Thesis Template

Total Page:16

File Type:pdf, Size:1020Kb

Thesis Template Impacts of aboveground and belowground interactions on the performance of an invasive thistle, Cirsium arvense by Krystal Anne Maria Nunes A thesis submitted in conformity with the requirements for the degree of Doctor of Philosophy Department of Ecology and Evolutionary Biology University of Toronto © Copyright by Krystal A Nunes 2018 Impacts of aboveground and belowground interactions on the performance of an invasive thistle, Cirsium arvense Krystal Anne Maria Nunes Doctor of Philosophy Department of Ecology and Evolutionary Biology University of Toronto 2018 Abstract Interactions with natural enemies are important to the success of invasive plants in their invaded range. However, little is known of the relative impacts of above- and belowground interactions, or how these interactions may change across the invaded range or between growing seasons. My research investigated these questions using Asteraceae occurring in Ontario, Canada. First, I quantified aboveground herbivory for exotic and native Asteraceae across a latitudinal gradient with the expectation that marginal or more northern populations would experience reduced enemy pressure. Herbivory did not always decline with increasing latitude, but often depended upon the causal herbivorous organism(s) or whether the species was native or exotic. I then further investigated a single non-native species exhibiting strong latitudinal trends in herbivory, Canada thistle (Cirsium arvense). I manipulated distance between plots of C. arvense to see if local spatial and/or temporal isolation also allowed escape from aboveground enemy pressure. Herbivory patterns changed significantly over 4 years, with initial patterns of reduced damage with isolation disappearing by the final year. However, variation in aboveground damage did not explain performance. I then investigated the effects of belowground interactions using a soil feedback experiment with soil collected from across the invaded range, and found C. arvense performed best in range edge soils with shorter invasion histories. This was reflected in ii compositional shifts in soil mesofauna, and most strikingly, the soil microbiota. Finally, to determine the relative importance of these interactions, I created replicate common gardens in which C. arvense was treated with above- and/or belowground exclosures. Regardless of garden location within the invaded range, protection from both aboveground and belowground enemies improved performance, but belowground interactions tended to have a greater negative impact. Together these results emphasize the importance of spatial and temporal scale in studies of invasions, as well as the need to consider both aboveground and belowground interactions when describing invader performance. iii Acknowledgments After 5 years in the PhD program at the University of Toronto Mississauga, one of the most important things I have learned is that this cannot be done alone. I was fortunate enough to have an incredibly supportive and encouraging network of friends, family, and peers to get me to the finish line. First and foremost, I would like to thank my supervisor Dr. Peter Kotanen. Thank you for having faith in my abilities to complete this degree, and for dedicating your time and effort to help me grow as a researcher, learner, and naturalist. Thank you for your patience and positivity throughout this process, and for being my own personal Sibley guide at all times – I could not have asked for anything more. Thank you to my committee members, Dr. Marc Johnson and Dr. Benjamin Gilbert. Your guidance and advice was immeasurably helpful, and your mark has been left on this thesis as well. I would like to thank my co-author, former roommate, and friend Connor Fitzpatrick. We began our graduate school adventure together, and I could not have finished my own journey without your help. Thank you for always being there to talk about the good and the bad (namely R code). I would like to thank Colin Cassin and Jason Verbeek for being the greatest lab mates I could have hoped for. Colin – thank you for the countless hours we spent on the road together, for the immeasurably helpful conversations about our research, and for introducing me to The Vinyl Café. Jason – thank you for being an endless source of entertainment both inside and outside the lab, and (especially) during TA hours. Thank you to Felipe Torres and Julian Bermudez for adventuring with me every weekend. Thank you to Aaron LeBlanc and Nash Turley for helping me photograph my invertebrates, but more importantly for maintaining our friendship across thousands of kilometres. I also thank the graduate students in my department whose friendship and encouragement were incredibly appreciated: Amy Wong, Chris Wong, Mark MacDougall, Audrey Reid, Dachin Frances, and Sarah French, to name a few. iv Thank you to the army of undergrads who have helped me