Predation of Exotic Anolis Porcatus Gray, 1840 (Squamata: Dactyloidae) by the Exotic Cyrtophora Citricola (Forskål, 1775) (Araneae: Araneidae) in Brazil

Total Page:16

File Type:pdf, Size:1020Kb

Predation of Exotic Anolis Porcatus Gray, 1840 (Squamata: Dactyloidae) by the Exotic Cyrtophora Citricola (Forskål, 1775) (Araneae: Araneidae) in Brazil Herpetology Notes, volume 13: 1099-1101 (2020) (published online on 28 December 2020) Caught in the alien web: predation of exotic Anolis porcatus Gray, 1840 (Squamata: Dactyloidae) by the exotic Cyrtophora citricola (Forskål, 1775) (Araneae: Araneidae) in Brazil Karla L. R. Antonio1, Guilherme Sichieri1,2, Pedro Henrique A. G. Moura1,2, Ricardo R. Samelo3, Fabiana R. Costa4, and Ivan Nunes1,* The Cuban green anole, Anolis porcatus Gray, 1840 including Brazil (Álvares and De Maria, 2004; Martins (Squamata: Dactyloidae) (Fig. 1A), is an exotic lizard in and Santos, 2018). Spiders of this genus are mainly Brazil and it belongs to the Anolis carolinensis species distributed in Asia, subtropical Africa and Australian group (Rodríguez-Schettino, 1999; Prates et al., 2016). region (World Spider Catalog, 2020). They build The species is well adapted to urbanised and highly specialised non-sticky webs to catch their prey, which anthropised environments where it can be found in street are typically comprised by flying insects that get trapped lampposts, fences, shrubs, trees and lawns (Prates et al., on the dense mesh (Levi, 1997) and can be restrained 2016). Their individuals are mainly insectivores, but by direct biting or immobilisation wrapping (Lubin, occasionally feed on plant material or small vertebrates 1980). A well-marked characteristic of webs built by (Rodríguez-Schettino, 1999). These characteristics Cyrtophora spiders are their strength and endurance, enable this species to be easily introduced in other which would be an adaptation to withstand strong winds areas, including the Baixada Santista region at the and rainfall in open habitats (Lubin, 1973). Southeastern coast of Brazil where it has been recently On 05 May 2017, around 11:00 h, we observed a reported (Samelo and Barrela, 2016) in an ever-growing predation event on Anolis porcatus by Cyrtophora number (IN, unpublished data). citricola in the Sambaiatuba Environmental Park, The orb-weaving spider Cyrtophora citricola (Forskål, São Vicente, São Paulo, Brazil (~ 23°56’44.83”S, 1775) (Fig. 1B) is an araneid native from the Old World, 46°23’12.39”W, 11 m a.s.l.). An individual of A. but it has been recorded in several countries throughout porcatus was caught on the web of a female C. citricola the Americas (e.g., Alayón, 2003; Víquez, 2007), (identified by M.Sc. Pedro Henrique Martins, Federal University of Minas Gerais, Brazil). The prey was in an advanced decomposition stage (Fig. 1C), but the head still allowed the identification by the presence of dewlap. There are no other species of Anolis collected in the area 1 Laboratory of Herpetology (LHERP), Institute of Biosciences, and surroundings. The area is a socio-environmental Universidade Estadual Paulista Júlio de Mesquita Filho park created by city authorities to function as a leisure (UNESP), Campus do Litoral Paulista. Pça. Infante D. and environmental education place. The surroundings Henrique, s/n, 11330-900, São Vicente, SP, Brazil. are densely populated with low-income improvised 2 Programa de Pós-graduação em Biodiversidade de Ambientes Costeiros, Institute of Biosciences, Universidade Estadual houses where exotic A. porcatus are easily found in Paulista Júlio de Mesquita Filho (UNESP), Campus do high numbers. Thus, it is more likely that the observed Litoral Paulista. Pça. Infante D. Henrique, s/n, 11330-900, individual got accidentally trapped on the spider’s web São Vicente, SP, Brazil. where it was then consumed by the arachnid. 