The Role of Neural Crest in Vertebrate Evolution

Total Page:16

File Type:pdf, Size:1020Kb

The Role of Neural Crest in Vertebrate Evolution The Role of Neural Crest in Vertebrate Evolution: Tissue-specific Genetic Labeling in Zebrafish (Danio rerio) Reveals Neural Crest Contribution to Gills, but Not to Scales Dissertation der Mathematisch-Naturwissenschaftlichen Fakultät der Eberhard Karls Universität Tübingen zur Erlangung des Grades eines Doktors der Naturwissenschaften (Dr. rer. nat.) vorgelegt von Alessandro Mongera aus Trento (Italien) Tübingen 2013 Tag der mündlichen Qualifikation: 09.12.2013 Dekan: Prof. Dr. Wolfgang Rosenstiel 1. Berichterstatter: Prof. Dr. Christiane Nüsslein-Volhard 2. Berichterstatter: Prof. Dr. Rolf Reuter 3. Berichterstatter: Dr. Didier Stainier to my friends Contents Abstract 7 Zusammenfassung 11 1 Introduction 15 1.1 Neural crest as a source of vertebrate innovations 15 1.2 Tools for cell lineage tracing . 18 1.2.1 Non-genetic labeling . 18 1.2.2 Cre/loxP-mediated genetic labeling . 21 1.3 The gills . 23 1.4 The post-cranial integumentary skeleton . 25 2 Results 29 Publication 1 . 29 Publication 2 . 43 3 Discussion 49 3.1 NC-driven expansion of the respiratory surface 49 3.2 Mesoderm, and not NC, contributes to fish scales 52 3.3 Tg(sox10:ERT2-Cre) line as a tool to under- stand vertebrate evolution . 55 Bibliography 56 5 Own contribution to the manuscripts 69 Curriculum vitae 71 Full publication list 73 Acknowledgments 75 Appendix 77 Publication 3 . 79 Publication 4 . 95 6 Abstract During vertebrate evolution, the development of an active, predatory lifestyle and an increased body size coincided with the appearance of many morphological innovations. Among these vertebrate-specific phenotypic features, a major role in promoting the massive radiation of this animal group has been played by a new, true head. The neural crest (NC), an em- bryonic population of multipotent cells that first appears within the chordate phylum, is a major ontogenetic source for the ver- tebrate head and its contribution to the cranial skeleton has been intensively studied in different model organisms. How- ever, this head is not exclusively formed by a skull protecting a centralized nervous system and a jaw for water influx control and prey capture, but also by gills that serve as a new respirat- ory organ. The role of NC in the expansion of the respiratory surface of the gills has been so far neglected. In particular, the embryonic origin of pillar cells, the functional and structural core of the gill filaments, is unclear, although it has been sug- gested that they may derive from the lateral plate mesoderm, from endothelial cells, or from smooth muscles. During my doctoral studies, I used genetic lineage labeling to first address the contribution of NC to the gills of adult zebrafish. I generated a tamoxifen-inducible sox10:ERT2-Cre 7 line and labeled NC cells by inducing Cre/loxP-dependent re- combination at embryonic stages. In the gills, intriguingly, we observed labeled primary and secondary filaments. In particu- lar, pillar cells, which mechanically support the filaments and form gill-specific capillaries, have a NC origin. This result points to a critical role of NC in facilitating more efficient gas ex- change and thus uncovers a novel, direct involvement of this embryonic tissue in the evolution of respiratory systems during vertebrate evolution. Within the phylum Chordata, vertebrates evolved also the abil- ity to produce a mineralized skeleton, which represents along with the expanded gills another important innovation. This skeleton, which supports the body, allows locomotion, and pro- tects internal organs, can be divided into a superficial dermal skeleton (integumentary skeleton) and a more internal endo- skeleton. Bones forming the dermal skeleton (dermal bones) do not derive