Concordance of Molecular and Ultrastructural Data in the Study of Zoosporic Chlorococcalean Green Algae'

Total Page:16

File Type:pdf, Size:1020Kb

Concordance of Molecular and Ultrastructural Data in the Study of Zoosporic Chlorococcalean Green Algae' / Phycol. 28, 375-380 (1992) CONCORDANCE OF MOLECULAR AND ULTRASTRUCTURAL DATA IN THE STUDY OF ZOOSPORIC CHLOROCOCCALEAN GREEN ALGAE' Louise A. Lewis,^ Lee W. Wilcox, Paul A. Fuerst,* and Gary L. Floyd^ Departments of Plant Biology and *Molecular Genetics, The Ohio State University, Columbus, Ohio 43210 ABSTRACT Ultrastructural studies have led to reconsidera- Alternative evolutionary hypotheses generated from fea- tion of several morphologically based groups and tures of vegetative cell morphology and motile cell ultra- resulted in the separation of the green algae into structure were investigated using a molecular data set. five classes (Pickett-Heaps 1975, Moestrup 1978, Complete nuclear-encoded small subunit (18S) ribosomai Stewart and Mattox 1978, Melkonian 1982, Floyd RNA (rRNA) gene sequences were determined for six spe- and O'Kelly 1984, Mattox and Stewart 1984, O'Kel- cies (three each) of the chlorococcalean green algae "Neo- ly and Floyd 1984, Sluiman 1989). Through these chloris" and Characium. Based on motile cell ultra- studies it became apparent that many of the tradi- structure, it was previously shown that both genera could tional groupings based on vegetative cell morphol- be separated into three distinct groups possibly represent- ogy contained genera that cut across the newly pro- ing three separate orders and two classes of green algae. posed class boundaries and that certain characters 18S rRNA gene sequences were also obtained for three probably reflected parallel changes. additional taxa, Dunaliella parva Lerche, Pediastrum Two recent examples of the apparent discordance duplex Meyen, and Friedmannia israelensis Chanta- between vegetative morphological and ultrastruc- nachat and Bold. These organisms were selected because tural classifications involve chlorococcalean genera each, in turn, is a representative of one of the three ul- that are vegetatively non-motile but produce motile trastructural groups into which the Neochloris and zoospores. Watanabe and Floyd (1989) found that Characium species are separable. Phylogenetic analyses Neochloris species could be separated into three utilizing the molecular data fully support the ultrastruc- groups based on ultrastructural features of motile tural findings, suggesting that the similar vegetative cell cells. The primary feature delimiting the three morphologies observed in these organisms have resulted groups is the orientation of the basal bodies in the from convergence. flagellar apparatus (FA), i.e. whether they are clock- wise (CW), directly opposed (DO), or counterclock- Key index words: Characium; Chlorococcales; Chloro- wise (CCW), when the cells are viewed "top-down." phyceae; Chlorophyta; flagellar apparatus; Neochloris; Watanabe and Floyd suggested that Neochloris spe- ribosomai RNA cies falling into the first two FA groups have affin- ities to the Chlorophyceae and that the species in Systematists have traditionally relied on morpho- the CCW group better belonged in another class, logical characters in their attempts to reconstruct the Pleurastrophyceae (sensu Mattox and Stewart the evolutionary history of organisms. For green 1984), As in Neochloris, the genus Characium also algae, the characters used have heen relatively few appears to be paraphyletic, with the species falling in numher and primarily involve vegetative cell mor- into the same three ultrastructural groups as the phology (e.g. cell shape, numher of nuclei per cell, Neochloris species (Floyd and Watanabe 1990). plastid shape, growth requirements; see Bold and Wynne 1985). Characters such as cell/colony shape Information that is independent of vegetative have heen shown to be misleading in some instances morphology and FA ultrastructure should help to due to morphological plasticity (Trainor et al. 1971). determine which of the two character sets most ac- Realizing the limitations of such characters, a num- curately reflects the true phylogenetic relationships. ber of workers over the past 20 years have focused Here we present a molecular data set obtained from their efforts on characters believed to be evolution- complete DNA sequences of the 18S ribosomai RNA arily conserved, including ultrastructural features of (rRNA) genes of