Further Notes on the Port Kennedy Cave Arvicolid Rodents

Total Page:16

File Type:pdf, Size:1020Kb

Further Notes on the Port Kennedy Cave Arvicolid Rodents Paludicola 9(1):13-20 November 2012 © by the Rochester Institute of Vertebrate Paleontology FURTHER NOTES ON THE PORT KENNEDY CAVE ARVICOLID RODENTS Robert A. Martin Department of Biological Sciences, Murray State University, Murray, KY 42071 ABSTRACT Cope (1871) named five Microtus-like species from the Port Kennedy Cave deposit of Montgomery County, Pennsylvania, all of which he referred to the genus Arvicola. Using Cope’s illustrations and descriptions, a review by C. W. Hibbard and examination of three Port Kennedy specimens, all of Cope’s species (Arvicola speothen, A. tetradelta. A dideltus, A. sigmodus and A. involutus) are deemed nomina dubia. Two available specimens are clearly referable to Pitymys cumberlandensis van der Meulen, and another is referred to cf. Microtus (Pedomys) llanensis Hibbard. On the basis of these specimens and other considerations, Port Kennedy is considered to be younger than the Cumberland Cave local fauna of Maryland and approximately contemporaneous with the Trout Cave 2 local fauna of West Virginia, falling within Great Plains Rodent Zone (RZ) 14, between about 1.3 - 0.64 Ma. The origin of Pitymys is obscure. Absence of a suitable North American ancestor and dental features of P. cumberlandensis suggest we should look for an Old World immigrant ancestor with undifferentiated enamel, a complex m3, and an m1 with five closed triangles and deep, provergent reentrants. Confluent T1-2 on lower molars and T2-3 on M3 in P. cumberlandensis may preclude this species as an ancestor for later North American pine voles. INTRODUCTION Hibbard (1955) valiantly attempted to make sense of the material from Cope’s (1871) descriptions and Six species of arvicolid rodents were described by comparisons made by Gidley and Gazin (1938) when Cope (1871) from the Port Kennedy Cave deposit in they described arvicolid material from the Cumberland Montgomery County, Pennsylvania. All were referred Cave deposit of Maryland. Van der Meulen (1978) to the genus Arvicola. The taxonomic history of these later restudied the arvicolids from the Cumberland species was reviewed by Hibbard (1955), and he Cave deposit of Maryland, referring them to Microtus synonymized five of the Microtus-like species under paroperarius Hibbard (1944) and the new species Microtus speothen, “Pedomys or Pitymys “ dideltus Pedomys guildayi and Pitymys cumberlandensis. In his and “Pedomys or Pitymys” involutus. The sixth paper, van der Meulen (1978) considered “Pitymys” Hibbard identified as an extinct muskrat, Ondatra involutus as a nomen dubium, but did not consider hiatidens, which is probably juvenile O. annectens Cope’s (1871) other species. From Hibbard’s (1955) (Martin et al., 2009). He also added the genus Neofiber descriptions and illustrations of the Port Kennedy to the arvicolid community. Hibbard examined material material, van der Meulen’s (1978) classic work on the in the American Museum of Natural History (AMNH) Cumberland Cave arvicolids and subsequent research and a few specimens from the Academy of Natural on arvicolids from northeastern states (Pfaff, 1990) it Sciences of Philadelphia (ANSP), as the Port Kennedy seems likely that the Port Kennedy Cave arvicolid specimens were split between the two institutions. The cadre includes a species of Microtus near Hibbard’s holotypes were kept at the AMNH and, according to (1944) M. paroperarius and two additional species Hibbard (1955) were in the following condition when near van der Meulen’s (1978) Pitymys cumber- he examined them: 1) Arvicola speothen (AMNH landensis and either van der Meulen’s (1978) Pedomys 8689) – imprint of a left ramus with only m3 guildayi or Hibbard’s (1944) Pedomys llanensis. The preserved; 2) Arvicola tetradelta (AMNH 8692) – first question that arises is: Are any of Cope’s according to Cope (1871) is a maxillary piece with M2- holotypes or topotypes sufficiently preserved to be M3 but Hibbard (1955) identified the molars as m2- diagnostic at the species level, perhaps supplanting one m3; 3) Arvicola involuta (AMNH 8699a) – teeth or more of Hibbard’s and van der Meulen’s later absent, presumably disintegrated. 