Unicellular and Multicellular Life

Total Page:16

File Type:pdf, Size:1020Kb

Unicellular and Multicellular Life Biology, Quarter 2, Unit 2.1 Unicellular and Multicellular Life Overview Number of instructional days: 10 (1 day = 50 minutes) Content to be learned Science processes to be integrated • Use data and observation to make connections • Use data and observations to ask questions. between, to explain, or to justify what a multicellular organism needs for survival. • Analyze and interpret data (quantitative and qualitative). • Use data and observation to make connections between, to explain, or to justify what a • Use evidence to draw conclusions. unicellular organism needs for survival. • Communicate understanding and ideas about • Explain that most multicellular organisms have interdependence and other aspects of the specialized cells to survive. natural world. • Explain that unicellular organisms perform all • Create and analyze models, diagrams, and/or survival functions and are not specialized. graphs. • Compare the roles of various subcellular • Use tools and techniques to investigate order structures in unicellular organisms to and organization. comparable structures in multicellular organisms. Essential questions • What are the necessary functions of life for all • How do specialized cells in a multicellular living things? organism work together to carry out life’s functions? • How does a unicellular organism carry out all of life’s functions in only one cell? • How are various sub-cellular structures in a unicellular organism comparable to related structures in a multicellular organism? Bristol-Warren, Little Compton, Portsmouth, Tiverton Public Schools, C-13 in collaboration with the Charles A. Dana Center at the University of Texas at Austin Biology, Quarter 2, Unit 2.1 Unicellular and Multicellular Life (10 days) 2011-2012 Written Curriculum Grade-Span Expectations LS1 - All living organisms have identifiable structures and characteristics that allow for survival (organisms, populations, & species). LS1 (9-11) INQ+SAE+FAF -1 Use data and observation to make connections between, to explain, or to justify how specific cell organelles produce/regulate what the cell needs or what a unicellular or multi-cellular organism needs for survival (e.g., protein synthesis, DNA replication, nerve cells). LS1 (9-11)-1 Students demonstrate understanding of structure and function-survival requirements by… 1b explaining that most multicellular organisms have specialized cells to survive, while unicellular organisms perform all survival functions. (e.g. nerve cells communicate with other cells, muscle cells contract, unicellular are not specialized). LS1 (9-11)-1 Students demonstrate understanding of differentiation by… 1c comparing the role of various sub-cellular structures in unicellular organisms to comparable structures in multicellular organisms (e.g. oral groove, gullet, food vacuole in Paramecium compared to digestive systems in multicellular organisms). Clarifying the Standards Prior Learning In grades K–4, students were expected to cite evidence distinguishing living from nonliving things. They identified the basic needs of plants and animals, such as water, air, food, and space. They also understood that living things need to reproduce. They learned how the physical structures of an organism allow it to survive in its habitat/environment. In the grades 5–6, students recognized that different organisms have different features, such as gills or lungs; and behaviors, such as hibernation or migration, to meet their needs for survival. They should have been able to describe and compare how different organisms have mechanisms that work in a coordinated way to allow them to obtain energy, grow, move, respond, defend themselves, reproduce, and maintain internal balance. They described structures and/or behaviors that help organisms to survive in their habitat/environment. Beginning in grade 7, students were introduced to the cell as the basic unit of life. They understood that a single cell has all of the same survival requirements as a “whole” organism. Students were expected to explain relationships between or amongst the structure and function of the cells, tissues, organs, and organ systems in an organism. They demonstrated an understanding of differentiation by identifying cells as the building blocks of organisms. They explained that specialized cells perform specialized functions. They should have been able to recognize and diagram the structural organization of an organism from the level of cell to tissue, tissues to organ, organs to organ system and organ systems to organism. They compared individual cells of tissues, and recognized similarities and the way that they work together to perform C-14 Bristol-Warren, Little Compton, Portsmouth, Tiverton Public Schools, in collaboration with the Charles A. Dana Center at the University of Texas at Austin Unicellular and Multicellular Life (10 days) Biology, Quarter 2, Unit 2.1 2011-2012 specific functions. Students explained how each type of cell, tissue, etc. has a structure and function that serves the organism as a whole. Current Learning The instructional level for this unit is developmental in terms of understanding unicellular life forms, but reinforces the previous unit’s knowledge of subcellular structures. Students now compare and contrast unicellular and multicellular organisms, developing an understanding of how each is able to perform all of life’s functions. Students use data and observation to make connections between, to explain, or to justify what a unicellular or multicellular organism