with my experiments over the years. If it wasn’t for your dedication, I would still be washing roots to this day. A special thank you goes to Ariana Longley for refusing to leave our lab for years (I promise this is a compliment), and to Jack Hu, Anna Mikhailitchenko, Leigh-Anne Goodine, and Neil Oliveira. I would like to thank my parents, Al and Lorna Nunes, for raising a bookworm who refused to leave school until the tender age of 27. Thank you Dad for helping me dig holes, and for keeping me hydrated during those hot days of field work with lemon water that was more lemon than water. Thank you Mom for never remembering the name of my degree, but bragging about me nonetheless. I have endless gratitude towards my best friend, confidant, and husband Joshua O’Connell. You have played an invaluable role in my completion of this thesis. Thank you for listening to my struggles and rants, and for celebrating the successes along the way. Thank you for helping me complete my field work every summer, and for driving me to and from Timmins on multiple occasions (especially during that snowstorm in May). I could not have done this without you, and this degree is as much yours as it is mine. Finally, I would like to thank Cirsium arvense for being the star of the show. I can now walk through a patch of Canada thistle without even noticing the spines piercing my skin; if this special skill doesn’t land me the dream job, I have at least gained a great party trick. v Table of Contents Acknowledgments.......................................................................................................................... iv Table of Contents ........................................................................................................................... vi List of Tables ................................................................................................................................ xii List of Figures .............................................................................................................................. xiv List of Appendices ....................................................................................................................... xxi Chapter 1 General Introduction .......................................................................................................1 Biological Invasions ....................................................................................................................1 1.1 Hypotheses of plant invasions .............................................................................................2 1.1.1 Darwin’s Conundrum...............................................................................................2 1.1.2 Evolution of Increased Competitive Ability ............................................................2 1.1.3 Enhanced Mutualist Hypothesis ..............................................................................3 1.1.4 Novel Weapons Hypothesis .....................................................................................3 1.1.5 Enemy Release Hypothesis ......................................................................................3 1.2 Latitudinal gradients in plant-herbivore interactions ...........................................................4 1.3 The role of aboveground and belowground interactions in plant performance ...................5 1.3.1 The effect of aboveground enemy interactions on invader establishment ...............7 1.3.2 The effect of belowground enemy interactions on invader establishment ..............8 1.4 Thesis overview .................................................................................................................10 1.4.1 Study site: Province of Ontario ..............................................................................10 1.4.2 Study site: Koffler Scientific Reserve ....................................................................10 1.4.3 Study system: Asteraceae ......................................................................................11 1.4.4 Focal species: Cirsium arvense (Canada thistle) ...................................................11 1.4.5 Chapter 2 Overview ...............................................................................................14 1.4.6 Chapter 3 Overview ...............................................................................................15 1.4.7 Chapter 4 Overview ...............................................................................................15 vi 1.4.8 Chapter 5 Overview ...............................................................................................16
Recommended publications
  • Bon Echo Provincial Park