4) Arvicola sigmodus names? Combining information from Cope’s (1871) (AMNH 8696) – molars missing, only piece of ramus original work, Hibbard’s (1955) review and personal and lower incisor remains; 5) Arvicola didelta (AMNH obervation of three specimens, I review the Port 8694) – all teeth missing, presumably disintregrated. Kennedy Microtus-like voles and tentatively correlate the Port Kennedy Cave assemblage with other early 13 14 MARTIN—PORT KENNEDY ARVICOLID RODENTS Pleistocene assemblages from the eastern and the extinct Allophaiomys, are generally indistin- midwestern states. guishable, and as such it would not be possible (at least currently) to distinguish M. paroperarius from P. METHODS guildayi based on this molar. Relying on Cope’s (1871) description of the m1-m2 of AMNH 8689 before it was Upper molars are abbreviated by upper case lost, Hibbard (1955, p. 90) further referred the letters (e.g., M3), lowers by lower case letters (e.g., ambiguous AMNH 8692, the holotype of Cope’s m3). Three arvicolid specimens from the Port Kennedy Arvicola tetradelta, to M. speothen. However, even if Cave deposit housed at the Philadelphia Academy of the two molars of AMNH 8692 are eventually Natural Sciences (ANSP) were examined and identified correctly, they cannot be used to identify the measured for this study: ANSP 141 (figured by subgenus Microtus, let alone M. speothen or M. Hibbard, 1955; fig. 2D): part right (R) mandible with paroperarius. In the absence of additonal material that incisor and m1-m3; ANSP 142 (figured by Hibbard, could be construed to be part of a “type series,” I 1955; fig. 2B): part left (L) mandible with m1; ANSP recommend we consider Arvicola speothen and A. 18907: part L mandible with m1-m3. tetradelta as nomena dubia. Measurements were made with an AO filar ____________________________________________ micrometer coupled to an AO binocular microscope. The micrometer was calibrated with a 2.0 mm AO slide and measurements were multiplied by the appropriate correction factor (0.615 in this case). Measurements made on m1 are shown in Figure 1. Ratios calculated from the measurements are as follows: A/L = 100a/L, a measure of the relative length of the ACC; W’/W = 100w’/W, a measure of the relative width of the anterior cap; B/W = 100b/W, a measure of the degree of confluency between the anterior cap and the triangles 4 and 5; C/W = 100c/W, a measure of the degree of confluency between triangles 4 and 5 (Martin, 1991). I follow van der Meulen (1978) in assuming that T1 is not expressed on M2-M3; consequently the triangles begin on these teeth after the anterior loop with T2 instead of T1 as illustrated by Pfaff (1990; fig. 3). Dental abbreviations in the text are as follows: BRA = buccal re-entrant angle, LRA = lingual re- entrant angle. Figure 2 was traced from a digital photograph, reduced and darkened. Parts of some of the triangle edges were obscured by thick glue and are therefore best estimates. Nevertheless, most triangles clearly displayed undifferentiated enamel. SYSTEMATIC PALEONTOLOGY FIGURE 1. Topography of a Microtus left m1 (after Pfaff 1990). ac FAMILY ARVICOLIDAE = anterior cap (sometimes also referred to as the acd, or anteroconid); COPE’S SPECIES L = occlusal length; a = length of ACC (anteroconid complex; all structures anterior to T3); W = greatest width ACC; w’= greatest Arvicola speothen Cope, 1871 width of anterior cap; b = width of dentine isthmus connecting T4- Arvicola tetradelta Cope, 1871 T5 and the anterior cap; c = width of dentine isthmus connecting T4 - T5; T1, T2 = triangles 1 and 2 (to identify other triangles, continue Comments—Despite the presence only of m3 counting from T2; buds from the ac are considered “incipient” triangles). (m1 and m2 are missing), Hibbard (1955) retained _______________________________________________________ AMNH 8689 as the holotype of Microtus speothen and, without explanation, suggested that M. speothen and Arvicola involuta Cope, 1871 M. paroperarius from the Cudahy and Subrite local faunas of Kansas (Hibbard, 1944) might be Comments—Molars of the holotype of Arvicola conspecific. However, the m3 of most Microtus, involuta (AMNH 8694) have disintegrated and the including the extant subgenera Microtus, Pedomys and illustration of an m1 provided by Cope (1871, fig. 16) PALUDICOLA, VOL. 9, NO. 1, 2012 15 is not definitive of any Microtus-like subgenus or 15, suggest didelta is a member of the taxon Pedomys species, and it does not resemble the m1 of extant (Martin, 1991; Pfaff, 1990). However, both the series Pitymys pinetorum, despite Cope’s suggestion to the of isolated m1s and the holotype of A. didelta are contrary (Cope, 1871, p. 90). I recommend we consider missing. The topotype m1-m3 illustrated by Hibbard Arvicola involuta as a nomen dubium. (1955) is not advanced enough in dental anatomy to be ___________________________________________ distinguishable from Great Plains Pleistocene Microtus referred to M. (Allophaiomys) pliocaenicus (Martin, 1989). Although the molars of AMNH 8688 display positive enamel differentiation (unlike Pitymys cumberlandensis, in which the