needs for survival. This could involve a study of the various needs, such as nutrients, removal of wastes, reproduction, etc. They then explain that most multicellular organisms have specialized cells to survive, while unicellular organisms perform all survival functions and are not specialized. One way to approach this would be to compare the roles of various subcellular structures in unicellular organisms to comparable structures in multicellular organisms. For example, students could compare the way that nutrients are obtained by a bacterium, protist, plant, fungus, and simple and complex animals. Students use data and observations to question the role of various subcellular structures in unicellular organisms and comparable structures in multicellular organisms in relation to survival. They should analyze and interpret data in order to draw conclusions about the comparisons between unicellular and multicellular life. A way to accomplish this would be through viewing and analyzing various unicellular and multicellular life forms. This could be through the use of live specimen, prepared slides, or images. Students should be expected to evaluate differences and similarities amongst these organisms. Student should communicate understanding and ideas by creating and/or analyzing models, using diagrams and/or graphs, or participating in discussion of these ideas. This unit lends itself very well to the use of tools and techniques of biologists (i.e., microscopy, slide preparation, etc.). Students compare and contrast the structures and functions of various unicellular and multicellular organisms. They could use microscopes, models, diagrams, or images to accomplish this. Within multicellular organisms, the students consider different types of specialized cells and how this specialization provides for their function. Additionally, they recognize the interdependence of these different cell types, which work in a coordinated way that allows for survival. In a classroom, students might be found researching and then presenting information about various ways in which unicellular and multicellular organisms accomplish the same function of life. For example, waste removal as carried out by a bacterium, protist, plant, fungus, simple and complex animal. In this unit, students explore unicellular life for possibly the first time. In earlier grades, they had a clear understanding that living things have needs, however most of their experience was limited to plants and animals. Although they previously studied the structures and functions of the cell, they were not considering the cell as an independent living thing with all of the same needs as a multicellular organism. Students are now expected to make the connections between subcellular structures in a unicellular organism and related structures in a multicellular organism. Additionally, they now explore the interdependence of specialized cells in multicellular organisms, which will help bridge to the next unit: homeostasis. Bristol-Warren, Little Compton, Portsmouth, Tiverton Public Schools, C-15 in collaboration with the Charles A. Dana Center at the University of Texas at Austin Biology, Quarter 2, Unit 2.1 Unicellular and Multicellular Life (10 days) 2011-2012 Future Learning The next unit of study is homeostasis, which will require knowledge of the interdependence of specialized cells in a multicellular organism. It will also require an understanding that unicellular organisms have the same basic survival needs as a multicellular organism, including homeostasis. This exploration of diversity (unicellular to multicellular) sets the stage for their later investigation of evolution and classification. Additional Findings Among 16-year-old students, there is some confusion about levels of organization. Responses suggest that pupils thought that molecules of protein are bigger than the size of a cell and that single-celled organisms contain intestines and lungs. The pupils in the study had been taught about cells in the previous year and
Recommended publications
  • Life Science Vocabulary
    Life Science Vocabulary 1. ABSORPTION – The process by which nutrient molecules pass through the wall of the digestive system into the blood - If a doctor was trying to see why a person could eat a lot but the food was not being used to produce energy in the cells, the first thing the doctor might test would be how well this process was working to get the nutrients through the villi in the stomach. ABSORPTION 2. ACTIVE TRANSPORT – The movement of materials through a cell membrane using energy -If a cell needs a material too large to diffuse through the membrane, the material must go through the membrane using this kind of transport. ACTIVE 3. ADAPTATION – A characteristic that helps an organism survive in its environment or reproduce -Camouflage, body fur, bird beak shape are called ADATATIONS because they are all traits an organism may have as part of its physical makeup to help it survive and reproduce. 4. ADDICTION – A physical dependence on a substance; an intense need by the body for a substance -Alcoholism, smoking) is called this rather than a dependence because it has a physical effect on the body. ADDICTION 5. AIDS (ACQUIRED IMMUNODEFICIENCY SYNDROME) – A disease caused by a virus that attacks the immune system -A person is found to not be able to fight disease in their body through their own immune system. A doctor investigating the cause might first test the patient for this disease. AIDS 6. ALGAE – A plant like protist -A organism is found that does not have all the characteristics of a plant yet it makes its own food.