representative species from each the mitotic spindle, cytokinetic apparatus, and fla- of the three ultrastructural groups into which Neo- gellar apparatus. These are assumed to be less en- chloris and Characium species can be separated. Be- vironmentally influenced than are vegetative cell cause of the unavailability of appropriate sequences characteristics because they are involved in the vital with which to compare those of the Neochloris and functions of cell division, reproduction, and motil- Characium species, we also obtained sequence data ity. for three additional taxa, one from each of the three ultrastructural groups. With the acquisition of molecular data on these ' Received 23 December 1991, Accepted 24 February 1992, ' Present address: Department of Botany, Duke University, taxa, we were able to compare the evolutionary re- Durham, North Carolina 27706, lationships suggested by three different character ' Address for reprint requests. sets obtained from vegetative cell morphology, fla- 375 376 LOUISE A, LEWIS ET AL, TABLE I, Basal body orientation and source of chlorococcalean taxa examined. B.B,O," Reference Source** "Neochloris"-like taxa' Ettlia minuta CW Watanabe and Floyd 1989 776 Neochloris aquatica DO Watanabe and Floyd 1989 138 Parietochloris pseudoalveolaris CCW Watanabe and Floyd 1989 975 "Characium"-MVe taxa C, vacuolatum CW Floyd and Watanabe 1990 2111 C. hindakii DO Eloyd and Watanabe 1990 2098 C, perforatum CCW Eloyd and Watanabe 1990 2104 Additional taxa in flagellar apparatus groups Dunaliella parva CW Cbappell and Eloyd (unpubl, obs,) 1983 Pediastrum duplex DO Wilcox and Eloyd 1988 — Friedmannia israelensis CCW Melkonian and Berns 1983 1181 ' Basal body orientation, CW = clockwise, DO = directly opposite, CCW = counter-clockwise, I" Unialgai or axenic cultures were obtained from UTEX, the University of Texas Culture Collection (Starr and Zeikus 1987) except for Pediastrum duplex, which was collected from Lake Mendota, Wisconsin, by L,W,W, ' Nomenclature follows Deason et al, 1991, gellar apparatus ultrastructure, and 18S rRNA se- excluded from the analyses. The total number of aligned nucle- otide sites (including insertions/deletions) compared for all spe- quence data. cies in the study was 1713, Three group I introns (Michel and Westhof 1990) were found MATERIALS AND METHODS in the 18S rRNA genes of two of the taxa included in this analysis. We sequenced the 18S rRNA genes from the "Neochloris" and Their locations with respect to the Glycine max sequence are be- Characium species and from three other green algae with known tween positions 567 and 568 (Neochloris aquatica Starr), 1172 and flagellar apparatus ultrastructure: Dunaliella parva Lerche, Ped- 1173 {Dunaliella parva), and 1781 and 1782 {D. parva). Further iastrum duplex Meyen, and Friedmannia israelensis Chantanachat characterization of the introns will be published elsewhere, and Bold (see Table 1), Pairwise nucleotide distance (for all sites) was estimated using We employed the 18S rDNA sequence from Glycine max (Eck- the program DNADIST and PHYLIP, with the Kimura correc- enrode et al, 1985) as an outgroup taxon. An initial analysis (data tion (Felsenstein 1990), and relationships between taxa were then not shown) incorporating the 18S sequence from the protist Acan- determined from the nucleotide distances using the FITCH tree- thamoeba (Gunderson and Sogin 1986) was used to root the tree building program of PHYLIP (Fitch and Margoliash 1967, Fel- and to verify G, max as an outlier with respect to the algal se- senstein 1990), quences. Also, inclusion of unpublished sequences from the char- One hundred thirty-six nucleotide sites representing all phy- ophycean genera, Coleochaete, Klebsormidium, and Chlorokybus, logenetically informative positions in the data set were analyzed yielded the same tree topology as when Glycine alone was em- by a parsimony approach using PAUP (Swofford 1990), Because ployed as an outgroup taxon, rRNA has a specific secondary structure that may cause non- Growih of organisms and isolation of DNA. Eor most strains, the independence of sites, compensatory changes in stems were down- cells were grown in liquid medium (9:1; Starr and Zeikus 1987) weighted by one half (see Swofford and Olsen 1990), The branch or on 1,5% 9:1 agar plates, Dunaliella was maintained in E/2 and bound procedure of PAUP was used to find the shortest tree. (Guillard and Ryther 1962), DNA was extracted from either The reliability of the