3 Universidade Paulista (Unip), Campus Rangel. Avenida Predation by spiders on small reptiles is not unusual, Francisco Manoel, s/n, 11075-110, Santos, SP, Brazil. and has been reported for multiple species before (e.g., 4 Laboratory of Vertebrate Paleontology and Animal Maffei et al., 2010; Vieira et al., 2012). However, Behavior (LAPC), Center of Natural and Human Sciences, Universidade Federal do ABC (UFABC), campus São predation events on anole lizards by spiders are not Bernardo do Campo, Alameda da Universidade, s/n, 09606- common and have been documented twice before (Armas 045, São Bernardo do Campo, SP, Brazil. and Alayón, 1987; Corey, 1988). Armas and Alayón * Corresponding author. E-mail: [email protected] (1987) have documented A. porcatus being predated by 1100 Karla L. R. Antonio et al. Figure 1. The predation scene of Anolis porcatus by Cyrtophora cytricola at Sambaiatuba Environmental Park, São Vicente, São Paulo state, Brazil. A) Live male A. porcatus; B) Live C. cytricola individual; and C) Predation on A. porcatus (red arrow on the upper right corner) by C. cytricola (red arrow on the lower left corner). Photographs by I. Nunes. Argiope trifasciata Forskål, 1775 (Araneidae) in Cuba prevalence in urbanised environments, more occurrences (Armas and Alayón, 1987), which is closely related to of such nature can be expected. Invasive anole lizards Cyrtophora spiders (clade “Argiopines”; Scharff et al., may have a disastrous impact on ecosystems, displacing 2019). Both records were sighted at the native habitats or predating the native species (Amador et al., 2017). of these anole lizards, and the latter also involving an Therefore, knowing its interactions with other species araneid spider. However, as far as we know, our record in Brazil is of fundamental importance to delineate is the first of spider predation on an Anole lizard where conservation programs and protect these native species. both species are exotic. Nevertheless, given their Predation of exotic Anolis porcatus by the exotic Cyrtophora citricola in Brazil 1101 Acknowledgements. We are thankful to Flora A. Juncá (UEFS) Martins, P.H., Santos, A.J. (2018): Morphology and taxonomy of for the valuable comments on the manuscript, Herpetology Lab at the orb-weaving spider genus Mecynogea, and a peculiar species UNESP crew for helping with fieldwork and to Pedro Henrique of Argiope (Araneae, Araneidae). Zootaxa 4415: 423–451. Martins (UFMG) for identifying the spider specimen. PM and GS Prates, I., Hernandez, L., Samelo, R.R., Carnaval, A.C. (2016): acknowledge Coordenação de Aperfeiçoamento de Pessoal de Molecular identification and geographic origin of an exotic Nível Superior (CAPES) for scholarship funding. anole lizard introduced to Brazil, with remarks on its natural history. South American Journal of Herpetology 11: 220–227. References Rodríguez-Schettino, L. (1999): Iguanid lizards of Cuba. University Press of Florida. Alayón, G.G. (2003): Cyrtophora citricola (Araneidae), registro Samelo, R.R., Barrela, W. (2016): Geographic distribution: Anolis nuevo de araña para Cuba. Cocuyo 13: 14. porcatus (Cuban Green Anole). Herpetological Review 47: Álvares, É.S.S, De Maria, M. (2004): First record of Cyrtophora 256. citricola (Forskål) in Brazil (Araneae, Araneidae). Revista Scharff, N., Coddington, J.A., Blackledge, T.A., Agnarsson, Brasileira de Zoologia 21: 155–156. I., Framenau, V.W., Szűts, T., et al. (2019): Phylogeny of the Armas, L.F., Alayón, G.G. (1987): Observaciones sobre la ecología orb-weaving spider family Araneidae (Araneae: Araneoidea). trófica de una población de Argiope trifasciata (Araneae: Cladistics 36: 1–21. Araneidae) en el Sur de La Habana. Poeyana 344: 1–18. Vieira, W.L.S., Gonçalves, M.B.R., Nóbrega, R.P. (2012): Predation Corey, D.T. (1988): Comments on a wolf spider feeding on a green on Tropidurus hispidus (Squamata: Tropiduridae) by Lasiodora anole lizard. The Journal of Arachnology 16: 391–392. klugi (Aranea: Theraphosidae) in the semiarid caatinga region of Levi, H.W. (1997): The American orb weavers of the genera northeastern Brazil. Biota Neotropica 12: 263–265. Mecynogea, Manogea, Kapogea and Cyrtophora (Araneae: Víquez, C. (2007): First record of Cyrtophora citricola (Forskal) Araneidae). Bulletin of the Museum of Comparative Zoology at from Costa Rica, with notes on some related species (Araneae: Harvard College 155: 215–255. Araneidae). Boletín Sociedad Entomológica Aragonesa 40: Lubin, Y.D. (1973): Web structure and function: the non-adhesive 385–388. orb-web of Cyrtophora moluccensis (Doleschall) (Araneae: World Spider Catalog (2020): World Spider Catalog. Version 21.0. Araneidae). Forma et Functio 6: 337–358. Natural History Museum Bern. Available at: https://wsc.nmbe. Lubin, Y.D. (1980): The predatory behavior of Cyrtophora ch/. Accessed on 29 May 2020. (Araneae: Araneidae). Journal of Arachnology 8: 159–185. Maffei, F., Ubaid, F.K., Jim, J. (2010): Predation of herps by spiders (Araneae) in the Brazilian Cerrado. Herpetology Notes 3: 167–170. Accepted by Robson Ávila.