    [Show full text]
  • The Evolution of Cooperation a White Paper Prepared for the John Templeton Foundation
    The evolution of cooperation A white paper prepared for the John Templeton foundation Contents Introduction - Darwin’s theory of design - The puzzle of cooperation - This review Cooperation across the tree of life - What is cooperation? - Explanations for Cooperation - The success of inclusive fitness - The debate over inclusive fitness - Alternative ways to measure cooperation - Cooperation between species - The social amoeba: the perfect test case for cooperation Cooperation in Humans - What’s special about humans? - Explanations for cooperation in humans - Cooperative games - Inter-personal and cross-cultural differences in cooperation - Psychological systems designed for cooperation - The origins of cooperation in humans - The How: The mechanism of cooperation Conclusion - The puzzle of cooperation revisited - Open questions in cooperation research 1 Introduction You probably take cooperation for granted. You’d be excused for doing so – cooperation is all around us. Children team up to complete a project on time. Neighbours help each other mend fences. Colleagues share ideas and resources. The very fabric of our society is cooperative. We divide up tasks, with farmers producing food, policemen upholding laws, teachers teaching, so that we may all share the benefits of a functioning society without any one person having to master all domains. What’s more, cooperation is logical, at least to you and me. Two hands are better than one, as the saying goes. If you want something another person has, it makes sense that you might share something of your own. Division of labour efficient. If you have a reputation as a cooperative person, others will likely help you down the line. Cooperation is a straightforward way to achieve more than you ever could on your own.
    [Show full text]
  • The Systemic–Evolutionary Theory of the Origin of Cancer (SETOC): a New Interpretative Model of Cancer As a Complex Biological System
    International Journal of Molecular Sciences Hypothesis The Systemic–Evolutionary Theory of the Origin of Cancer (SETOC): A New Interpretative Model of Cancer as a Complex Biological System Antonio Mazzocca Interdisciplinary Department of Medicine, University of Bari School of Medicine, Piazza G. Cesare, 11, 70124 Bari, Italy; [email protected]; Tel.: +39-080-5593-593 Received: 15 September 2019; Accepted: 30 September 2019; Published: 2 October 2019 Abstract: The Systemic–Evolutionary Theory of Cancer (SETOC) is a recently proposed theory based on two important concepts: (i) Evolution, understood as a process of cooperation and symbiosis (Margulian-like), and (ii) The system, in terms of the integration of the various cellular components, so that the whole is greater than the sum of the parts, as in any complex system. The SETOC posits that cancer is generated by the de-emergence of the “eukaryotic cell system” and by the re-emergence of cellular subsystems such as archaea-like (genetic information) and/or prokaryotic-like (mitochondria) subsystems, featuring uncoordinated behaviors. One of the consequences is a sort of “cellular regression” towards ancestral or atavistic biological functions or behaviors similar to those of protists or unicellular organisms in general. This de-emergence is caused by the progressive breakdown of the endosymbiotic cellular subsystem integration (mainly, information = nucleus and energy = mitochondria) as a consequence of long-term injuries. Known cancer-promoting factors, including inflammation, chronic fibrosis, and chronic degenerative processes, cause prolonged damage that leads to the breakdown or failure of this form of integration/endosymbiosis. In normal cells, the cellular “subsystems” must be fully integrated in order to maintain the differentiated state, and this integration is ensured by a constant energy intake.
