighboring Dallas to Trinity River become one of the top 10 fastest growing metropolitan The population in Texas will expand significantly in areas in the nation. -
Texas Water Resources Institute
Texas Water Resources Institute Summer 1989 Volume 15 No. 2 Optimizing Reservoir Management New Strategies Including Systems Operation and Reallocation May Boost Reservoir Yields By Ric Jensen Information Specialist, TWRI Many experts believe Texas can increase its surface water supplies without building new dams and reservoirs. The answer isn't magic. The solution is better management and coordination of existing reservoirs. New strategies/hat make every drop of water count include operating a group of reservoirs as a coordinated system; converting some reservoir storage space from hydropower production, flood control, and navigation to water supplies; and timing water levels in reservoirs to correspond to seasonal differences in streamflows and water demands. Scientists are learning more about the quality of water in lakes and how man's activities affect the chemical makeup of reservoirs. A number of important developments are already taking place. Both the City of Dallas and the Brazos River Authority manage their reservoir systems so that releases of water are tied to climate conditions water demands. The Lower Colorado River Authority (LCRA) has recently submitted a management plan to the Texas Water Commission (TWC) that could allow LCRA to sell "interruptible water supplies" during wet years. Opportunities to reallocate storage space in Texas reservoirs have been summarized in recent report by the U.S. Army Corps of Engineers (COE). Otherstudies have described how systems operation could increase water supplies in reservoirs in the Sabine, Trinity, and Trinity-San Jacinto River basins. 1 Optimizing reservoir management has been the focus of many university research projects. Scientists at Texas A&M University have been studying the Brazos River basin. -
Figure 12. Map Location of Elm Fork of the Trinity River (Denton County)
Adapted from TxDOT County Maps of Texas, Denton, Texas. 1998. Figure 12. Map Location of Elm Fork of the Trinity River (Denton County) Figure 13. Elm Fork of the Trinity River north of FM 428 20 Elm Fork of the Trinity River (Denton County) The Elm Fork of the Trinity River begins one mile northwest of Saint Jo in eastern Montague County and flows southeasterly about 85 miles to its junction with the West Fork of the Trinity River, where it forms the Trinity River about five miles northwest of Dallas (TPWD, 1998). This section of the Elm Fork meanders through heavily wooded areas of the Eastern Cross Timbers region of Texas from Lake Ray Roberts to Lake Lewisville. Along the banks of the Elm Fork of the Trinity River between the two reservoirs is a unique 10-mile multi-use trail system called the Greenbelt Corridor. The Greenbelt Corridor provides access to the Elm Fork at three trailheads for equestrians, hikers, bikers, canoeists, anglers, and other outdoor enthusiasts (TPWD, 2000). A partial plant list from Lake Ray Roberts State Park includes sumac holly, prickly pear, rough leaf dogwood, eastern red cedar, persimmon, black hickory, black walnut, red bud, honey mesquite, eastern cottonwood, black willow, and numerous oak and elm species. Mammals found in the area include opossum, cave bat, nutria, plains pocket gopher, eastern flying squirrel, California jackrabbit, eastern cottontail, white-tail deer, mink, spotted skunk, red fox, coyote, and bobcat. Numerous reptiles and amphibians have also been found in the area, including various snakes, such as copperhead, cottonmouth, bullsnake, and diamondback rattlesnake (TPWD, 2000). -
Chapter 1 Description of the Region