Recommended publications
  • A Checklist of the Non -Acarine Arachnids
    Original Research A CHECKLIST OF THE NON -A C A RINE A R A CHNIDS (CHELICER A T A : AR A CHNID A ) OF THE DE HOOP NA TURE RESERVE , WESTERN CA PE PROVINCE , SOUTH AFRIC A Authors: ABSTRACT Charles R. Haddad1 As part of the South African National Survey of Arachnida (SANSA) in conserved areas, arachnids Ansie S. Dippenaar- were collected in the De Hoop Nature Reserve in the Western Cape Province, South Africa. The Schoeman2 survey was carried out between 1999 and 2007, and consisted of five intensive surveys between Affiliations: two and 12 days in duration. Arachnids were sampled in five broad habitat types, namely fynbos, 1Department of Zoology & wetlands, i.e. De Hoop Vlei, Eucalyptus plantations at Potberg and Cupido’s Kraal, coastal dunes Entomology University of near Koppie Alleen and the intertidal zone at Koppie Alleen. A total of 274 species representing the Free State, five orders, 65 families and 191 determined genera were collected, of which spiders (Araneae) South Africa were the dominant taxon (252 spp., 174 genera, 53 families). The most species rich families collected were the Salticidae (32 spp.), Thomisidae (26 spp.), Gnaphosidae (21 spp.), Araneidae (18 2 Biosystematics: spp.), Theridiidae (16 spp.) and Corinnidae (15 spp.). Notes are provided on the most commonly Arachnology collected arachnids in each habitat. ARC - Plant Protection Research Institute Conservation implications: This study provides valuable baseline data on arachnids conserved South Africa in De Hoop Nature Reserve, which can be used for future assessments of habitat transformation, 2Department of Zoology & alien invasive species and climate change on arachnid biodiversity.
    [Show full text]
  • 2017 AAS Abstracts
    2017 AAS Abstracts The American Arachnological Society 41st Annual Meeting July 24-28, 2017 Quéretaro, Juriquilla Fernando Álvarez Padilla Meeting Abstracts ( * denotes participation in student competition) Abstracts of keynote speakers are listed first in order of presentation, followed by other abstracts in alphabetical order by first author. Underlined indicates presenting author, *indicates presentation in student competition. Only students with an * are in the competition. MAPPING THE VARIATION IN SPIDER BODY COLOURATION FROM AN INSECT PERSPECTIVE Ajuria-Ibarra, H. 1 Tapia-McClung, H. 2 & D. Rao 1 1. INBIOTECA, Universidad Veracruzana, Xalapa, Veracruz, México. 2. Laboratorio Nacional de Informática Avanzada, A.C., Xalapa, Veracruz, México. Colour variation is frequently observed in orb web spiders. Such variation can impact fitness by affecting the way spiders are perceived by relevant observers such as prey (i.e. by resembling flower signals as visual lures) and predators (i.e. by disrupting search image formation). Verrucosa arenata is an orb-weaving spider that presents colour variation in a conspicuous triangular pattern on the dorsal part of the abdomen. This pattern has predominantly white or yellow colouration, but also reflects light in the UV part of the spectrum. We quantified colour variation in V. arenata from images obtained using a full spectrum digital camera. We obtained cone catch quanta and calculated chromatic and achromatic contrasts for the visual systems of Drosophila melanogaster and Apis mellifera. Cluster analyses of the colours of the triangular patch resulted in the formation of six and three statistically different groups in the colour space of D. melanogaster and A. mellifera, respectively. Thus, no continuous colour variation was found.