    BON ECHO PROVINCIAL PARK One Malaise trap was deployed at Bon Echo Provincial Park in 2014 (44.89405, -77.19691 278m ASL; Figure 1). This trap collected arthropods for twenty weeks from May 7 – September 24, 2014. All 10 Malaise trap samples were processed; every other sample was analyzed using the individual specimen protocol while the second half was analyzed via bulk analysis. A total of 2559 BINs were obtained. Over half the BINs captured were flies (Diptera), followed by bees, ants and wasps (Hymenoptera), moths and butterflies (Lepidoptera), and beetles (Coleoptera; Figure 2). In total, 547 arthropod species were named, representing 22.9% of the BINs from the site (Appendix 1). All BINs were assigned at least to Figure 1. Malaise trap deployed at Bon Echo family, and 57.2% were assigned to a genus (Appendix Provincial Park in 2014. 2). Specimens collected from Bon Echo represent 223 different families and 651 genera. Diptera Hymenoptera Lepidoptera Coleoptera Hemiptera Mesostigmata Trombidiformes Psocodea Sarcoptiformes Trichoptera Araneae Entomobryomorpha Symphypleona Thysanoptera Neuroptera Opiliones Mecoptera Orthoptera Plecoptera Julida Odonata Stylommatophora Figure 2. Taxonomy breakdown of BINs captured in the Malaise trap at Bon Echo. APPENDIX 1. TAXONOMY REPORT Class Order Family Genus Species Arachnida Araneae Clubionidae Clubiona Clubiona obesa Linyphiidae Ceraticelus Ceraticelus atriceps Neriene Neriene radiata Philodromidae Philodromus Salticidae Pelegrina Pelegrina proterva Tetragnathidae Tetragnatha Tetragnatha shoshone
    [Show full text]
  • Milk Thistle
    Forest Health Technology Enterprise Team TECHNOLOGY TRANSFER Biological Control BIOLOGY AND BIOLOGICAL CONTROL OF EXOTIC T RU E T HISTL E S RACHEL WINSTON , RICH HANSEN , MA R K SCH W A R ZLÄNDE R , ER IC COO M BS , CA R OL BELL RANDALL , AND RODNEY LY M FHTET-2007-05 U.S. Department Forest September 2008 of Agriculture Service FHTET he Forest Health Technology Enterprise Team (FHTET) was created in 1995 Tby the Deputy Chief for State and Private Forestry, USDA, Forest Service, to develop and deliver technologies to protect and improve the health of American forests. This book was published by FHTET as part of the technology transfer series. http://www.fs.fed.us/foresthealth/technology/ On the cover: Italian thistle. Photo: ©Saint Mary’s College of California. The U.S. Department of Agriculture (USDA) prohibits discrimination in all its programs and activities on the basis of race, color, national origin, sex, religion, age, disability, political beliefs, sexual orientation, or marital or family status. (Not all prohibited bases apply to all programs.) Persons with disabilities who require alternative means for communication of program information (Braille, large print, audiotape, etc.) should contact USDA’s TARGET Center at 202-720-2600 (voice and TDD). To file a complaint of discrimination, write USDA, Director, Office of Civil Rights, Room 326-W, Whitten Building, 1400 Independence Avenue, SW, Washington, D.C. 20250-9410 or call 202-720-5964 (voice and TDD). USDA is an equal opportunity provider and employer. The use of trade, firm, or corporation names in this publication is for information only and does not constitute an endorsement by the U.S.
    [Show full text]
  • Volume: 1 Issue: 2 Year: 2019
    Volume: 1 Issue: 2 Year: 2019 Designed by Müjdat TÖS Acarological Studies Vol 1 (2) CONTENTS Editorial Acarological Studies: A new forum for the publication of acarological works ................................................................... 51-52 Salih DOĞAN Review An overview of the XV International Congress of Acarology (XV ICA 2018) ........................................................................ 53-58 Sebahat K. OZMAN-SULLIVAN, Gregory T. SULLIVAN Articles Alternative control agents of the dried fruit mite, Carpoglyphus lactis (L.) (Acari: Carpoglyphidae) on dried apricots ......................................................................................................................................................................................................................... 59-64 Vefa TURGU, Nabi Alper KUMRAL A species being worthy of its name: Intraspecific variations on the gnathosomal characters in topotypic heter- omorphic males of Cheylostigmaeus variatus (Acari: Stigmaeidae) ........................................................................................ 65-70 Salih DOĞAN, Sibel DOĞAN, Qing-Hai FAN Seasonal distribution and damage potential of Raoiella indica (Hirst) (Acari: Tenuipalpidae) on areca palms of Kerala, India ............................................................................................................................................................................................................... 71-83 Prabheena PRABHAKARAN, Ramani NERAVATHU Feeding impact of Cisaberoptus
    [Show full text]
  • Monitoring Report Spring/Summer 2015 Contents