Chapter 1 Description of the Region The East Texas Regional Water Planning Area (ETRWPA) is one of sixteen areas established by the 1997 Texas legislature Senate Bill 1 for the purpose of State water resource planning at a regional level on five- year planning cycles. The first regional water plan was adopted in 2001. Since that time, it was updated in 2006, 2011, and 2016. This plan, the 2021 Regional Water Plan (2021 Plan), is the result of the 5th cycle of regional water planning. Pursuant to the formation of the ETRWPA, the East Texas Regional Water Planning Group (ETRWPG or RWPG), was formed and charged with the responsibility to evaluate the region’s population projections, water demand projections, and existing water supplies for a 50-year planning horizon. The RWPG then identifies water shortages under drought of record conditions and recommends water management strategies. This planning is performed in accordance with regional and state water planning requirements of the Texas Water Development Board (TWDB). This chapter provides details for the ETRWPA that are relevant to water resource planning, including: a physical description of the region, climatological details, population projections, economic activities, sources of water and water demand, and regional resources. A discussion of threats to the region’s resources and water supply, a general discussion of water conservation and drought preparation in the region, and a listing of ongoing state and federal programs in the ETRWPA that impact water planning efforts in the region are also provided. 1.1 General Introduction The ETRWPA consists of all or portions of 20 counties located in the Neches, Sabine, and Trinity River Basins, and the Neches- Trinity Coastal Basin. -
Lower Galveston Bay Watershed Legend
Lower Galveston Bay Watershed Dallas Lower Galveston Bay Watershed Austin <RX¶UHPRUHFRQQHFWHGWR*DOYHVWRQ%D\WKDQ\RXWKLQN Houston 287 $ZDWHUVKHGLVDQDUHDRIODQGWKDWGUDLQVWRDSDUWLFXODUZDWHUERG\²DGLWFKED\RXFUHHNULYHUODNHRUED\:DWHUUXQQLQJRIIWKHODQGHQGVXSLQWKDWZDWHUERG\ DORQJZLWKDQ\SROOXWDQWVWKHZDWHUSLFNHGXSDVLWGUDLQHGVXFKDVIHUWLOL]HUVSHVWLFLGHVRLODQLPDOZDVWHDQGOLWWHU7KLVW\SHRISROOXWLRQLVFDOOHG³QRQSRLQWVRXUFH SROOXWLRQ´:KDW\RXGRDW\RXUKRPHRUEXVLQHVVFDQGLUHFWO\LPSDFWDZDWHUERG\ 1745 62 k 350 e e 59 $ZDWHUVKHGLVXVXDOO\QDPHGIRUWKHZDWHUERG\LQWRZKLFKLWGUDLQV7KHHQWLUH*DOYHVWRQ%D\ZDWHUVKHG²VKRZQRQWKHLQVHWPDS²FRYHUVDSSUR[LPDWHO\ r C VTXDUHPLOHV VTXDUHNLORPHWHUV ,WH[WHQGVRQHLWKHUVLGHRIWKH7ULQLW\5LYHUSDVW'DOODV)RUW:RUWK$OORIWKLVODQGGUDLQVLQWR*DOYHVWRQ%D\ 7KH *DOYHVWRQ %D\ ZDWHUVKHG LV GLYLGHG LQWR WZR SRUWLRQV 7KH XSSHU *DOYHVWRQ %D\ ZDWHUVKHG FRYHUV DERXW VTXDUH PLOHV VTXDUH NLORPHWHUV 6HYHQ 2DNV XSVWUHDPRIWKH/DNH/LYLQJVWRQ'DPRQWKH7ULQLW\5LYHUDQGWKH/DNH+RXVWRQ'DPRQWKH6DQ-DFLQWR5LYHU7KHXSSHUZDWHUVKHGLVFULWLFDOEHFDXVHRILWV 3152 FRQWULEXWLRQRIIUHVKZDWHUWR*DOYHVWRQ%D\7KLVLVEHFDXVH*DOYHVWRQ%D\LVDQHVWXDU\DSODFHZKHUHIUHVKZDWHUDQGVDOWZDWHUPL[:LWKRXWWKHVHLQIORZVRI 135 356 3459 g IUHVKZDWHUWKHHVWXDU\ZRXOGFHDVHWRH[LVW n i K 7KHORZHU*DOYHVWRQ%D\ZDWHUVKHG²WKHSRUWLRQRIWKHZDWHUVKHGGRZQVWUHDPRI/DNH/LYLQJVWRQDQG/DNH+RXVWRQ²FRYHUVDSSUR[LPDWHO\VTXDUHPLOHV 2QDODVND 942 3186 3RON VTXDUHNLORPHWHUV LQWKHKLJKOLJKWHGDUHDVRI%UD]RULD&KDPEHUV)RUW%HQG*DOYHVWRQ+DUGLQ+DUULV-HIIHUVRQ/LEHUW\3RON6DQ-DFLQWRDQG:DOOHU 980 FRXQWLHV7KHORZHUZDWHUVKHGPRUHGLUHFWO\FRQWULEXWHVUXQRIISROOXWLRQWRWKHED\DQGLVWKHIRFXVRIWKH*DOYHVWRQ%D\(VWXDU\3URJUDP -
TPWD Strategic Planning Regions
River Basins TPWD Brazos River Basin Brazos-Colorado Coastal Basin W o lf Cr eek Canadian River Basin R ita B l anca C r e e k e e ancar Cl ita B R Strategic Planning Colorado River Basin Colorado-Lavaca Coastal Basin Canadian River Cypress Creek Basin Regions Guadalupe River Basin Nor t h F o r k of the R e d R i ver XAmarillo Lavaca River Basin 10 Salt Fork of the Red River Lavaca-Guadalupe Coastal Basin Neches River Basin P r air i e Dog To w n F o r k of the R e d R i ver Neches-Trinity Coastal Basin ® Nueces River Basin Nor t h P e as e R i ve r Nueces-Rio Grande Coastal Basin Pease River Red River Basin White River Tongue River 6a Wi chita R iver W i chita R i ver Rio Grande River Basin Nor t h Wi chita R iver Little Wichita River South Wichita Ri ver Lubbock Trinity River Sabine River Basin X Nor t h Sulphur R i v e r Brazos River West Fork of the Trinity River San Antonio River Basin Brazos River Sulphur R i v e r South Sulphur River San Antonio-Nueces Coastal Basin 9 Clear Fork Tr Plano San Jacinto River Basin X Cypre ss Creek Garland FortWorth Irving X Sabine River in San Jacinto-Brazos Coastal Basin ity Rive X Clea r F o r k of the B r az os R i v e r XTr n X iityX RiverMesqu ite Sulphur River Basin r XX Dallas Arlington Grand Prai rie Sabine River Trinity River Basin XAbilene Paluxy River Leon River Trinity-San Jacinto Coastal Basin Chambers Creek Brazos River Attoyac Bayou XEl Paso R i c h land Cr ee k Colorado River 8 Pecan Bayou 5a Navasota River Neches River Waco Angelina River Concho River X Colorado River 7 Lampasas -