    [Show full text]
  • <I>ANOLIS</I> LIZARDS in the FOOD WEBS of STRUCTURALLY
    University of Tennessee, Knoxville TRACE: Tennessee Research and Creative Exchange Doctoral Dissertations Graduate School 12-2016 ASSESSING THE FUNCTIONAL SIMILARITY OF NATIVE AND INVASIVE ANOLIS LIZARDS IN THE FOOD WEBS OF STRUCTURALLY-SIMPLE HABITATS IN FLORIDA Nathan W. Turnbough University of Tennessee, Knoxville, [email protected] Follow this and additional works at: https://trace.tennessee.edu/utk_graddiss Part of the Terrestrial and Aquatic Ecology Commons Recommended Citation Turnbough, Nathan W., "ASSESSING THE FUNCTIONAL SIMILARITY OF NATIVE AND INVASIVE ANOLIS LIZARDS IN THE FOOD WEBS OF STRUCTURALLY-SIMPLE HABITATS IN FLORIDA. " PhD diss., University of Tennessee, 2016. https://trace.tennessee.edu/utk_graddiss/4174 This Dissertation is brought to you for free and open access by the Graduate School at TRACE: Tennessee Research and Creative Exchange. It has been accepted for inclusion in Doctoral Dissertations by an authorized administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact [email protected]. To the Graduate Council: I am submitting herewith a dissertation written by Nathan W. Turnbough entitled "ASSESSING THE FUNCTIONAL SIMILARITY OF NATIVE AND INVASIVE ANOLIS LIZARDS IN THE FOOD WEBS OF STRUCTURALLY-SIMPLE HABITATS IN FLORIDA." I have examined the final electronic copy of this dissertation for form and content and recommend that it be accepted in partial fulfillment of the equirr ements for the degree of Doctor of Philosophy, with a major in Ecology and Evolutionary Biology.
    [Show full text]
  • A Protocol for Online Documentation of Spider Biodiversity Inventories Applied to a Mexican Tropical Wet Forest (Araneae, Araneomorphae)
    Zootaxa 4722 (3): 241–269 ISSN 1175-5326 (print edition) https://www.mapress.com/j/zt/ Article ZOOTAXA Copyright © 2020 Magnolia Press ISSN 1175-5334 (online edition) https://doi.org/10.11646/zootaxa.4722.3.2 http://zoobank.org/urn:lsid:zoobank.org:pub:6AC6E70B-6E6A-4D46-9C8A-2260B929E471 A protocol for online documentation of spider biodiversity inventories applied to a Mexican tropical wet forest (Araneae, Araneomorphae) FERNANDO ÁLVAREZ-PADILLA1, 2, M. ANTONIO GALÁN-SÁNCHEZ1 & F. JAVIER SALGUEIRO- SEPÚLVEDA1 1Laboratorio de Aracnología, Facultad de Ciencias, Departamento de Biología Comparada, Universidad Nacional Autónoma de México, Circuito Exterior s/n, Colonia Copilco el Bajo. C. P. 04510. Del. Coyoacán, Ciudad de México, México. E-mail: [email protected] 2Corresponding author Abstract Spider community inventories have relatively well-established standardized collecting protocols. Such protocols set rules for the orderly acquisition of samples to estimate community parameters and to establish comparisons between areas. These methods have been tested worldwide, providing useful data for inventory planning and optimal sampling allocation efforts. The taxonomic counterpart of biodiversity inventories has received considerably less attention. Species lists and their relative abundances are the only link between the community parameters resulting from a biotic inventory and the biology of the species that live there. However, this connection is lost or speculative at best for species only partially identified (e. g., to genus but not to species). This link is particularly important for diverse tropical regions were many taxa are undescribed or little known such as spiders. One approach to this problem has been the development of biodiversity inventory websites that document the morphology of the species with digital images organized as standard views.