resulting clades was then tested by a boot- vegetative (non-motile) or motile cells. The vegetative cells were strap analysis (heuristic search using MULPARS, TBR branch ground with liquid nitrogen and/or sterile sand in UNSET buffer swapping, random stepwise addition, 50% majority rule, 100 rep- (Garriga et al, 1984), followed by phenol: chloroform extraction lications) and by a "decay" study, where trees of progressively and ethanol precipitation (Maniatis et al, 1982), Wall-less motile longer lengths are examined in order to assess how easily branch- cells were Iysed directly in UNSET, and DNA was extracted from es collapse (Mishler et al, 1991), The consistency index (CI; Kluge the lysates, and Farris 1969) was also calculated. DNA amplification, cloning, and sequencing. To obtain suflicient Sequence availability. The
Recommended publications
  • 2021 Tese Rmfranca.Pdf
    UNIVERSIDADE FEDERAL DO CEARÁ CENTRO DE TECNOLOGIA DEPARTAMENTO DE ENGENHARIA HIDRÁULICA E AMBIENTAL PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA CIVIL RAIMUNDA MOREIRA DA FRANCA ESTRUTURA FITOPLANCTÔNICA EM RESERVATÓRIOS CEARENSES - ASSOCIAÇÃO HIDROCLIMÁTICA E ESTADO TRÓFICO FORTALEZA-CE 2021 RAIMUNDA MOREIRA DA FRANCA ESTRUTURA FITOPLANCTÔNICA EM RESERVATÓRIOS CEARENSES – ASSOCIAÇÃO HIDROCLIMÁTICA E ESTADO TRÓFICO Tese de doutorado apresentada ao Programa de Pós-Graduação em Engenharia Civil da Universidade Federal do Ceará como parte dos requisitos à obtenção do título de doutora em Engenharia Civil (Recursos Hídricos). Área de concentração: Saneamento Ambiental. Orientador: Profº. Dr. Fernando José Araújo da Silva. FORTALEZA-CE 2021 RAIMUNDA MOREIRA DA FRANCA ESTRUTURA FITOPLANCTÔNICA EM RESERVATÓRIOS CEARENSES - ASSOCIAÇÃO HIDROCLIMÁTICA E ESTADO TRÓFICO Tese de doutorado apresentada ao Programa de Pós-Graduação em Engenharia Civil da Universidade Federal do Ceará como parte dos requisitos à obtenção do título de doutora em Engenharia Civil (Recursos Hídricos). Área de concentração: Saneamento Ambiental. Aprovada em: 04/05/2021 BANCA EXAMINADORA ______________________________________________________ Prof. Dr. Fernando José Araújo da Silva (Orientador) Universidade Federal do Ceará (UFC) ________________________________________________________ Prof.ª. Dra. Marisete Dantas de Aquino (Examinadora Interna) Universidade Federal do Ceará (UFC) ________________________________________________________ Prof. Dr. Iran Eduardo Lima Neto (Examinador
    [Show full text]
  • Effects of Temperature, Light Intensity and Quality, Carbon Dioxide, and Culture Medium Nutrients on Growth and Lipid Production of Ettlia Oleoabundans
    Effects of Temperature, Light Intensity and Quality, Carbon Dioxide, and Culture Medium Nutrients on Growth and Lipid Production of Ettlia oleoabundans by Ying Yang A Dissertation Submitted to the Faculty of WORCESTER POLYTECHNIC INSTITUTE in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Biology and Biotechnology by December 2013 Approved by: Dr. Pamela Weathers, Advisor Dr. Robert Thompson, Committee Member Dr. Luis Vidali, Committee Member Dr. Reeta Rao, Committee Member “A journey of a thousand miles begins with a single step.” — Lao Tzu (604 BC – 531 BC) ii Abstract Ettlia oleoabundans, a freshwater green microalga, was grown under different environmental conditions to study its growth, lipid yield and quality for a better understanding of the fundamental physiology of this oleaginous species. E. oleoabundans showed steady increase in biomass under low temperature and low light intensity, and at high temperature lipid cell content significantly increased independent of nitrate depletion. Studies on light quality showed that red light treatment did not change the biomass concentration, but stimulated lipid yield especially oleic acid, the most desirable biodiesel precursor. Moreover, no photoreversibility in lipid production was observed when applying alternating short-term red and far-red lights, which left the phytochrome effect still an open question. In addition, carbon dioxide enrichment via an air sparging system significantly boosted exponential growth and increased carbon conversion efficiency. Finally, a practical study demonstrated the feasibility of growing E. oleoabundans for high lipid production using a diluted agricultural anaerobic waste effluent as the medium. Together, these studies showed the potential of E. oleoabundans as a promising high yield feedstock for the production of high quality biodiesel.