enamel is undifferentiated) both M. pliocaenicus and M. (Pedomys) guildayi from Cumberland Cave display positive enamel differentiation (van der Meulen, 1978; Martin, 1989, 1995). Because the remaining material of Arvicola didelta is not sufficient to define a distinct Microtus species, I recommend that A. didelta be considered a nomen dubium. Arvicola sigmodus Cope, 1871 Comments—The molars from the holotype mandible of A. sigmodus, AMNH 8606, are missing, and none of the uncatalogued individual molars illustrated by Cope (1871, fig. 17) are currently recognized in the AMNH collections (R. Oleary, personal commmunication). Cope’s (1871) diagnosis of A. sigmodus is contradictory, indicating some similarity to species we currently recognize as Microtus (Pedomys) ochrogaster and Pitymys pinetorum, which is not surprising because he illustrated a combination of species under A.
Recommended publications
  • Ecological Niche Evolution and Its Relation To
    514 G. Shenbrot Сборник трудов Зоологического музея МГУ им. М.В. Ломоносова Archives of Zoological Museum of Lomonosov Moscow State University Том / Vol. 54 Cтр. / Pр. 514–540 ECOLOGICAL NICHE EVOLUTION AND ITS RELATION TO PHYLOGENY AND GEOGRAPHY: A CASE STUDY OF ARVICOLINE VOLES (RODENTIA: ARVICOLINI) Georgy Shenbrot Mitrani Department of Desert Ecology, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev; [email protected] Relations between ecological niches, genetic distances and geographic ranges were analyzed by pair-wise comparisons of 43 species and 38 intra- specifi c phylogenetic lineages of arvicoline voles (genera Alexandromys, Chi onomys, Lasiopodomys, Microtus). The level of niche divergence was found to be positively correlated with the level of genetic divergence and negatively correlated with the level of differences in position of geographic ranges of species and intraspecifi c forms. Frequency of different types of niche evolution (divergence, convergence, equivalence) was found to depend on genetic and geographic relations of compared forms. Among the latter with allopatric distribution, divergence was less frequent and convergence more frequent between intra-specifi c genetic lineages than between either clo sely-related or distant species. Among the forms with parapatric dis- tri bution, frequency of divergence gradually increased and frequencies of both convergence and equivalence gradually decreased from intra-specifi c genetic lineages via closely related to distant species. Among species with allopatric distribution, frequencies of niche divergence, con vergence and equivalence in closely related and distant species were si milar. The results obtained allowed suggesting that the main direction of the niche evolution was their divergence that gradually increased with ti me since population split.
    [Show full text]
  • GROWTH and DEVELOPMENT RATES of Microtus Pinetorum UNDER DIFFERENT PHOTOPERIODS
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Wildlife Damage Management, Internet Center Eastern Pine and Meadow Vole Symposia for March 1981 GROWTH AND DEVELOPMENT RATES OF Microtus pinetorum UNDER DIFFERENT PHOTOPERIODS T. L. Derting Virginia Polytechnic Institute and State University, Blacksburg, VA J. A. Cransford Virginia Polytechnic Institute and State University, Blacksburg, VA Follow this and additional works at: https://digitalcommons.unl.edu/voles Part of the Environmental Health and Protection Commons Derting, T. L. and Cransford, J. A., "GROWTH AND DEVELOPMENT RATES OF Microtus pinetorum UNDER DIFFERENT PHOTOPERIODS" (1981). Eastern Pine and Meadow Vole Symposia. 77. https://digitalcommons.unl.edu/voles/77 This Article is brought to you for free and open access by the Wildlife Damage Management, Internet Center for at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Eastern Pine and Meadow Vole Symposia by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. GROWTH AND DEVELOPMENT RATES OF MICROTUS PINETOELM UNDER DIFFERENT PHOTOPERIODS T. L. Derting and J. A. Cranford Biology Department Virginia Polytechnic Institute & State University Blacksburg, VA 24061 Photoperiod and nutrition are important variables affecting reproductive activity and growth in many rodents. Field and laboratory studies indicate that long photoperiod (spring-summer) cause increased growth while short photoperiods (fall-winter) inhibit these processes. In the montane vole (Microtus montanus) recently weaned animals gain weight at a much lower rate under short photo- periods or in total darkness than under long photoperiods (Vaughan et al., 1973; Peterborg, 1978). Adult M. montanus had more off- spring and larger mean litter sizes under LD 18:6 than LD 6:18 (Pinter & Negus, 1965).