    Wimbledon and Putney Commons Monitoring Report Spring/Summer 2015 Contents CONTEXT 1 A. SYSTEMATIC RECORDING 3 METHODS 3 OUTCOMES 6 REFLECTIONS AND RECOMMENDATIONS 18 B. BIOBLITZ 19 REFLECTIONS AND LESSONS LEARNT 21 C. REFERENCES 22 LIST OF FIGURES Figure 1 Location of The Plain on Wimbledon and Putney Commons 2 Figure 2 Experimental Reptile Refuge near the Junction of Centre Path and Somerset Ride 5 Figure 3 Contrasting Cut and Uncut Areas in the Conservation Zone of The Plain, Spring 2015 6/7 Figure 4 Notable Plant Species Recorded on The Plain, Summer 2015 8 Figure 5 Meadow Brown and white Admiral Butterflies 14 Figure 6 Hairy Dragonfly and Willow Emerald Damselfly 14 Figure 7 The BioBlitz Route 15 Figure 8 Vestal and European Corn-borer moths 16 LIST OF TABLES Table 1 Mowing Dates for the Conservation Area of The Plain 3 Table 2 Dates for General Observational Records of The Plain, 2015 10 Table 3 Birds of The Plain, Spring - Summer 2015 11 Table 4 Summary of Insect Recording in 2015 12/13 Table 5 Rare Beetles Living in the Vicinity of The Plain 15 LIST OF APPENDICES A1 The Wildlife and Conservation Forum and Volunteer Recorders 23 A2 Sward Height Data Spring 2015 24 A3 Floral Records for The Plain : Wimbledon and Putney Commons 2015 26 A4 The Plain Spring and Summer 2015 – John Weir’s General Reports 30 A5 a Birds on The Plain March to September 2015; 41 B Birds on The Plain - summary of frequencies 42 A6 ai Butterflies on The Plain (DW) 43 aii Butterfly long-term transect including The Plain (SR) 44 aiii New woodland butterfly transect
    [Show full text]
  • Acari Scientific Classification Kingdom
    Acari - Wikipedia https://en.wikipedia.org/wiki/Acari From Wikipedia, the free encyclopedia Acari (or Acarina) are a taxon of arachnids that contains mites and ticks. The diversity of the Acari is extraordinary and its fossil history Acari goes back to at least the early Devonian period.[1] As a result, Temporal range: acarologists (the people who study mites and ticks) have proposed a Early Devonian–Recent complex set of taxonomic ranks to classify mites. In most modern treatments, the Acari is considered a subclass of Arachnida and is PreЄ Є O S D C P T J K Pg N composed of two or three superorders or orders: Acariformes (or Actinotrichida), Parasitiformes (or Anactinotrichida), and Opilioacariformes; the latter is often considered a subgroup within the Parasitiformes. The monophyly of the Acari is open to debate, and the relationships of the acarines to other arachnids is not at all clear.[2] In older treatments, the subgroups of the Acarina were placed at order rank, but as their own subdivisions have become better-understood, it is more usual to treat them at superorder rank. Most acarines are minute to small (e.g., 0.08–1.00 millimetre or 0.003–0.039 inches), but the largest Acari (some ticks and red velvet mites) may reach lengths of 10–20 millimetres (0.4–0.8 in). Over 50,000 species have been described (as of 1999) and it is estimated that a million or more species may exist. The study of mites and ticks is called acarology (from Greek ἀκαρί/ἄκαρι, akari, a type of mite; and -λογία, -logia),[3] and the leading scientific journals for acarology include Acarologia, Experimental and Applied Acarology and the Peacock mite (Tuckerella sp.), International Journal of Acarology.
    [Show full text]
  • Program Book
    1 The Program Encapsulated SUNDAY Afternoon Registration 1:00-5:00 Lancaster Lobby Local Arrangements 12:00-6:00 New Governor Executive Committee Meeting 1:00-5:00 Harrisburger It’s a Bug’s World – Outreach 1:00-5:00 Whitaker Center Posters and Displays 1:00-5:00 Carlisle Student Oral Presentation Competition 2:00-5:20 York Evening Reception and President’s Welcome 6:00-7:30 Carlisle IDEP Workshop 7:30-9:00 Bridgeport Student Networking 7:30-9:00 Penn Harris Strategic Planning Meeting 7:30-9:00 Leland MONDAY Morning Registration 8:00-5:00 Lancaster Lobby Local Arrangements Until 9:00 pm New Governor Posters and Displays 8:00-5:00 Carlisle Tree Fruit Symposium 8:00-12:00 Lancaster IDEP Symposium 8:00-12:00 Penn Harris NE Regional Field Crops Conference 8:00-12:00 York Outreach Symposium 8:00-12:00 Gettysburg Afternoon Small Fruit Symposium 1:00-5:00 Lancaster Industry Symposium 1:00-5:00 York Student Symposium 1:00-4:35 Penn Harris Biological Control Symposium 1:00-5:00 Gettysburg Corn Earworm Resistance Discussion 2:00-5:00 Lochiel Boardroom Evening Social and cash bar 5:30-6:00 Carlisle Banquet and awards 6:00-8:30 York/Lebanon Linnaean Games 9:00 Lancaster TUESDAY Morning Registration 8:00-10:00 Lancaster Lobby Local Arrangements 8:00-12:00 New Governor Eastern Branch Business Meeting 7:00-7:45 Lebanon Posters and Displays 8:00-12:00 Carlisle Acarology Symposium 8:00-10:50 York Forestry Symposium 8:00-12:00 Lancaster Disease Vector Symposium 8:00-11:45 Gettysburg Submitted Papers 8:30-11:45 Lebanon Adjourn 12:00 2 Harrisburg Hilton Floor Plan Second Floor Third Floor 3 2005 SPONSORS BASF CORPORATION BAYER CROPSCIENCE CEREXAGRI, INC DOW AGROSCIENCES DuPONT AGRICULTURAL PRODUCTS ELSEVIER/ACCADEMIC PRESS ENTOVISION FMC CORPORATION HERCON ENVIRONMENTAL LABSERVICES MANA MONSANTO NICHINO AMERICA, INC.