    [Show full text]
  • DIMITAR VALEV: Wastewater Treatment with Algae Doctoral Dissertation, 118 Pp
    ANNALES UNIVERSITATIS TURKUENSIS UNIVERSITATIS ANNALES AI 627 AI Dimitar Valev WASTEWATER TREATMENT WITH ALGAE Dimitar Valev Painosalama Oy, Turku, Finland 2020 Finland Turku, Oy, Painosalama ISBN 978-951-29-8094-9 (PRINT) – ISBN 978-951-29-8095-6 (PDF) TURUN YLIOPISTON JULKAISUJA ANNALES UNIVERSITATIS TURKUENSIS ISSN 0082-7002 (Print) SARJA – SER. AI OSA – TOM. 627 | ASTRONOMICA – CHEMICA – PHYSICA – MATHEMATICA | TURKU 2020 ISSN 2343-3175 (Online) WASTEWATER TREATMENT WITH ALGAE Dimitar Valev TURUN YLIOPISTON JULKAISUJA – ANNALES UNIVERSITATIS TURKUENSIS SARJA – SER. AI OSA – TOM. 627 | ASTRONOMICA – CHEMICA – PHYSICA – MATHEMATICA | TURKU 2020 University of Turku Faculty of Science and Engineering Department of Biochemistry / Molecular Plant Biology Doctoral programme in Molecular Life Sciences Supervised by Dr. Esa Tyystjärvi Dr. Taina Tyystjärvi Department of Biochemistry / Department of Biochemistry / Molecular Plant Biology, Molecular Plant Biology, University of Turku, FI-20014 University of Turku, FI-20014 Turku, Finland Turku, Finland Dr. Taras Antal Department of Botany and Plant Ecology Pskov State University Pskov 180000 Russia Reviewed by Professor Amit Bhatnagar Professor Koenraad Muylaert Water Chemistry & Microbiology Laboratory of Aquatic Biology University of Eastern Finland KU Leuven Kuopio, Finland Kortrijk, Belgium Opponent Professor Ondřej Prášil Centre Algatech Institute of Microbiology, The Czech Academy of Sciences Třeboň, Czech Republic The originality of this publication has been checked in accordance with the University of Turku quality assurance system using the Turnitin OriginalityCheck service. ISBN 978-951-29-8094-9 (PRINT) ISBN 978-951-29-8095-6 (PDF) ISSN 0082-7002 (Painettu/Print) ISSN 2343-3175 (Sähköinen/Online) Painosalama Oy, Turku, Finland 2020 UNIVERSITY OF TURKU Faculty of Science and Engineering Department of Biochemistry Molecular Plant Biology DIMITAR VALEV: Wastewater treatment with algae Doctoral Dissertation, 118 pp.