from cartilaginous tissues but form directly from intramembraneous ossifications; bones of the endoskeleton (en- dochondral bones), on the contrary, develop from pre-formed cartilage and replace it. While during tetrapod evolution and the conquest of land a post-cranial integumentary skeleton has been lost in many lineages and only the dermal bones of the skull were maintained, the trunk in fish remains covered by a large variety of diverse skeletal elements, which are gener- ally referred to as ’scales’. Structural and ontogenic similarit- ies with NC-derived teeth and cranial dermal bones have led to the widely accepted view that scales may derive from NC and not from mesoderm likewise parts of the neurocranium and the complete axial endoskeleton. I tested this hypothesis by Cre/loxP-based genetic labeling and found that sox10:ERT2- Cre-dependent recombination does not lead to substantial mark- 8 ing of post-cranial integumentary skeletal elements, suggest- ing a non-NC origin for these tissues. By using a mesoderm- specific Cre-driver line and performing transplantation experi- ments and transposon-mediated clonal analysis I found a meso- dermal origin for scale-forming osteoblasts, thus i) supporting the notion of a non-skeletogenic trunk NC in vivo and ii) re- jecting a long-standing, but not yet experimentally tested, in- fluential assumption. 9 Zusammenfassung Während der Evolution der Wirbeltiere ging die Entwicklung von räuberischer Ernährungsweise und wachsender Körpergröße mit der Entstehung vieler neuer Körperstrukturen einher. Zu diesen vertebratenspezifischen Strukturen gehört insbesondere die Entwicklung des Kopfes mit Schädel und Kiefer, die eine zentrale Rolle bei der massiven Zunahme der Formenvielfalt der Wirbeltiere gespielt hat. Die Neuralleiste, eine Anlage mul- tipotenter embryonaler Zellen, die neu im Phylum der Chor- datiere erscheint, ist die primäre ontogenetische Quelle für den Kopf der Wirbeltiere. Der Beitrag der Neuralleiste zur Bildung der Knochen des Kopfes wurde in unterschiedlichen Modellor- ganismen intensiv untersucht. Der neue Kopf der Vertebraten besteht neben dem Schädel, der das zentrale Nervensystem schützt, und dem Kiefer, der den Wasserstrom regelt und zum Fang der Beute dient, auch aus Kiemen, die als neues Atmung- sorgan fungieren. Die Rolle der Neuralleiste bei der Entstehung der Kiemen, die eine entscheidende Vergrößerung der Ober- fläche für den Gasaustausch darstellen, wurde bislang wenig untersucht. Insbesondere ist die embryologische Herkunft der Pillarzellen, welche die funktionale und strukturelle Basis der Kiemenlamellen bilden, noch unklar. Es wurde bisher ange- nommen, dass sie aus dem Seitenplattenmesoderm, den en- 11 dothelialen Zellen oder der glatten Muskulatur entstehen. Während meiner Doktorarbeit habe ich eine genetische, klonale Analyse durchgeführt, um den Beitrag der Neuralleiste an der Bildung adulter Strukturen, besonders der Kiemen, im Zebra- bärbling zu untersuchen. Eine Tamoxifen-induzierbare sox10: ERT2-Cre-Linie wurde generiert. Mit dieser wurde in Neu- ralleistenzellen im embryonalen Stadium Cre/loxP-abhängige Rekombination in einem Reportergen induziert. Die resultie- renden Klone markieren Neuralleistenzellen und ihre Nachkom- men. In den Kiemen konnte ich eine Markierung primärer und sekundärer Kiemenlamellen nachweisen. Insbesondere wurden Pillarzellen, welche die Lamellen mechanisch unterstützen und kiemenspezifische Kapillaren bilden, markiert und damit ge- zeigt, dass diese von der Neuralleiste abstammen. Dieses Re- sultat zeigt, dass die Neuralleiste bei der Entwicklung der Kie- men eine wichtige Rolle spielt und direkt an der Evolution des effizienteren Atmungsystems der Wirbeltiere beteiligt ist. Im Phylum der Chordaten haben Wirbeltiere die Fähigkeit ent- wickelt, mineralisiertes Knochengewebe, aus dem das Skelett besteht, zu