    [Show full text]
  • Ther5 1 017 024 Golenishchev.Pm6
    Russian J. Theriol. 5 (1): 1724 © RUSSIAN JOURNAL OF THERIOLOGY, 2006 The developmental conduit of the tribe Microtini (Rodentia, Arvicolinae): Systematic and evolutionary aspects Fedor N. Golenishchev & Vladimir G. Malikov ABSTRACT. According to the recent data on molecular genetics and comparative genomics of the grey voles of the tribe Microtini it is supposed, that their Nearctic and Palearctic groups had independently originated from different lineages of the extinct genus Mimomys. Nevertheless, that tribe is considered as a natural taxon. The American narrow-skulled voles are referred to a new taxon, Vocalomys subgen. nov. KEY WORDS: homology, homoplasy, phylogeny, vole, Microtini, evolution, taxonomy. Fedor N. Golenishchev [[email protected]] and Vladimir G. Malikov [[email protected]], Zoological Institute, Russian Academy of Sciences, Universitetskaya nab. 1, Saint-Petersburg 199034, Russia. «Êàíàë ðàçâèòèÿ» ïîëåâîê òðèáû Microtini (Rodentia, Arvicolinae): ñèñòåìàòèêî-ýâîëþöèîííûé àñïåêò. Ô.Í. Ãîëåíèùåâ, Â.Ã. Ìàëèêîâ ÐÅÇÞÌÅ.  ñîîòâåòñòâèè ñ ïîñëåäíèìè äàííûìè ìîëåêóëÿðíîé ãåíåòèêè è ñðàâíèòåëüíîé ãåíîìè- êè ñåðûõ ïîëåâîê òðèáû Microtini äåëàåòñÿ âûâîä î íåçàâèñèìîì ïðîèñõîæäåíèè íåàðêòè÷åñêèõ è ïàëåàðêòè÷åñêèõ ãðóïï îò ðàçíûõ ïðåäñòàâèòåëåé âûìåðøåãî ðîäà Mimomys. Íåñìîòðÿ íà ýòî, äàííàÿ òðèáà ñ÷èòàåòñÿ åñòåñòâåííûì òàêñîíîì. Àìåðèêàíñêèå óçêî÷åðåïíûå ïîëåâêè âûäåëÿþòñÿ â ñàìîñòîÿòåëüíûé ïîäðîä Vocalomys subgen. nov. ÊËÞ×ÅÂÛÅ ÑËÎÂÀ: ãîìîëîãèÿ, ãîìîïëàçèÿ, ôèëîãåíèÿ, ïîëåâêè, Microtini, ýâîëþöèÿ, òàêñîíîìèÿ. Introduction The history of the group in the light of The Holarctic subfamily Arvicolinae Gray, 1821 is the molecular data known to comprise a number of transberingian vicari- ants together with a few Holarctic forms. Originally, The grey voles are usually altogether regarded as a the extent of their phylogenetic relationships was judged first-hand descendant of the Early Pleistocene genus on their morphological similarity.