Texas-Oklahoma Passenger Rail Study Service-Level Draft
Appendix K Archaeological Sites Technical Study In coordination with Oklahoma DOT Archaeological Sites Technical Study Prepared by July 2016 Contents Abbreviations and Acronyms ................................................................................................................... v 1.0 Introduction .............................................................................................................................. 1-1 1.1 Service Type Descriptions .............................................................................................. 1-4 1.1.1 Conventional Rail .......................................................................................................... 1-4 1.1.2 Higher-Speed Rail ......................................................................................................... 1-4 1.1.3 High-Speed Rail ............................................................................................................. 1-4 1.2 Alternative Descriptions ................................................................................................. 1-5 1.2.1 No Build Alternative ...................................................................................................... 1-5 1.2.2 Northern Section: Oklahoma City to Dallas and Fort Worth ....................................... 1-6 1.2.3 Central Section: Dallas and Fort Worth to San Antonio ............................................. 1-7 1.2.4 Southern Section: San Antonio to South Texas ......................................................... -
A Preliminary Evaluation of Trinity River Sediment and Nutrient Loads Into Galveston Bay, Texas, During Two Periods of High Flow
A PRELIMINARY EVALUATION OF TRINITY RIVER SEDIMENT AND NUTRIENT LOADS INTO GALVESTON BAY, TEXAS, DURING TWO PERIODS OF HIGH FLOW Michael T. Lee, Hydrologist - U.S. Geological Survey, Texas Water Science Center, 19241 David Memorial Drive, Suite 180, Conroe, TX 77385, ph. 936-271-5313, fax 936-271-5399, [email protected] INTRODUCTION Background: The amount of nutrients and sediment delivered to an estuary affects water- quality and the coastal ecosystem. Excess nutrients and suspended sediment in the environment can be detrimental to aquatic ecosystems and to the health of organisms living in and using the coastal waters. Nutrients are required to sustain life, but excess nutrient loads can upset the nutrient cycle balance resulting in changes in water quality harmful to aquatic organisms (Aldous and others, 2005). Nitrogen and phosphorus compounds occur naturally in coastal streams and rivers but also are commonly applied to land as commercial fertilizers and livestock waste to increase agricultural production (Crain, 2006). Nitrogen is present in water as nitrite and nitrate anions, in cationic form as ammonium (all inorganic nitrogen), and as part of organic solutes (Hem, 1992). Phosphorus is not as abundant in the environment as nitrogen and often is the limiting element for plant growth (East and others, 1998). Usually phosphorus is present as phosphate in natural waters and much of the phosphorus in streams attaches to particulate matter and is unavailable for uptake by plants. Orthophosphate species are the predominant dissolved phosphorus forms in most streams (Terrio, 1995). Nutrients that are not utilized by crops or stored in the soil can runoff to streams in overland flow or infiltrate with groundwater recharge; water quality in estuaries that receive surface-water inflows or groundwater discharge containing excess amounts of nutrients is often degraded.