    [Show full text]
  • Genetic Basis Underlying De Novo Origins of Multicellularity in Response to Predation
    Astrobiology Science Conference 2017 (LPI Contrib. No. 1965) 3331.pdf Genetic Basis Underlying De Novo Origins of Multicellularity in Response to Predation. Kimberly Chen, Frank Rosenzweig and Matthew Herron. Georgia Institute of Technology, Atlanta, GA 30332 ([email protected]). Background: The evolution of multicellularity is ulations were derived from different recombinant cells a Major Transition that sets the stage for subsequent in the starting outcrossed population based on the pat- increases in biological complexity [1]. However, the terning of the ancestral variants across chromosomes genetic mechanisms underlying this major transition from the two parental strains. Within each population, remain poorly understood. The volvocine algae serve the multicellular isolates share a number of mutations as a key model system to study such evolutionary tran- together, but not with the multicellular isolates from sitions, as this group of algae contains unicellular and the other experimental population, or with the unicellu- fully differentiated multicellular species, as well as lar isolates from the control population. Each isolate diverse extant species with intermediate complexity. also accumulated mutations not found in other isolates. Comparative approaches using the three sequenced In addition, the results from BSA suggest instances of volvocine genomes of unicellular Chlamydomonas epistatic interactions among ancestral variants and de- reinhardtii, colonial Gonium pectorale and fully dif- rived mutations, and we are currently
    [Show full text]
  • How the Evolution of Multicellularity Set the Stage for Cancer’
    www.nature.com/bjc CORRESPONDENCE Comment on ‘How the evolution of multicellularity set the stage for cancer’ British Journal of Cancer (2018) 119:133–134; https://doi.org/ multicellular and multicellular evolutionary origins rather than 10.1038/s41416-018-0091-0 pure unicellular evolutionary origin. Ceaseless proliferation is the most characteristic feature of cancer. But, this behaviour is rarely adopted by unicellular organisms in nature. In addition to cell communication, cell-to- We read the paper “How the evolution of multicellularity set the substrate and cell-to-cell adhesions, earlier unicellular organisms stage for cancer” with interest, which was published in a recent (prokaryotes and protists) acquired a variety of anti-proliferative issue of the British Journal of Cancer.1 In this paper, the authors capabilities (cell cycle negative regulation, programmed cell underlined that disruption of gene regulatory networks, which death, contact-dependent inhibition, toxin-antitoxin, etc.) through maintain the multicellular state, induces cancer. The atavistic the pseudo-multicellular mode of life and responses to selective model of cancer is undoubtedly effective in integrating many pressure.6,7 Indeed, exponential growth may lead to species parameters in a performing heuristic framework. It hypothesises extinction due to starvation or destruction of the protective that cancer results from a transition from multicellularity to biofilm. Earlier prokaryotes inevitably faced this problem and unicellularity, through an active constrained process. In this natural evolution proposed different solutions to circumvent schema, dysregulation of a set of fundamental points of them, which were thereafter fixed by heredity. vulnerability, which govern multicellularity maintenance, is Trigos et al.1 underlined that many hallmarks of the malignant sufficient to model carcinogenesis.
    [Show full text]
  • Unit 3 Cells Lesson 6 - Cell Theory What Do Living Things Have in Common?
    Unit 3 Cells Lesson 6 - Cell Theory What do living things have in common? Explore and question spontaneous generation, an early belief on the properties of life. Observing Phenomena In the 1600s, this was a recipe for creating mice: Place a dirty shirt in an open container of wheat for 21 days and the wheat will transform into mice. 1) Discuss what you think of this recipe. People may have believed that it worked because they did not notice the mice that were living in and reproducing in the wheat containers and maybe hiding beneath the dirty shirts. Observing Phenomena Another belief of spontaneous generation was that fish formed from the mud of dry river beds. 2) What do you think about the recipe for making fish from the mud of a dried up river bed? Observing Phenomena People believed that these recipes would work because they believed in “spontaneous generation.” 3) Why do you think it is called spontaneous generation? Because a living thing spontaneously came into existence from a mixture of nonliving things. What beliefs about natural phenomena did you have as a young child? For example, some young children might think that clouds are fluffy like cotton balls or the moon is made of cheese. As you have gotten older, how have these beliefs changed as you acquired more knowledge? 4) Discuss why they might have believed these and what has changed people's understanding of living things today. Investigation 1: Categorizing Substances In your notebook, write a list of what you think all living things have in common.
    [Show full text]
  • Cooperation and Conflict During the Unicellular–Multicellular and Prokaryotic–Eukaryotic Transitions
    Font-Ch17 8/1/03 6:43 PM Page 195 CHAPTER 17 Cooperation and conflict during the unicellular–multicellular and prokaryotic–eukaryotic transitions Richard E. Michod and Aurora M. Nedelcu Individuals often associate in groups that, under group. Initially, group fitness is taken to be the aver- certain conditions, may evolve into higher-level age of the lower-level fitnesses of its members, but, individuals. It is these conditions and this process as the evolutionary transition proceeds, group fit- of individuation of groups that we wish to under- ness becomes decoupled from the fitness of lower- stand. These groups may involve members of the level components. Witness, for example, colonies of same species or different species. For example, eusocial insects or the cell groups that form organ- under certain conditions bacteria associate to form isms; in these cases, some group members have no a fruiting body, amoebae associate to form a slug- individual fitness (sterile castes, somatic cells) yet like slime mold, solitary cells form a colonial group, this does not detract from the fitness of the group, normally solitary wasps breed cooperatively, birds indeed it is presumed to enhance it. associate to form a colony, and mammals form soci- The essence of an evolutionary transition in indi- eties. Likewise, individuals of different species viduality is that the lower-level individuals must as associate and form symbiotic associations; about it were “relinquish” their “claim” to fitness, that is 2000 million years ago, such an association evolved to flourish and multiply, in favor of the new higher- into the first mitochondriate eukaryotic cell.