bilden,. Dieses Skelett, das den Körper stützt, er- möglicht eine differenzierte Fortbewegung und beschützt auch die inneren Organe. Es besteht aus dem äußeren Dermalskelett und dem tiefergelegenen Innenskelett (Endoskelett). Knochen, die das Dermalskelett bilden (Hautknochen), entstehen nicht aus Knorpelgewebe, sondern durch dermale Ossifikation. Kno- chen des Endoskeletts (enchondrale Knochen) hingegen ent- wickeln sich aus vorgeformtem Knorpel und ersetzen ihn im Laufe der Entwicklung. Während der Evolution ist in den mei- sten Landwirbeltieren das postkraniale Dermalskelett verloren gegangen, lediglich die Dermalknochen des Schädels sind erhal- ten geblieben. Dagegen ist bei Fischen der Rumpf von Schup- 12 pen, die aus Dermalknochen bestehen, bedeckt. Strukturelle und ontogenetische Ähnlichkeiten mit den aus der Neuralleiste stammenden Zähnen und kranialen Hautknochen haben zur weitverbreiteten Annahme geführt, dass Schuppen auch aus der Neuralleiste entstammen und nicht aus dem Mesoderm, wie andere Teile des Neurokraniums und das axiale Endoskelett. Ich habe diese Hypothese durch genetische, klonale Analyse überprüft und herausgefunden, dass die durch sox10:ERT2- Cre hervorgerufenen Rekombinationen nicht zu einer wesent- lichen Markierung von postkranialen dermalen Skelettelemen- ten führen. Durch klonale Analyse mit einer mesodermspezifi- schen Cre-Linie sowie Transplantationsexperimenten und Trans- poson-basierter Markierung habe ich gezeigt, dass die schup- penbildenden Knochenzellen einen mesodermalen Ursprung ha- ben. Damit konnte ich die bisher ungeprüfte Hypothese, dass Schuppen aus der Neuralleiste abstammen, widerlegen und zei- gen, dass die knochenbildene Rolle der Neuralleiste auf Struk- turen des Kopfes beschränkt ist. 13 CHAPTER 1 Introduction 1.1 Neural crest as a source of vertebrate innovations The neural crest (NC) is an embryonic population of multipo- tent cells that first appears within the phylum Chordata and represents the ontogenetic source of a large
Recommended publications
  • Transcriptional Adaptation in Caenorhabditis Elegans
    RESEARCH ARTICLE Transcriptional adaptation in Caenorhabditis elegans Vahan Serobyan1*, Zacharias Kontarakis1†, Mohamed A El-Brolosy1, Jordan M Welker1, Oleg Tolstenkov2,3‡, Amr M Saadeldein1, Nicholas Retzer1, Alexander Gottschalk2,3,4, Ann M Wehman5, Didier YR Stainier1* 1Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany; 2Institute for Biophysical Chemistry, Goethe University, Frankfurt Am Main, Germany; 3Cluster of Excellence Frankfurt - Macromolecular Complexes (CEF-MC), Goethe University, Frankfurt Am Main, Germany; 4Buchmann Institute for Molecular Life Sciences (BMLS), Goethe University, Frankfurt Am Main, Germany; 5Rudolf Virchow Center, University of Wu¨ rzburg, Wu¨ rzburg, Germany Abstract Transcriptional adaptation is a recently described phenomenon by which a mutation in *For correspondence: one gene leads to the transcriptional modulation of related genes, termed adapting genes. At the [email protected] molecular level, it has been proposed that the mutant mRNA, rather than the loss of protein (VS); function, activates this response. While several examples of transcriptional adaptation have been [email protected] (DYRS) reported in zebrafish embryos and in mouse cell lines, it is not known whether this phenomenon is observed across metazoans. Here we report transcriptional adaptation in C. elegans, and find that † Present address: Genome this process requires factors involved in mutant mRNA decay, as in zebrafish and mouse. We Engineering and Measurement further uncover a requirement for Argonaute proteins and Dicer, factors involved in small RNA Lab, ETH Zurich, Functional maturation and transport into the nucleus. Altogether, these results provide evidence for Genomics Center Zurich of ETH transcriptional adaptation in C.