    [Show full text]
  • Entomofauna Ansfelden/Austria; Download Unter
    © Entomofauna Ansfelden/Austria; download unter www.zobodat.at Entomofauna ZEITSCHRIFT FÜR ENTOMOLOGIE Band 36, Heft 10: 121-176 ISSN 0250-4413 Ansfelden, 2. Januar 2015 An annotated catalogue of the Iranian Braconinae (Hymenoptera: Braconidae) Neveen S. GADALLAH & Hassan GHAHARI Abstract The present work comprises a comprehensive faunistic catalogue of the Braconinae collected and recorded from the different localities of Iran over the past fifty years. It includes 115 species and subspecies in 11 genera (Atanycolus FÖRSTER, Baryproctus ASHMEAD, Bracon FABRICIUS, Coeloides WESMAEL, Glyptomorpha HOLMGREN, Habrobracon ASHMEAD, Iphiaulax FOERSTER, Megalommum SZÉPLIGETI, Pseudovipio SZÉPLIGETI, Rhadinobracon SZÉPLIGETI and Vipio LATREILLE) and four tribes (Aphrastobraconini, Braconini, Coeloidini, Glyptomorphini). Synonymies, distribution and host data are given. Key words: Hymenoptera, Braconidae, Braconinae, catalogue, Iran. Zusammenfassung Vorliegende Arbeit behandelt einen flächendeckenden faunistischen Katalog der Braconidae des Irans im Beobachtungszeitraum der letzten fünfzig Jahre. Es gelang der Nachweis von 115 Arten und Unterarten aus den 11 Gattungen Atanycolus FÖRSTER, Baryproctus ASHMEAD, Bracon FABRICIUS, Coeloides WESMAEL, Glyptomorpha 121 © Entomofauna Ansfelden/Austria; download unter www.zobodat.at HOLMGREN, Habrobracon ASHMEAD, Iphiaulax FOERSTER, Megalommum SZÉPLIGETI, Pseudovipio SZÉPLIGETI, Rhadinobracon SZÉPLIGETI und Vipio LATREILLE. Angaben zur Synonymie und Verbreitung sowie zu Wirtsarten werden angeführt. Introduction Braconinae is a large subfamily of cyclostomes group of parasitic wasps in the family Braconidae (Hymenoptera: Ichneumonoidea). They constitute more than 2900 described species that are mostly tropical and subtropical (YU et al. 2012). Members of this subfamily are often black, red, orange and/or white in colours. They are small to medium-sized insects, characterized by their concave labrum, absence of epicnemial carina, absence of occipital carina, females have extended ovipositor (SHARKEY 1993).