    [Show full text]
  • Karyotypic Relationships of the Tatra Vole (Microtus Tatricus)
    Folia Zool. – 53(3): 279–284 (2004) Karyotypic relationships of the Tatra vole (Microtus tatricus) Natália MARTÍNKOVÁ1, Petra NOVÁ2, Olga V. SABLINA3, Alexander S. GRAPHODATSKY3 and Jan ZIMA1* 1 Institute of Vertebrate Biology, Academy of Sciences of the Czech Republic, Květná 8, CZ-603 65 Brno, Czech Republic; e-mail: [email protected]; [email protected] 2 Department of Zoology, Faculty of Science, Charles University, Viničná 7, CZ-128 44 Praha, Czech Republic; e-mail: [email protected] 3 Institute of Cytology and Genetics, Russian Academy of Sciences, Siberian Branch, Novosibirsk 6030090, Russia; e-mail: [email protected] Received 22 December 2003; Accepted 25 August 2004 A b s t r a c t . This study reports for the first time the banding pattern on chromosomes of the Tatra vole, Microtus tatricus, as revealed by G-, C-, and Ag-NOR staining procedures. The banded karyotype of M. tatricus was compared with Microtus (Terricola) subterraneus, M. (Stenocranius) gregalis, and M. (Blanfordimys) aghanus. The karyotype of M. tatricus possesses highly derived features, e.g., the low diploid number of chromosomes or unique combinations of arms in the biarmed autosomes. It is almost impossible to find clear relationships of M. tatricus with other extant vole species from the point of view of comparative karyology. The karyotypic changes in voles are apparently not accompanied by adequate divergence in morphological and genetic traits. Key words: chromosomes, banding pattern, phylogeny, M. subterraneus, M. gregalis, M. afghanus Introduction The Tatra vole, Microtus tatricus (Kratochvíl, 1952) is the only mammalian species endemic to the Carpathian Mountains.
    [Show full text]
  • A-Nadachowski.Vp:Corelventura
    Acta zoologica cracoviensia, 50A(1-2): 67-72, Kraków, 31 May, 2007 The taxonomic status of Schelkovnikov’s Pine Vole Microtus schelkovnikovi (Rodentia, Mammalia) Adam NADACHOWSKI Received: 11 March, 2007 Accepted: 20 April, 2007 NADACHOWSKI A. 2007. The taxonomic status of Schelkovnikov’s Pine Vole Microtus schelkovnikovi (Rodentia, Mammalia). Acta zoologica cracoviensia, 50A(1-2): 67-72. Abstract. A comparison of morphological and karyological traits as well as an analysis of ecological preferences and the distribution pattern support the opinion that Microtus schelkovnikovi does not belong to subgenus Terricola and is the sole member of its own taxonomic species group. Hyrcanicola subgen. nov. comprises a single species Microtus (Hyrcanicola) schelkovnikovi, an endemic and relict form, inhabiting the Hyrcanian broad-leaved forest zone of Azerbaijan and Iran. Key-words: Systematics, new taxon, voles, Hyrcanian forests. Adam NADACHOWSKI, Institute of Systematics and Evolution of Animals, Polish Acad- emy of Sciences, S³awkowska 17, 31-016 Kraków, Poland. E-mail: [email protected] I. INTRODUCTION Schelkovnikov’s Pine Vole (Microtus schelkovnikovi SATUNIN, 1907) is one of the most enig- matic voles represented in natural history collections by only 45-50 specimens globally. This spe- cies was described by K. A. SATUNIN, on the basis of a single male specimen collected by A. B. SHELKOVNIKOV, July 6, 1906 near the village of Dzhi, in Azerbaijan (SATUNIN 1907). Next, 14 specimens from Azerbaijan, were found by KH.M.ALEKPEROV 50 years later in 1956 and 1957 (ALEKPEROV 1959). ELLERMAN (1948) described a new subspecies of Pine Vole Pitymys subterra- neus dorothea, on the basis of 3 females, collected by G.
    [Show full text]
  • MAMMALS Black Rat (Rattus Rattus)
    Nutria (Myocaster coypus). Not as abundant as the Sika Deer (Cervus nippon). Uncommon but in­ muskrat; found throughout the marsh. Larger than a creasing. Found in the more secluded areas of the muskrat, it is sometimes mistaken for a beaver. refuge. For further information contact: MAMMALS Black Rat (Rattus rattus). Uncommon. White-tailed Deer (Odocoileus virginianus). Refuge Manager Abundant. May often be seen at dusk in tree- Blackwater National Wildlife Refuge of Norway Rat (Rattus norvegicus). Common. bordered fields. Route 1, Box 121 House Mouse (Mus musculus). Common around Cambridge, Maryland 21613 refuge buildings and in wild. A HYPOTHETICAL LISTING OF Phone: (301) 228-2677 BLACKWATER SPECIES BASED ON REPORTED Red Fox (Vulpesfulva). Common, but seldom seen. RANGE. Inhabits wooded and brushy areas where it feeds on rabbits, rodents and birds. Keen's Bat (Myotis keenii). Gray Fox (Urocyon cinereoargenteus). Uncommon. Silver-haired Bat (Lasionycteris noctivagans). NATIONAL WILDLIFE Prefers the heavily wooded areas. Eastern Pipistrell (Pipistrellus subflavus). REFUGE As the Nation's principal conservation agency, the Big Brown Bat (Eptesicus fuscus). Department of the Interior has responsibility for most of our nationally owned public lands and Hoary Bat (Lasiurus cinereus). natural resources. This includes fostering the wisest use of our land and water resources, protecting our Evening Bat (Nycticeius humeralis). fish and wildlife, preserving the environmental and cultural values of our national parks and historical Southern Bog Lemming (Synaptomys cooperi). places, and providing for the enjoyment of life through outdoor recreation. The Department asses­ Meadow Jumping Mouse (Zapus hudsonius). ses our energy and mineral resources and works to assure that their development is in the best interests NOTES of all our people.