    [Show full text]
  • Biological Atomism and Cell Theory
    Studies in History and Philosophy of Biological and Biomedical Sciences 41 (2010) 202–211 Contents lists available at ScienceDirect Studies in History and Philosophy of Biological and Biomedical Sciences journal homepage: www.elsevier.com/locate/shpsc Biological atomism and cell theory Daniel J. Nicholson ESRC Research Centre for Genomics in Society (Egenis), University of Exeter, Byrne House, St. Germans Road, Exeter EX4 4PJ, UK article info abstract Keywords: Biological atomism postulates that all life is composed of elementary and indivisible vital units. The activ- Biological atomism ity of a living organism is thus conceived as the result of the activities and interactions of its elementary Cell theory constituents, each of which individually already exhibits all the attributes proper to life. This paper sur- Organismal theory veys some of the key episodes in the history of biological atomism, and situates cell theory within this Reductionism tradition. The atomistic foundations of cell theory are subsequently dissected and discussed, together with the theory’s conceptual development and eventual consolidation. This paper then examines the major criticisms that have been waged against cell theory, and argues that these too can be interpreted through the prism of biological atomism as attempts to relocate the true biological atom away from the cell to a level of organization above or below it. Overall, biological atomism provides a useful perspective through which to examine the history and philosophy of cell theory, and it also opens up a new way of thinking about the epistemic decomposition of living organisms that significantly departs from the phys- icochemical reductionism of mechanistic biology.
    [Show full text]
  • Selection for Synchronized Cell Division in Simple Multicellular Organisms
    Journal of Theoretical Biology 457 (2018) 170–179 Contents lists available at ScienceDirect Journal of Theoretical Biology journal homepage: www.elsevier.com/locate/jtb Selection for synchronized cell division in simple multicellular organisms ∗ Jason Olejarz a, , Kamran Kaveh a, Carl Veller a,b, Martin A. Nowak a,b,c a Program for Evolutionary Dynamics, Harvard University, Cambridge, MA 02138, USA b Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA c Department of Mathematics, Harvard University, Cambridge, MA 02138, USA a r t i c l e i n f o a b s t r a c t Article history: The evolution of multicellularity was a major transition in the history of life on earth. Conditions un- Received 15 March 2018 der which multicellularity is favored have been studied theoretically and experimentally. But since the Revised 30 July 2018 construction of a multicellular organism requires multiple rounds of cell division, a natural question is Accepted 29 August 2018 whether these cell divisions should be synchronous or not. We study a population model in which there Available online 30 August 2018 compete simple multicellular organisms that grow by either synchronous or asynchronous cell divisions. Keywords: We demonstrate that natural selection can act differently on synchronous and asynchronous cell division, Evolutionary dynamics and we offer intuition for why these phenotypes are generally not neutral variants of each other. Multicellularity ©2018 The Authors. Published by Elsevier Ltd. Synchronization Cell division This is an open access article under the CC BY license. (http://creativecommons.org/licenses/by/4.0/) 1.