    [Show full text]
  • Arthropods of Elm Fork Preserve
    Arthropods of Elm Fork Preserve Arthropods are characterized by having jointed limbs and exoskeletons. They include a diverse assortment of creatures: Insects, spiders, crustaceans (crayfish, crabs, pill bugs), centipedes and millipedes among others. Column Headings Scientific Name: The phenomenal diversity of arthropods, creates numerous difficulties in the determination of species. Positive identification is often achieved only by specialists using obscure monographs to ‘key out’ a species by examining microscopic differences in anatomy. For our purposes in this survey of the fauna, classification at a lower level of resolution still yields valuable information. For instance, knowing that ant lions belong to the Family, Myrmeleontidae, allows us to quickly look them up on the Internet and be confident we are not being fooled by a common name that may also apply to some other, unrelated something. With the Family name firmly in hand, we may explore the natural history of ant lions without needing to know exactly which species we are viewing. In some instances identification is only readily available at an even higher ranking such as Class. Millipedes are in the Class Diplopoda. There are many Orders (O) of millipedes and they are not easily differentiated so this entry is best left at the rank of Class. A great deal of taxonomic reorganization has been occurring lately with advances in DNA analysis pointing out underlying connections and differences that were previously unrealized. For this reason, all other rankings aside from Family, Genus and Species have been omitted from the interior of the tables since many of these ranks are in a state of flux.
    [Show full text]
  • Literature Cited in Lizards Natural History Database
    Literature Cited in Lizards Natural History database Abdala, C. S., A. S. Quinteros, and R. E. Espinoza. 2008. Two new species of Liolaemus (Iguania: Liolaemidae) from the puna of northwestern Argentina. Herpetologica 64:458-471. Abdala, C. S., D. Baldo, R. A. Juárez, and R. E. Espinoza. 2016. The first parthenogenetic pleurodont Iguanian: a new all-female Liolaemus (Squamata: Liolaemidae) from western Argentina. Copeia 104:487-497. Abdala, C. S., J. C. Acosta, M. R. Cabrera, H. J. Villaviciencio, and J. Marinero. 2009. A new Andean Liolaemus of the L. montanus series (Squamata: Iguania: Liolaemidae) from western Argentina. South American Journal of Herpetology 4:91-102. Abdala, C. S., J. L. Acosta, J. C. Acosta, B. B. Alvarez, F. Arias, L. J. Avila, . S. M. Zalba. 2012. Categorización del estado de conservación de las lagartijas y anfisbenas de la República Argentina. Cuadernos de Herpetologia 26 (Suppl. 1):215-248. Abell, A. J. 1999. Male-female spacing patterns in the lizard, Sceloporus virgatus. Amphibia-Reptilia 20:185-194. Abts, M. L. 1987. Environment and variation in life history traits of the Chuckwalla, Sauromalus obesus. Ecological Monographs 57:215-232. Achaval, F., and A. Olmos. 2003. Anfibios y reptiles del Uruguay. Montevideo, Uruguay: Facultad de Ciencias. Achaval, F., and A. Olmos. 2007. Anfibio y reptiles del Uruguay, 3rd edn. Montevideo, Uruguay: Serie Fauna 1. Ackermann, T. 2006. Schreibers Glatkopfleguan Leiocephalus schreibersii. Munich, Germany: Natur und Tier. Ackley, J. W., P. J. Muelleman, R. E. Carter, R. W. Henderson, and R. Powell. 2009. A rapid assessment of herpetofaunal diversity in variously altered habitats on Dominica.
    [Show full text]
  • Cyrtophora Citricola (Arachnida: Araneae: Araneidae)1 G
    EENY-535 A Colonial Tentweb Orbweaver scientific name: Cyrtophora citricola (Arachnida: Araneae: Araneidae)1 G. B. Edwards2 Introduction Distribution Few species of spiders can be considered truly social, but Cyrtophora citricola is widespread in subtropical and more species, particularly web-building spiders, live in tropical areas of Asia, Africa, Australia, and in the warm close proximity to one another, potentially gaining benefits coastal Mediterranean areas of Europe (Blanke 1972, by this association. Among these benefits are sharing of Leborgne et al. 1998). It was found in Colombia in 1996 frame threads (Kullman 1959), improved defense against (Levi 1997, Pulido 2002), the Dominican Republic in 1999 predators and parasites (Cangialosi 1990), improved prey (Alayón 2001), Florida in 2000, and Cuba in 2003 (Alayón capture efficiency (Rypstra 1979, Uetz 1989), and greater 2003). Survey work was performed August 2000, April egg production (Smith 1983). 2001, and July 2002 to document the spread of the species in Florida. The survey was focused on canal bridges because Of the three main types of aggregative behaviors exhibited Cyrtophora citricola has a tendency to make its webs on by spiders, the one with the least social interaction involves the guardrails of canal bridges (Figure 6). The survey work individuals making and maintaining their own webs within in 2000 established a preliminary periphery of infestation a colonial matrix of interconnected webs (Buskirk 1975). in a narrow band from west of Homestead to northeast of One such species, which has become highly successful Homestead. through a lifestyle of colonial aggregation, is the orbweaver Cyrtophora citricola Forskål. This species is known as a To date, the known distribution of Cyrtophora citricola in tentweb spider in Africa (Dippenaar-Schoeman and Jocqué Florida is a parallelogram-shaped area from east of the 1997).