    [Show full text]
  • Compartmentalization of Mrnas in the Giant, Unicellular Green Algae
    bioRxiv preprint doi: https://doi.org/10.1101/2020.09.18.303206; this version posted September 18, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Compartmentalization of mRNAs in the giant, 2 unicellular green algae Acetabularia acetabulum 3 4 Authors 5 Ina J. Andresen1, Russell J. S. Orr2, Kamran Shalchian-Tabrizi3, Jon Bråte1* 6 7 Address 8 1: Section for Genetics and Evolutionary Biology, Department of Biosciences, University of 9 Oslo, Kristine Bonnevies Hus, Blindernveien 31, 0316 Oslo, Norway. 10 2: Natural History Museum, University of Oslo, Oslo, Norway 11 3: Centre for Epigenetics, Development and Evolution, Department of Biosciences, University 12 of Oslo, Kristine Bonnevies Hus, Blindernveien 31, 0316 Oslo, Norway. 13 14 *Corresponding author 15 Jon Bråte, [email protected] 16 17 Keywords 18 Acetabularia acetabulum, Dasycladales, UMI, STL, compartmentalization, single-cell, mRNA. 19 20 Abstract 21 Acetabularia acetabulum is a single-celled green alga previously used as a model species for 22 studying the role of the nucleus in cell development and morphogenesis. The highly elongated 23 cell, which stretches several centimeters, harbors a single nucleus located in the basal end. 24 Although A. acetabulum historically has been an important model in cell biology, almost 25 nothing is known about its gene content, or how gene products are distributed in the cell. To 26 study the composition and distribution of mRNAs in A.
    [Show full text]
  • Structural Variation and Evolution of Chloroplast Trnas in Green Algae
    Structural variation and evolution of chloroplast tRNAs in green algae Fangbing Qi, Yajing Zhao, Ningbo Zhao, Kai Wang, Zhonghu Li and Yingjuan Wang State Key Laboratory of Biotechnology of Shannxi Province, Key Laboratory of Resource Biology and Biotech- nology in Western China (Ministry of Education), College of Life Science, Northwest University, Xi'an, China ABSTRACT As one of the important groups of the core Chlorophyta (Green algae), Chlorophyceae plays an important role in the evolution of plants. As a carrier of amino acids, tRNA plays an indispensable role in life activities. However, the structural variation of chloroplast tRNA and its evolutionary characteristics in Chlorophyta species have not been well studied. In this study, we analyzed the chloroplast genome tRNAs of 14 species in five categories in the green algae. We found that the number of chloroplasts tRNAs of Chlorophyceae is maintained between 28–32, and the length of the gene sequence ranges from 71 nt to 91 nt. There are 23–27 anticodon types of tRNAs, and some tRNAs have missing anticodons that are compensated for by other types of anticodons of that tRNA. In addition, three tRNAs were found to contain introns in the anti-codon loop of the tRNA, but the analysis scored poorly and it is presumed that these introns are not functional. After multiple sequence alignment, the 9-loop is the most conserved structural unit in the tRNA secondary structure, containing mostly U-U-C-x-A-x-U conserved sequences. The number of transitions in tRNA is higher than the number of transversions. In the replication loss analysis, it was found that green algal chloroplast tRNAs may have undergone substantial gene loss during the course of evolution.
    [Show full text]
  • Chloroplast Phylogenomic Analysis of Chlorophyte Green Algae Identifies a Novel Lineage Sister to the Sphaeropleales (Chlorophyceae) Claude Lemieux*, Antony T
    Lemieux et al. BMC Evolutionary Biology (2015) 15:264 DOI 10.1186/s12862-015-0544-5 RESEARCHARTICLE Open Access Chloroplast phylogenomic analysis of chlorophyte green algae identifies a novel lineage sister to the Sphaeropleales (Chlorophyceae) Claude Lemieux*, Antony T. Vincent, Aurélie Labarre, Christian Otis and Monique Turmel Abstract Background: The class Chlorophyceae (Chlorophyta) includes morphologically and ecologically diverse green algae. Most of the documented species belong to the clade formed by the Chlamydomonadales (also called Volvocales) and Sphaeropleales. Although studies based on the nuclear 18S rRNA gene or a few combined genes have shed light on the diversity and phylogenetic structure of the Chlamydomonadales, the positions of many of the monophyletic groups identified remain uncertain. Here, we used a chloroplast phylogenomic approach to delineate the relationships among these lineages. Results: To generate the analyzed amino acid and nucleotide data sets, we sequenced the chloroplast DNAs (cpDNAs) of 24 chlorophycean taxa; these included representatives from 16 of the 21 primary clades previously recognized in the Chlamydomonadales, two taxa from a coccoid lineage (Jenufa) that was suspected to be sister to the Golenkiniaceae, and two sphaeroplealeans. Using Bayesian and/or maximum likelihood inference methods, we analyzed an amino acid data set that was assembled from 69 cpDNA-encoded proteins of 73 core chlorophyte (including 33 chlorophyceans), as well as two nucleotide data sets that were generated from the 69 genes coding for these proteins and 29 RNA-coding genes. The protein and gene phylogenies were congruent and robustly resolved the branching order of most of the investigated lineages. Within the Chlamydomonadales, 22 taxa formed an assemblage of five major clades/lineages.