    [Show full text]
  • "Pine Voles" (Pitymys) (Rodentia, Arvicolinae)
    I I BULLETIN DE L'INSTITUT ROYAL DES SCIENCES NATURELLES DE BELGIQUE, BIOLOGIE, 66: 237-240, 1996 BULLETIN VAN HET KONINKLJJK BELGISCH INSTITUUT VOOR NATUURWETENSCHAPPEN, BIOLOGIE, 66: 237-240, 1996 The status and use of Terricola F ATIO, 1867 in the taxonomy of Palaearctic "pine voles" (Pitymys) (Rodentia, Arvicolinae) by Boris KR YSTUFEK, Huw I. GRIFFITHS & Vladimir VOHRALIK ·Abstract SCHRANK, 1798 (ANDERSON, 1985). Pitymys itself is readily distinguished from Microtus by the so-called The authors appraise the taxonomic validity of the arvicolid " pitymoid" structure of the first lower molar : i.e. the 4th genus Terricola. From an examination of specimens from and 5th molar triangles are widely confluent (Fig. 1). representative species of Terricola, and from a review of the Outside North America, a "pitymoid" first lower molar literature, we conclude that the name Terricola, although both can also be found in a number of vole species from Europe available and valid, should not be applied to European pine voles and adjacent parts of Asia, and these too have been placed and, as is presently used, refers not to a monophyletic group, in Pitymys, the name being used as either a genus (ELLER­ but only to a morphological assemblage of no systematic validity. Key words: Palaearctic- Terri cola- Pitymys - voles- phylogeny MAN & MORRISON-SCOTT, 1966; CORBET, 1978) or a -taxonomy. subgenus (NIETHAMMER & KRAPP, 1982). However, BRUNET-LECOMTE & CHALINE (1992) and CHALINE et al. (1988) suggest that Nearctic and Palaearctic members Resume of Pitymys do not share a common ancestor, and further suggest the use of the name Terricola FATIO, 1867 (as a Les auteurs evaluent Ia validite taxonomique du genre arvicolide subgenus of Microtus) to encompass species from the Terricola.
    [Show full text]
  • On Some “Forgotten” Samples of Small Mammals from the Western Tatra Mts – Roháče Mts (Slovakia) (Insectivora, Rodentia
    Lynx (Praha), n. s., 37: 111–121 (2006). ISSN 0024–7774 On some “forgotten” samples of small mammals from the Western Tatra Mts – Roháče Mts (Slovakia) (Insectivora, Rodentia, Carnivora) O několika “zapomenutých” vzorcích drobných savců ze Západních Tater – Roháčů, Slovensko (Insectivora, Rodentia, Carnivora) Jiří GAISLER1 & Jan ZEJDA 1 Institute of Botany and Zoology, Masaryk University, Kotlářská 2, CZ–611 37 Brno, Czech Republic; [email protected] State Plant Protection Administration, Trnkova 103, CZ–628 00 Brno, Czech Republic; [email protected] received on 22 February 2006 Abstract. In 1964 to 1974, 511 specimens of 14 mammal species were collected in the Roháče Mts, nor- thern Slovakia, mostly at elevations of 1,000–2,000 m. The following mammalian families and species are represented in the samples, viz, Soricidae: Sorex araneus, S. alpinus, S. minutus, Neomys fodiens; Talpidae: Talpa europaea; Arvicolidae: Clethrionomys glareolus, Chionomys nivalis, Microtus subterraneus, M. tatricus, M. agrestis; Muridae: Apodemus flavicollis; Gliridae: Muscardinus avellanarius, Dryomys nite­ dula; Mustelidae: Mustela nivalis. In addition, Eliomys quercinus was observed on 22 May 1964 in the valley Spálená dolina, 1,520 m a. s. l. Besides its description, an exact drawing of the animal supports the record. Details are given on the sample of 170 specimens obtained in September 1964 by 4,730 trap- -nights at elevations of 1,500–2,100 m. Mammals were trapped at the forest upper edge (ecotone) and at higher situated habitats up to the mountain ridge. Alpine vole species, M. tatricus and C. nivalis, clearly dominate this sample (Table 1). Additional eight samples were obtained mostly within the forest zone and their species diversity and numbers of records per species corroborate previous data on the development of small mammal communities with respect to the ecosystem succession (kratocHvíl & gaisler 1967).