    [Show full text]
  • Transcriptional Adaptation in Caenorhabditis Elegans
    Research Collection Journal Article Transcriptional adaptation in Caenorhabditis elegans Author(s): Serobyan, Vahan; Kontarakis, Zacharias; El-Brolosy, Mohamed A.; Welker, Jordan M.; Tolstenkov, Oleg; Saadeldein, Amr M.; Retzer, Nicholas; Gottschalk, Alexander; Wehman, Ann M.; Stainier, Didier Y.R. Publication Date: 2020 Permanent Link: https://doi.org/10.3929/ethz-b-000396015 Originally published in: eLife 9, http://doi.org/10.7554/eLife.50014 Rights / License: Creative Commons Attribution 4.0 International This page was generated automatically upon download from the ETH Zurich Research Collection. For more information please consult the Terms of use. ETH Library RESEARCH ARTICLE Transcriptional adaptation in Caenorhabditis elegans Vahan Serobyan1*, Zacharias Kontarakis1†, Mohamed A El-Brolosy1, Jordan M Welker1, Oleg Tolstenkov2,3‡, Amr M Saadeldein1, Nicholas Retzer1, Alexander Gottschalk2,3,4, Ann M Wehman5, Didier YR Stainier1* 1Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany; 2Institute for Biophysical Chemistry, Goethe University, Frankfurt Am Main, Germany; 3Cluster of Excellence Frankfurt - Macromolecular Complexes (CEF-MC), Goethe University, Frankfurt Am Main, Germany; 4Buchmann Institute for Molecular Life Sciences (BMLS), Goethe University, Frankfurt Am Main, Germany; 5Rudolf Virchow Center, University of Wu¨ rzburg, Wu¨ rzburg, Germany Abstract Transcriptional adaptation is a recently described phenomenon by which a mutation in *For correspondence: one gene leads to the transcriptional modulation of related genes, termed adapting genes. At the [email protected] molecular level, it has been proposed that the mutant mRNA, rather than the loss of protein (VS); function, activates this response. While several examples of transcriptional adaptation have been [email protected] (DYRS) reported in zebrafish embryos and in mouse cell lines, it is not known whether this phenomenon is observed across metazoans.
    [Show full text]
  • Role of Npas4l and Hif Pathway in Endothelial Cell Specification and Specialization in Vertebrates
    Role of npas4l and Hif pathway in endothelial cell specification and specialization in vertebrates Dissertation zur Erlangung des Doktorgrades der Naturwissenschaften vorgelegt beim Fachbereich 15 der Goethe-Universität in Frankfurt am Main von Michele Marass aus Trieste, Italien Frankfurt 2018 (D30) vom Fachbereich Biowissenschaften (FB15) der Johann Wolfgang Goethe - Universität als Dissertation angenommen. Dekan: Prof. Dr. Sven Klimpel Gutachter: Prof. Dr. Didier Y. R. Stainier Prof. Dr. Virginie Lecaudey Datum der Disputation : 2 REVIEWERS Prof. Dr. Didier Stainier, Ph.D. Department of Developmental Genetics Max Planck Institute for Heart and Lung Research Bad Nauheim, Germany and Prof. Dr. Virginie Lecaudey, Ph.D. Department of Developmental Biology of Vertebrates Institute of Cell Biology and Neuroscience Johann Wolfgang Goethe University Frankfurt am Main, Germany 3 ERKLÄRUNG Ich erkläre hiermit, dass ich mich bisher keiner Doktorprüfung im Mathematisch-Naturwissenschaftlichen Bereich unterzogen habe. Frankfurt am Main, den ............................................ (Unterschrift) Versicherung Ich erkläre hiermit, dass ich die vorgelegte Dissertation über Role of npas4l and Hif pathway in endothelial cell specification and specialization in vertebrates selbständig angefertigt und mich anderer Hilfsmittel als der in ihr angegebenen nicht bedient habe, insbesondere, dass alle Entlehnungen aus anderen Schriften mit Angabe der betreffenden Schrift gekennzeichnet sind. Ich versichere, die Grundsätze der guten wissenschaftlichen Praxis
    [Show full text]