    [Show full text]
  • Phylogeny of Oedogoniales (Chlorophyceae, Chlorophyta) Inferred from 18S Rdna Sequences with Emphasis on the Relationships in Th
    Pl. Syst. Evol. 265: 179–191 (2007) Plant Systematics DOI 10.1007/s00606-007-0523-4 and Evolution Printed in The Netherlands Phylogeny of Oedogoniales (Chlorophyceae, Chlorophyta) inferred from 18S rDNA sequences with emphasis on the relationships in the genus Oedogonium based on ITS-2 sequences H. Mei1,2, W. Luo3,4, G. X. Liu1, and Z. Y. Hu1 1State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, the Chinese Academy of Sciences, Wuhan, China 2Graduated School, the Chinese Academy of Sciences, Beijing, China 3Leibniz Institute of Freshwater Ecology and Inland Fisheries, Department of Limnology of Stratified Lakes, Stechlin - Neuglobsow, Germany 4SOA Key Laboratory for Polar Science, Polar Research Institute of China, Shanghai, China Received March 6, 2006; accepted January 22, 2007 Published online: May 14, 2007 Ó Springer-Verlag 2007 Abstract. The phylogeny of Oedogoniales was Introduction investigated by using nuclear 18S rDNA sequences. Results showed that the genus Oedocladium,asa The Oedogoniales, comprised of three genera separated clade, was clustered within the clade of (Oedogonium, Oedocladium and Bulbochaete), Oedogonium; whereas the genus Bulbochaete was in can be found in freshwater all over the world a comparatively divergent position to the other two (Hirn 1900, Tiffany 1937, Gemeinhardt 1939, genera. The relationship among the species of Gauthie´ r-Lie` vre 1963, Islam and Sarma 1963, Oedogonium was discussed, focusing on ITS-2 Jao 1979, Mrozin´ ska 1985). Their fascinating phylogeny analyzed combining with some morpho- and distinctive features that are well known to logical characteristics. Our results showed that all phycologists set them apart into a very unusual the dioecious nannandrous taxa involved in this order of green algae.
    [Show full text]
  • C3c5e116de51dfa5b9d704879f6
    GBE Gene Arrangement Convergence, Diverse Intron Content, and Genetic Code Modifications in Mitochondrial Genomes of Sphaeropleales (Chlorophyta) Karolina Fucˇı´kova´ 1,*, Paul O. Lewis1, Diego Gonza´lez-Halphen2, and Louise A. Lewis1 1Department of Ecology and Evolutionary Biology, University of Connecticut 2Instituto de Fisiologı´a Celular, Departamento de Gene´tica Molecular Universidad Nacional Auto´ nomadeMe´xico, Ciudad de Me´xico, Mexico *Corresponding author: E-mail: [email protected]. Accepted: August 3, 2014 Data deposition: Nine new complete mitochondrial genome sequences with annotated features have been deposited at GenBank under the accessions KJ806265–KJ806273. Genes from partially sequenced genomes have been deposited at GenBank under the accessions KJ845680– KJ845692, KJ845706–KJ845718, and KJ845693–KJ845705. Gene sequence alignments are available in TreeBase under study number 16246. Abstract The majority of our knowledge about mitochondrial genomes of Viridiplantae comes from land plants, but much less is known about their green algal relatives. In the green algal order Sphaeropleales (Chlorophyta), only one representative mitochondrial genome is currently available—that of Acutodesmus obliquus. Our study adds nine completely sequenced and three partially sequenced mi- tochondrial genomes spanning the phylogenetic diversity of Sphaeropleales. We show not only a size range of 25–53 kb and variation in intron content (0–11) and gene order but also conservation of 13 core respiratory genes and fragmented ribosomal RNA genes. We also report an unusual case of gene arrangement convergence in Neochloris aquatica, where the two rns fragments were secondarily placed in close proximity. Finally, we report the unprecedented usage of UCG as stop codon in Pseudomuriella schumacherensis.In addition, phylogenetic analyses of the mitochondrial protein-coding genes yield a fully resolved, well-supported phylogeny, showing promise for addressing systematic challenges in green algae.