    [Show full text]
  • Diversity of Common Garden and House Spider in Tinsukia District, Assam Has Been Undertaken
    Journal of Entomology and Zoology Studies 2019; 7(4): 1432-1439 E-ISSN: 2320-7078 P-ISSN: 2349-6800 Diversity of common garden and house spider in JEZS 2019; 7(4): 1432-1439 © 2019 JEZS Tinsukia district Received: 01-05-2019 Accepted: 05-06-2019 Achal Kumari Pandit Achal Kumari Pandit Graduated from Department of Zoology Digboi College, Assam, Abstract India A study on the diversity of spider fauna inside the Garden and House in Tinsukia district, Assam. This was studied from September 2015 to July 2019. A total of 18 family, 52 genus and 80 species were recorded. Araneidae is the most dominant family among all followed by the silicide family. The main aim of this study is to bring to known the species which is generally observed by the humans in this area. Beside seasonal variation in species is higher in summer season as compared to winter. Also many species were observed each year in same season repeatedly during the study period, further maximum number of species is seen in vegetation type of habitat. Keywords: Spider, diversity, Tinsukia, seasonal, habitat 1. Introduction As one of the most widely recognized group of Arthropods, Spiders are widespread in distribution except for a few niches, such as Arctic and Antarctic. Almost every plant has its spider fauna, as do dead leaves, on the forest floor and on the trees. They may be found at varied locations, such as under bark, beneath stones, below the fallen logs, among foliage, [23] house dwellings, grass, leaves, underground, burrows etc. (Pai IK., 2018) . Their success is reflected by the fact that, on our planet, there are about 48,358 species recorded till now according to World Spider Catalog.
    [Show full text]
  • Arachnid Orchestra. Jam Sessions Tropical Tent-Web Spider
    Arachnid Orchestra. Jam Sessions www.arachnidorchestra.org Tropical Tent-Web Spider Cyrtophora citricola (Forskål, 1775) Contributed by Yael Lubin Cyrtophora citricola is an iconic colonial spider, with a distribution from East Africa and West Africa to the Mediterranean and as far as India. Recently it has also reached the Americas. Its individual web contains a tightly woven sheet with vertical threads attached to it, forming a tent shaped orb web. In evolutionary terms, this is a new form, and a very complex one that takes the spider a long time to build. The three-dimensional prey-capture webs are stacked one on top of the other much like flats in an apartment block. Each web has a single owner and the individual webs are connected to one another by frame threads. Up to a few thousand spiders can inhabit a single tree, covering the tree with their silk. When an unfortunate insect flies into the colony, the spider senses the impact through vibrations transmitted through the silk threads alerting nearby spiders that then converge on the prey. However, only one spider, usually the web owner, will finally capture and feed on the insect. Their vibrational communication is additionally important for courtship and to defend the colony. Wasps are the main enemies of colonial Cyrtophora. When a wasp attempts to attack a Cyrtophora, the spider will shake its web violently to deter the wasp, and these web vibrations induce other spiders in the colony to equally shake their webs. Soon the entire colony is “humming” with vibrating webs. Males of Cyrtophora citricola, which are smaller in size than females, wander through the colony in search of a virgin female and when one is located, the male begins to court her by plucking and strumming on the threads of her web.