    [Show full text]
  • Microtus Oeconomus) in Lithuania, Eastern Europe
    Infection, Genetics and Evolution 90 (2021) 104520 Contents lists available at ScienceDirect Infection, Genetics and Evolution journal homepage: www.elsevier.com/locate/meegid Research Paper Identification of a novel hantavirus strain in the root vole (Microtus oeconomus) in Lithuania, Eastern Europe Stephan Drewes a,1, Kathrin Jeske a,b,1, Petra Strakova´ a,c, Linas Balˇciauskas d, Ren´e Ryll a, Laima Balˇciauskiene_ d, David Kohlhause a,e, Guy-Alain Schnidrig f, Melanie Hiltbrunner f, ˇ g g g f Aliona Spakova , Rasa Insodaite_ , Rasa Petraityte-Burneikien_ e_ , Gerald Heckel , Rainer G. Ulrich a,* a Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut,Federal Research Institute for Animal Health, Südufer 10, 17493 Greifswald-Insel Riems, Germany b Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, 17493 Greifswald-Insel Riems, Germany c Department of Virology, Veterinary Research Institute, Hudcova 70, 62100 Brno, Czech Republic d Nature Research Centre, Akademijos 2, LT-08412 Vilnius, Lithuania e University Greifswald, Domstraße 11, 17498 Greifswald, Germany f Institute of Ecology and Evolution, University of Bern, Baltzerstrasse 6, 3012 Bern, Switzerland g Institute of Biotechnology, Life Sciences Center, Vilnius University, Sauletekio_ al. 7, LT-10257 Vilnius, Lithuania ARTICLE INFO ABSTRACT Keywords: Hantaviruses are zoonotic pathogens that can cause subclinical to lethal infections in humans. In Europe, five Microtus oeconomus orthohantaviruses are present in rodents: Myodes-associated Puumala orthohantavirus (PUUV), Microtus-asso­ Lithuania ciated Tula orthohantavirus, Traemmersee hantavirus (TRAV)/ Tatenale hantavirus (TATV)/ Kielder hantavirus, Reservoir host rat-borne Seoul orthohantavirus, and Apodemus-associated Dobrava-Belgrade orthohantavirus (DOBV). Human Tatenale hantavirus PUUV and DOBV infections were detected previously in Lithuania, but the presence of Microtus-associated Traemmersee hantavirus Rusne hantavirus hantaviruses is not known.
    [Show full text]
  • The Biostratigraphy of Arvicoline Rodents in North America
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Transactions of the Nebraska Academy of Sciences and Affiliated Societies Nebraska Academy of Sciences 1979 The Biostratigraphy of Arvicoline Rodents in North America Larry D. Martin University of Kansas Follow this and additional works at: https://digitalcommons.unl.edu/tnas Part of the Life Sciences Commons Martin, Larry D., "The Biostratigraphy of Arvicoline Rodents in North America" (1979). Transactions of the Nebraska Academy of Sciences and Affiliated Societies. 313. https://digitalcommons.unl.edu/tnas/313 This Article is brought to you for free and open access by the Nebraska Academy of Sciences at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Transactions of the Nebraska Academy of Sciences and Affiliated Societiesy b an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Transactions of the Nebraska Academy of Sciences- Volume VII, 1979 EARTH SCIENCES THE BIOSTRATIGRAPHY OF ARVICOLINE RODENTS IN NORTH AMERICA LARRY D. MARTIN Museum of Natural History, and Department of Systematics and Ecology University of Kansas Lawrence, Kansas 66045 Arvicoline rodents are presently the most useful biostratigraphic present. All of these early arvicolines have rooted teeth, lack tools in North America for the correlation of continental sediments dentine tracts, and lack cement in their re-entrant angles. They that are HL,ncan in age or younger. Recent work in the Central Great also have relatively simple crown patterns on their cheek Plains sugge:;(s that they also may have value for intercontinental corre­ btions. About one-third of the Blancan genera of arvicolines became teeth. Ml has in all cases a posterior loop, three alternating extinct at end of Blancan time, while the earliest post-Blancan triangles, and an anterior loop (except in Propliophenacomys iaunas cO]: hin very few arvicolines.