    [Show full text]
  • Organellar Phylogenomics Inform Systematics in the Green Algal
    Digital Commons @ Assumption University Biological and Physical Sciences Department Faculty Works Biological and Physical Sciences Department 2018 Organellar Phylogenomics Inform Systematics in the Green Algal Family Hydrodictyaceae (Chlorophyceae) and Provide Clues to the Complex Evolutionary History of Plastid Genomes in the Green Algal Tree of Life Hilary A. McManus Le Moyne College Karolina Fučíková Assumption College, [email protected] Paul O. Lewis University of Connecticut Louise A. Lewis University of Connecticut Kenneth G. Karol New York Botanical Garden Follow this and additional works at: https://digitalcommons.assumption.edu/sciences-faculty Part of the Life Sciences Commons Recommended Citation McManus, H. A.; Fučíková, K.; Lewis, P. O. ; Lewis, L. A. ; and Karol, K. G. (2018). Organellar Phylogenomics Inform Systematics in the Green Algal Family Hydrodictyaceae (Chlorophyceae) and Provide Clues to the Complex Evolutionary History of Plastid Genomes in the Green Algal Tree of Life. American Journal of Botany 105(3): 315-329. https://doi.org/10.1002/ajb2.1066 This Article is brought to you for free and open access by the Biological and Physical Sciences Department at Digital Commons @ Assumption University. It has been accepted for inclusion in Biological and Physical Sciences Department Faculty Works by an authorized administrator of Digital Commons @ Assumption University. For more information, please contact [email protected]. RESEARCH ARTICLE INVITED SPECIAL ARTICLE For the Special Issue: Using and Navigating the Plant Tree of Life Organellar phylogenomics inform systematics in the green algal family Hydrodictyaceae (Chlorophyceae) and provide clues to the complex evolutionary history of plastid genomes in the green algal tree of life Hilary A.
    [Show full text]
  • Rapport 31 Tweede Druk (2016)
    REFERENTIES EN MAATLATTEN VOOR NATUURLIJKE WATERTYPEN VOOR DE KADERRICHTLIJN WATER 2015-2021 2012 RAPPORT 31 TWEEDE DRUK (2016) 978.90.5773.569.1 [email protected] www.stowa.nl Publicaties van de STOWA kunt u bestellen op www.stowa.nl TEL 033 460 32 00 Stationsplein 89 3818 LE Amersfoort POSTBUS 2180 3800 CD AMERSFOORT STOWA 2012-31 REFERENTIES EN MAATLATTEN VOOR NATUURLIJKE WATERTYPEN VOOR DE KADERRICHTLIJN WATER 2015-2021 COLOFON UITGAVE Stichting Toegepast Onderzoek Waterbeheer Postbus 2180 3800 CD Amersfoort AUTEURS Meren: W. Altenburg (Altenburg & Wymenga), G. Arts (Alterra), J.G. Baretta-Bekker (RWS), M.S. van den Berg (RWS), T. van den Broek (Royal Haskoning), R. Buskens (Taken Landschapsplanning), R. Bijkerk (Koeman & Bijkerk), H.C. Coops (RWS, WL/Delft Hydraulics), H. van Dam (Aquasense, Waternatuur), G. van Ee (Provincie Noord Holland, Hoogheemraadschap Hollands Noorderkwartier), C.H.M. Evers (Royal Haskoning), R. Franken (Wageningen Universiteit), B. Higler (Alterra), T. Ietswaart (Royal Haskoning, Provincie Friesland), N. Jaarsma (Witteveen+Bos), D.J. de Jong (RWS), A.M.T. Joosten (Stichting Alg), M. Klinge (Witteveen+Bos), R.A.E. Knoben (Royal Haskoning), J. Kranenbarg (RWS, WL/Delft Hydraulics), W.M.G.M. van Loon (RWS), R. Noordhuis (RWS), R. Pot (Roelf Pot onderzoek- en adviesbureau), F. Twisk (RWS), P.F.M. Verdonschot (Alterra), H. Vlek (Alterra), K. Wolfstein (RWS). Rivieren: J.J.G.M. Backx (RWS), M. Beers (OVB, AquaTerra), M.S. van den Berg (RWS), T. van den Broek (Royal Haskoning), R. Buskens (Taken Landschapsplanning), A.D. Buijse (RWS), H.C. Coops (RWS, WL/Delft Hydraulics), H. van Dam (Aquasense, Waternatuur), G.