    [Show full text]
  • Spiders in a Hostile World (Arachnoidea, Araneae)
    Arachnologische Mitteilungen 40: 55-64 Nuremberg, January 2011 Spiders in a hostile world (Arachnoidea, Araneae) Peter J. van Helsdingen doi: 10.5431/aramit4007 Abstract: Spiders are powerful predators, but the threats confronting them are numerous. A survey is presented of the many different arthropods which waylay spiders in various ways. Some food-specialists among spiders feed exclusively on spiders. Kleptoparasites are found among spiders as well as among Mecoptera, Diptera, Lepidoptera, and Heteroptera. Predators are found within spiders’ own population (cannibalism), among other spider species (araneophagy), and among different species of Heteroptera, Odonata, and Hymenoptera. Parasitoids are found in the orders Hymenoptera and Diptera. The largest insect order, Coleoptera, comprises a few species among the Carabidae which feed on spiders, but beetles are not represented among the kleptoparasites or parasitoids. Key words: aggressive mimicry, araneophagy, cannibalism, kleptoparasitism, parasitoid Spiders are successful predators with important tools for prey capture, ������������������ ������������������������������ viz, venom, diverse types of silk for ������������ ������������������������������ snaring and wrapping, and speed. ����������� ���������������� But spiders are prey for other organ- isms as well. This paper presents a survey of all the threats spiders have to face from other arthropods ������ (excluding mites), based on data from the literature and my own observations. Spiders are often defenceless against the attacks
    [Show full text]
  • 1Department of Entomology 2Department of Entomology And
    PREDATORY BEHAVIOR OF THE BASILICA SPIDER, MECYNOGEA LEMNISCATA (ARANEAE, ARANEIDAE) BY MARIANNE B. WILLEy1 MARGARET A. JOHNSON2 AND PETER H. ADLER1 1Department of Entomology 114 Long Hall Clemson University Clemson, South Carolina 29634 2Department of Entomology and Nematology University of Florida Gainesville, Florida 32604 ABSTRACT Females of Mecynogea lemniscata (Walckenaer) are generalist predators. Sixteen behavioral acts were described for M. lemnis- cata preying on house flies, carpenter ants, and Asiatic oak wee- vils in the field and laboratory. Behavioral sequences varied with prey type, but generally began with plucking and diverged there- after. The predatory behavior of M. lemniscata is most similar to that of the higher araneids. INTRODUCTION Mecynogea lemniscata is currently placed in the Araneidae in subfamily Cyrtophorinae (Coddington, 1989), despite having many characteristics in common with linyphiids. Mecynogea has a his- tory of taxonomic uncertainty and has been placed in either the Linyphiidae or the Araneidae by various authorities. Within the Araneidae, Mecynogea has been positioned both as a primitive araneid (Kaston, 1964) and as an advanced araneid (Levi, 1980). Manuscript received 30 April 1992 153 154 Psyche [Vol. 99 Some of the past uncertainty surrounding the taxonomic place- ment of Mecynogea is because of the superficial similarity in web structure between Mecynogea and linyphiids; however, web struc- ture is not necessarily a reliable phylogenetic indicator (Levi, 1978). Exline (1948) hypothesized that dome web construction by Mecynogea and Linyphia arose independently through convergent evolution. Similarities between Cyrtophora webs and linyphiid webs also are believed to be the result of convergence (Nentwig and Heimer, 1983; Lubin, 1980), and based on behavior and morphology, Cyrtophora is similar to Araneidae (Blanke, 1972 cited in Lubin, 1980).
    [Show full text]
  • The Ecology and Behavior of Some Web-Building Spiders from Papua New Guinea
    Pacific Insects Vol. 21, no. 2-3: 133-164 21 December 1979 SPECIALISTS AND GENERALISTS: THE ECOLOGY AND BEHAVIOR OF SOME WEB-BUILDING SPIDERS FROM PAPUA NEW GUINEA IL Psechrus argentatus and Fecenia sp. (Araneae: Psechridae) By Michael H. Robinson and Yael D. Lubin1 Abstract. This is Part II of a 3-part series. Two genera of the little-known spider family Psechridae were studied at Wau, Papua New Guinea. Psechrus argentatus builds a horizontal sheet web that it operates from beneath. Juvenile stages oi Fecenia sp. build a conical web with a central detritus-covered retreat; at a later stage in the development of the spider, the conical web is replaced by a planar pseudo-orb. The structure and siting of the webs of both species is described and illustrated. Both psechrids immobilize all prey by biting and are not capable of prey-wrapping behavior comparable to that of araneids. The sequences of behaviors involved in the capture of flies, moths and orthopterans were studied and are described herein, along with descriptions of the units of predatory behavior. Courtship and mating is described for Fecenia sp. Comparisons between the predatory behavior of the 2 psechrid genera and between psechrids and araneids provide a basis for advancing functional and evolutionary interpretations of the correlation be­ tween web structure and predatory repertories in both families. It is suggested that the web is not merely a trap, but a platform for predatory activities, a protection against predators and a device enhancing the range of prey-detecting sense organs. Differences in the efficiency with which webs of different types fulfill these diverse functions are reflected in many aspects of the biology of the spiders concerned.
    [Show full text]