    [Show full text]
  • Symbiogenesis: the New Principle of Evolution
    Symbiogenesis: The New Principle of Evolution Boris Mikhailovich KOZO-POLYANSKY 1924 Translated from Russian and edited by Victor Fet, Marshall University, West Virginia Originally published as Novyi printsip biologii: ocherk teorii simbiogeneza [The New Principle of Biology: An Essay of the Theory of Symbiogenesis], Puchina, Leningrad- Moscow, 147 pp. We have changed the title and taken other liberties with the text with one goal in mind: to communicate Kozo-Polyansky’s brilliant work and to show its relevance to modern biology. Table of Contents Introduction Foreword A few words about Kozo-Polyansky Victor Fet Preface I. Non-cellular organisms (cytodes) and the bioblast 1. Bioblast of bacteria 2. Bioblast of Cyanophyceae, or blue-green “algae” 3. Symbiosis among cytodes 4. Symbiosis of cytodes with unicellular organisms 5. Symbiosis of cytodes with multicellular organisms 6. Cytodes as the ancestral organisms II. Cell and its organelles 1. Chlorophyll granules and other plastids, or trophoplasts (a) Chlorophyll granules in animals [and protists] (b) Chlorophyll granules in plants [and protists] 2. Centrosome 3. Cell nuclei 4. Mitochondria 5. Ergastoplasm 6. Reticular apparatus of Golgi 7. Nerve fibrils of N_mecs 8. Physodes 9. Myofibrils (contractile fibers) 10. Blepharoplast 11. Elaioplasts 12. Aleurone 13. Cytoplasm III. Multicellular organism A. First series of examples Lichens Unions of higher plants Unions of animals Sponge-algae B. Second series of examples Mucous glands in aquatic ferns (Azolla) and hornworts Stem glands of Gunnera Protein leaf glands in plants Coralloid organs of cycads Mycorrhiza (fungus root) in various plants Roots, tubers and flowers of orchids Heather in general, and its root in particular Toxic glands of Lolium temulentum C.
    [Show full text]
  • Intercellular Competition and the Inevitability of Multicellular Aging
    Intercellular competition and the inevitability of multicellular aging Paul Nelsona,1 and Joanna Masela aDepartment of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ 85721 Edited by Raghavendra Gadagkar, Indian Institute of Science, Bangalore, India, and approved October 6, 2017 (received for review November 14, 2016) Current theories attribute aging to a failure of selection, due to Aging in multicellular organisms occurs at both the cellular either pleiotropic constraints or declining strength of selection and intercellular levels (17). Multicellular organisms, by definition, after the onset of reproduction. These theories implicitly leave require a high degree of intercellular cooperation to maintain open the possibility that if senescence-causing alleles could be homeostasis. Often, cellular traits required for producing a viable identified, or if antagonistic pleiotropy could be broken, the multicellular phenotype come at a steep cost to individual cells effects of aging might be ameliorated or delayed indefinitely. (14, 18, 19). Conversely, many mutant cells that do not invest in These theories are built on models of selection between multicel- holistic organismal fitness have a selective advantage over cells lular organisms, but a full understanding of aging also requires that do. If intercellular competition occurs, such “cheater” or examining the role of somatic selection within an organism. “defector” cells may proliferate and displace “cooperating” cells, Selection between somatic cells (i.e., intercellular competition) with detrimental consequences for the multicellular organism can delay aging by purging nonfunctioning cells. However, the (20, 21). Cancer, a leading cause of death in humans at rates that fitness of a multicellular organism depends not just on how increase with age, is one obvious manifestation of cheater pro- functional its individual cells are but also on how well cells work liferation (22–24).
    [Show full text]
  • The Origins of Multicellular Organisms
    EVOLUTION & DEVELOPMENT 15:1, 41–52 (2013) DOI: 10.1111/ede.12013 The origins of multicellular organisms Karl J. Niklasa,* and Stuart A. Newmanb,* a Department of Plant Biology, Cornell University, Ithaca, NY, 14853, USA b Department of Cell Biology and Anatomy, New York Medical College, Valhalla, NY 10595, USA *Author for correspondence (e‐mail: [email protected], [email protected]) SUMMARY Multicellularity has evolved in several eukary- consistent with trends observed within each of the three major otic lineages leading to plants, fungi, and animals. Theoreti- plant clades. In contrast, a more direct “unicellular ) colonial cally, in each case, this involved (1) cell‐to‐cell adhesion with or siphonous ) parenchymatous” series is observed in fungal an alignment‐of‐fitness among cells, (2) cell‐to‐cell communi- and animal lineages. In these contexts, we discuss the roles cation, cooperation, and specialization with an export‐of‐ played by the cooptation, expansion, and subsequent diversi- fitness to a multicellular organism, and (3) in some cases, fication of ancestral genomic toolkits and patterning modules a transition from “simple” to “complex” multicellularity. during the evolution of multicellularity. We conclude that the When mapped onto a matrix of morphologies based on extent to which multicellularity is achieved using the same developmental and physical rules for plants, these three toolkits and modules (and thus the extent to which multicellu- phases help to identify a “unicellular ) colonial ) filamentous larity is homologous among
    [Show full text]