    [Show full text]
  • Research Article
    Ecologica Montenegrina 20: 24-39 (2019) This journal is available online at: www.biotaxa.org/em Biodiversity of phototrophs in illuminated entrance zones of seven caves in Montenegro EKATERINA V. KOZLOVA1*, SVETLANA E. MAZINA1,2 & VLADIMIR PEŠIĆ3 1 Department of Ecological Monitoring and Forecasting, Ecological Faculty of Peoples’ Friendship University of Russia, 115093 Moscow, 8-5 Podolskoye shosse, Ecological Faculty, PFUR, Russia 2 Department of Radiochemistry, Chemistry Faculty of Lomonosov Moscow State University 119991, 1-3 Leninskiye Gory, GSP-1, MSU, Moscow, Russia 3 Department of Biology, Faculty of Sciences, University of Montenegro, Cetinjski put b.b., 81000 Podgorica, Montenegro *Corresponding autor: [email protected] Received 4 January 2019 │ Accepted by V. Pešić: 9 February 2019 │ Published online 10 February 2019. Abstract The biodiversity of the entrance zones of the Montenegro caves is barely studied, therefore the purpose of this study was to assess the biodiversity of several caves in Montenegro. The samples of phototrophs were taken from various substrates of the entrance zone of 7 caves in July 2017. A total of 87 species of phototrophs were identified, including 64 species of algae and Cyanobacteria, and 21 species of Bryophyta. Comparison of biodiversity was carried out using Jacquard and Shorygin indices. The prevalence of cyanobacteria in the algal flora and the dominance of green algae were revealed. The composition of the phototrophic communities was influenced mainly by the morphology of the entrance zones, not by the spatial proximity of the studied caves. Key words: karst caves, entrance zone, ecotone, algae, cyanobacteria, bryophyte, Montenegro. Introduction The subterranean karst forms represent habitats that considered more climatically stable than the surface.
    [Show full text]
  • Applied Microbiology and Biotechnology
    Applied Microbiology and Biotechnology Re-cultivation of Neochloris oleoabundans in exhausted autotrophic and mixotrophic media: the potential role of polyamines and free fatty acids --Manuscript Draft-- Manuscript Number: AMAB-D-15-00751R1 Full Title: Re-cultivation of Neochloris oleoabundans in exhausted autotrophic and mixotrophic media: the potential role of polyamines and free fatty acids Article Type: Original Article Section/Category: Applied microbial and cell physiology Corresponding Author: Simonetta Pancaldi Italy Corresponding Author Secondary Information: Corresponding Author's Institution: Corresponding Author's Secondary Institution: First Author: Alessandra Sabia First Author Secondary Information: Order of Authors: Alessandra Sabia Costanza Baldisserotto Stefania Biondi Roberta Marchesini Paola Tedeschi Annalisa Maietti Martina Giovanardi Lorenzo Ferroni Simonetta Pancaldi Order of Authors Secondary Information: Funding Information: Abstract: Neochloris oleoabundans (Chlorophyta) is widely considered one of the most promising microalgae for biotechnological applications. However, the large-scale production of microalgae requires large amounts of water. In this perspective, the possibility of using exhausted growth media for the re-cultivation of N. oleoabundans was investigated in order to simultaneously make the cultivation more economically feasible and environmentally sustainable. Experiments were performed by testing the following media: autotrophic exhausted medium (E+) and mixotrophic exhausted medium after cultivation
    [Show full text]