    [Show full text]
  • LEPIDOPTERA at LANDGUARD POINT, SUFFOLK 1991-2020 Years (X = Species Recorded)
    LEPIDOPTERA AT LANDGUARD POINT, SUFFOLK 1991-2020 Years (X = species recorded) ABH no. B&F no. Scientific name Vernacular name 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 pre-1991 3.001 15 Triodia sylvina Orange Swift X X X X X X X X X X X X X X X X X X X X X X X X X X X X X 3.002 17 Korscheltellus lupulina Common Swift X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X 3.005 14 Hepialus humuli Ghost Moth X X X X X 4.023 108 Stigmella crataegella X 4.039 73 Stigmella trimaculella X X X X 4.042 67 Stigmella plagicolella X X 4.045 50 Stigmella aurella X X X X X X X X X X X X X X X X X 4.057 85 Stigmella suberivora X X X X X X X X X X X X X X X X X X 4.088 36a Ectoedemia heringella X X X X X X X X X X X X X 4.090 38 Ectoedemia subbimaculella X X X X 4.091 39 Ectoedemia heringi X 4.092 32 Ectoedemia erythrogenella X X X X 4.098 27 Ectoedemia spinosella X 7.001 148 Nemophora degeerella X X X 7.006 150 Adela reaumurella X X X 7.008 151 Adela croesella X X X X X X X X X X 7.012 141 Nematopogon schwarziellus X 8.002 130 Incurvaria masculella X X X 8.003 131 Incurvaria oehlmanniella X 10.003 125 Coptotriche marginea X X X X X X X X X X X X X X X X X 11.009 185 Luffia lapidella X X 11.012 186 Psyche casta X X X X X X X X 11.014 189 Epichnopterix plumella X X X 12.010 196 Morophaga choragella X X X 12.016 216 Nemapogon cloacella Cork Moth X X X 12.019 219 Nemapogon ruricolella X 12.026 236 Tineola bisselliella Common Clothes Moth X X 12.027 240 Tinea pellionella Case-bearing Clothes Moth X X X X 12.030 245 Tinea pallescentella Large Pale Clothes Moth X X X X 12.031 239 Tinea columbariella X 12.032 246 Tinea semifulvella X X X X X X X X 12.033 247 Tinea trinotella X X X X X X X X X X X X X X X X X X X X X X X X X X X X X 12.034 237 Niditinea fuscella Brown-dotted Clothes Moth X X 12.036 227 Monopis laevigella Skin Moth X X X X X X X X X X X X X X X X X Years (X = species recorded) ABH no.
    [Show full text]
  • Common Burdock
    Fletcher Wildlife Garden INVASIVE SPECIES FACT SHEET TO Common Burdock Arctium minus THIS PLANT IS HIGHLY INVASIVE. average of 100 burs per plant, each bur containing approximately 40 seeds. However, other studies suggest upwards of 15,000 seeds per plant are produced. Seeds generally mature by September and are spread throughout the winter and spring. Various insects pollinate burdock, particularly honeybees, bumblebees and leaf-cutting bees. Burdock reproduces only by seed. Studies variously indicate a seed survival rate of from 2 to10 years. Although native to Eurasia, burdock is now naturalized throughout North America where it has been known for over 250 years. CONTROL DESCRIPTION AND ORIGIN Be very careful about disposing of burdock Common Burdock, a member of the Compositae family, seeds that have hitched is a plant of open, sunny, disturbed sites: roadsides, rail a ride on you or your tracks, old fields, meadows, and forest edges. While it pet! grows best on moist fertile soils it tolerates various conditions. It cannot withstand repeated cultivation. Removing all flower Although described as a biennial, burdock is really a heads including those in short-lived perennial (a “facultative” biennial). the leaf axils, has proven relatively effective. A basal rosette and deep taproot grow in the first However, buds can re- year. Flowering can take up to 5 years depending on form after cutting so Seeds forming. site conditions, but once this occurs the plant dies. monitoring is essential. Burdock can grow more than 2.5 metres in height. Cutting back the first year basal rosette and digging out . Triangular leaves are broad, coarse, alternate and the taproot has been shown to have a good degree of resemble those of rhubarb.