    [Show full text]
  • Microtus Tatricus (Kratochvil, 1952) in the Eastern Carpathians: Cytogenetic Evidence
    FOLIA ZOOLOGICA — 41 (2): 123—126 (1992) MICROTUS TATRICUS (KRATOCHVIL, 1952) IN THE EASTERN CARPATHIANS: CYTOGENETIC EVIDENCE Received April 3, 1991 Igor V. ZAGORODNYUK1 and Jan ZIMA2 Accepted June 17, 1991 1 I. I. Shmalghausen Institute of Zoology, Ukrainian Academy of Sciences, Kiev 2 Institute of Systematic and Ecological Biology, Czechoslovak Academy of Sciences, Brno Abstract The chromosome set of a female of the pine vole captured in the Mt. Goverla region in the Eastern Carpathians is described. The karyotype contains 32 chromosomes including 14 biarmed and 18 acrocentric elements. The comparison of this set with karyotypes of the Tatra pine voles from the Western Carpathians has proved their apparent similarity. This is the first cytogenetic evidence of the occurrence of Micro- tus tatricus (K r a t o c h v i l , 1952) in the Eastern Carpathians. The distribution range and phylogenetic origin of the species are discussed. Introduction The mountain range of the Carpathians can be divided lengthwise into the West- ern, Eastern, and Southern part. Most of the Western Carpathians lie in the terri- tory of Czechoslovakia and their northern edge extends to Poland. The boundary between the Western and Eastern Carpathians lies in the Kurovské sedlo Col (Przelecz Tylicka in Polish) at the border between Czechoslovakia and Poland. The Eastern Carpathians thus extend from the eastern part of Slovakia over southwestern Ukraine to Rumania. The Predeal Pass in Rumania separates the Eastern and Southern Carpathians. The main ridge of the Southern Carpathians is then directed to the Iron Gate upon the Danube River. Only two endemic ver- tebrate species occur in this large mountain complex, i.e., the newt Triturus montadoni, and the pine vole, Microtus tatricus.
    [Show full text]
  • Short Review on Ecology and Distribution of Micro- Tus Tatricus (Kratochvíl, 1952) in Slovakia
    Oecologia REPORTS Montana 2006, 15, 38 - 39 Short review on ecology and distribution of Micro- tus tatricus (Kratochvíl, 1952) in Slovakia M. JURČOVIČOVÁ1 and M. RUDÁ2 account, the average population density is 5.7 indi- 1Institute of high mountain biology, Tatranská viduals/ha (Jurdíková et al. 2000). No population size Javorina SK-059 56, Slovak Republic. 2Department fluctuations or population outbreaks are known for of zoology, Faculty of Natural Sciences Comenius the Tatra vole, so it is true K-selected inhabitant of University, Slovak Republic mountains (Happold 1998). The number of individuals nor species popula- tion density did not increase with elevation. But the relative abundance of M. tatricus in the assemblage Microtus tatricus (Tatra vole) is an endemic and of other small mammals increased significantly with pleistocene relict of the Western Carpathians. It was increasing elevation (Jurdíková et al. 2000, Martínková described in 1952 by Kratochvíl from Veľká Studená and Dudich 2003). According to Jurdíková et al. dolina Valley in the Vysoké Tatry Mountains (Kra- (2000), environmental conditions associated with tochvíl 1952). At first it was classified as a species high altitude such as low temperature, massive and of genus Pitymys McMurtrie, 1831, but currently it long lasting snow cover, few days of sunshine and is classified as a species of genusMicrotus Schrank, short vegetation period suppress the occurrence of 1798 and belongs to subgenus Terricola Fatio, 1867. other competitors and lead to the increased relative Historically, the very first record is from the Early abundance of the Tatra vole. Holocene from the Veľká Fatra Mts. in Slovakia Optimal habitat is characterized as a habitat (Dudich et al.
    [Show full text]