    [Show full text]
  • Final Report
    Final Report Project Towards more profitable and sustainable vegetable farming systems in north-western Vietnam project number AGB/2012/059 date published 30 June 2019 (updated 26 October 2020) prepared by Wendy Umberger, Dale Yi and Nikki Dumbrell co-authors Paul Milham, Phan Thuy Hien, Pham Thi Mai Huong, Dindo Campilan, Rosalie Daniel, Chu Thi My, Len Tesoriero, Nguyen Hoang Viet, Steven Underhill, Tran Thanh Nhan, Nguyen Huu Nhuan, Nguyen Anh Duc, Tran Minh Tien, Stephen Harper, Nguyen Thi Tan Loc, Ngo Thu Hang, Ha Thi Tra My, Nguyen Hien, Oleg Nicetic, Christian Genova approved by Howard Hall final report number FR2019-92 ISBN 978-1-925747-68-3 ACIAR published by GPO Box 1571 Canberra ACT 2601Australia This publication is published by ACIAR ABN 34 864 955 427. Care is taken to ensure the accuracy of the information contained in this publication. However, ACIAR cannot accept responsibility for the accuracy or completeness of the information or opinions contained in the publication. You should make your own enquiries before making decisions concerning your interests. © Australian Centre for International Agricultural Research (ACIAR) 2018 - This work is copyright. Apart from any use as permitted under the Copyright Act 1968, no part may be reproduced by any process without prior written permission from ACIAR, GPO Box 1571, Canberra ACT 2601, Australia, [email protected]. Final report: Towards more profitable and sustainable vegetable farming systems in north-western Vietnam Contents 1 Acknowledgments.........................................................................................4
    [Show full text]
  • Bird Behaviour on and Entanglement in Invasive Burdock (Arctium Spp.) Plants in Winnipeg, Manitoba
    Bird Behaviour on and Entanglement in Invasive Burdock (Arctium spp.) Plants in Winnipeg, Manitoba Todd J. U ndErWood 1 and roByn M. U ndErWood department of Biology, Kutztown University, Kutztown, Pennsylvania 19530 USA 1Corresponding author; email: [email protected] Underwood, Todd J., and robyn M. Underwood. 2013. Bird behaviour on and entanglement in invasive burdock ( Arctium spp.) plants in Winnipeg, Manitoba. Canadian Field-naturalist 127(2): 16 4–174. Burdocks ( Arctium spp.) are invasive plants native to Eurasia. They produce their seeds within large burrs that adhere to verte - brates for seed dispersal, i.e., epizoochory. Small animals may become entangled in these burrs and die. Through active searches of natural areas in Winnipeg, Manitoba, from 2000 to 2005, we documented 29 songbirds entangled in burdock burrs and recorded observations of bird behaviour on burdock plants. We analyzed trends among birds found entangled by taxon, sex, age, migratory status, and season, and we compared them to observations of bird activity on burdock. Thirteen species of birds were found entangled. Most birds found entangled (62%) were warblers (Parulidae), but there were also species from five other families (<15% per family). There was no significant difference in the distribution of birds found entangled by sex or age. A significant proportion of birds found entangled were migrants, and the average number of birds found entangled per search visit differed significantly by season, with most birds found entangled in fall. By comparison, we recorded 34 species of birds ( n = 178 observations) active on burdock plants. Warblers (38%) and sparrows (Emberizidae) (24%) were the most active, followed by small numbers of birds from eight other families (<9% per family).
    [Show full text]
  • Naturalist 1092 Text + Centre Pages
    August 2016 Volume 141 Number 1092 Yorkshire Union Yorkshire Union The Naturalist Vol. 141 No. 1092 August 2016 Contents Page The shrinking violet Viola stagnina in the Thorne area of Yorkshire I. McDonald 81 The Bloody-nosed Beetle Timarcha tenebricosa in North Yorkshire: distribution 87 and estimates of population size* Geoff S. Oxford, Roma H. Oxford and Simon Warwick Note on ship-based sightings of Cetaceans off the Yorkshire coast John Perry 96 The genus Campsicnemus in Yorkshire Roy Crossley 99 More dots on the map: further records of leafmining moths in East Yorkshire 101 Andy D. Nunn and Barry Warrington Yorkshire Ichneumons: Part 5 W.A.Ely 104 Field Note: Vagrant Emperor in Hessle Barry Warrington 120 The phenomenon of urban peat formation* Graeme T. Swindles, Andrew 121 Jones and Garry Rushworth Woodlands of the Ormesby to Wilton areas, N.E. Yorkshire: some observations 127 on their terrestrial molluscs and flora* A.A. Wardhaugh Fundraising campaign to create new pollinator-friendly habitat in York Alice 134 Farr The formation and early years of organized natural history in Hebden Bridge, 137 Yorkshire, and the influence of William Nowell (1880 -1968) R. A. Baker John Frank Raw, naturalist, and his significance today Anthony Raw 144 YNU Membership Survey – results and next steps Paula Lightfoot, Andy Millard 150 and Barry Warrington YNU Calendar 2016 160 Notices: YNU Annual General Meeting p120 Scarborough Museum Exhibition p119 Opportunities at the Yorkshire Naturalists’ Union p159 An asterisk* indicates a peer-reviewed paper Front cover: Adult Bloody-nosed Beetle Timarcha tenebricosa (see pp87-95). Photo: Geoff Oxford Back cover: Volunteers and local residents planting wild flowers at Millennium Bridge, a flagship ‘buzzing site’ for York Urban Buzz (see pp134-136).
    [Show full text]