  • The Zebrafish Issue of Development Christiane Nüsslein-Volhard*
    SPOTLIGHT 4099 Development 139, 4099-4103 (2012) doi:10.1242/dev.085217 © 2012. Published by The Company of Biologists Ltd The zebrafish issue of Development Christiane Nüsslein-Volhard* Summary had just started, and it was by no means obvious to what degree In December 1996, a special issue of Development appeared that invertebrates and vertebrates were related – the common notion presented in 37 papers the results of two large screens for was rather not at all, as their modes of development appeared to be zebrafish mutants performed in Tübingen and Boston. The so different. The way embryonic development is described is papers describe about 1500 mutations in more than 400 new dictated by the methods used for analysis. Thus, in flies, genes involved in a wide range of processes that govern development seemed to be determined by genes (defined by development and organogenesis. Up to this day, the mutants mutants), whereas in frogs, enigmatic factors postulated from provide a rich resource for many laboratories, and the issue experimental manipulations did the job. So it was conceivable that significantly augmented the importance of zebrafish as the work on flies would not help us to understand frog (i.e. vertebrate model organism for the study of embryogenesis, vertebrate) development. Still, I was convinced that genetics was neuronal networks, regeneration and disease. This essay relates the most successful approach to dissect and understand complex a personal account of the history of this unique endeavor. systems. The mutant and its phenotype, caused by the lack of a single gene product, is a cleaner experiment than any Introduction transplantation, constriction or centrifugation could ever be.
    [Show full text]
  • Development in Zebrafish, a Genetic Approach
    Development in Zebrafish, a Genetic Approach Didier Stainier University of California [email protected] Zebrafish genetics Didier Stainier, UCSF Biochemistry Juquehy, Brazil 5/2/05 Saccharomyces cerevisiae Caenorhabditis elegans Drosophila melanogaster Saccharomyces cerevisiae Caenorhabditis elegans Drosophila melanogaster Danio rerio GENETIC SCREENS What can one screen for? - developmental processes - physiological processes -behavior -other external fertilization some key developmental stages Zebrafish embryonic development QuickTime™ and a Animation decompressor are needed to see this picture. large number of progeny screening based on morphological traits Zebrafish embryos showing abnormal DV patterning V; ventralized chordin mutants C; dorsalized bmp2 mutants tolloid mutants Cardiac valve formation QuickTime™ and a QuickTime™ and a Video decompressor Video decompressor are needed to see this picture. are needed to see this picture. QuickTime™ and a Cinepak decompressor are needed to see this picture. AP staining flk1:GFP 52 hpf gutGFP line Liver Swim bladder Pancreas Intestinal bulb Ventral View QuickTime™ and a Motion JPEG A decompressor are needed to see this picture. Duc Dong 80 hpf L QuickTime™ and a Motion JPEG A decompressor are needed to see this picture. P lfabp-dsRed elastase-GFP insulin-dsRed Ryan Anderson forward genetic screens in zebrafish -ENU - insertional mutagenesis (retroviral vectors) - large number of tanks (diploid screens) - 3-4 scientists - 18-24 months What can you do with your mutants? - clone the
    [Show full text]
  • Postdoctoral Fellow in RNA/Protein Biochemistry and Molecular Biology to Study Genetic Compensation
    The Max Planck Institute for Heart and Lung Research in Bad Nauheim (near Frankfurt, Germany), Department of Developmental Genetics (Prof. Dr. Didier Stainier) invites applications for a Postdoctoral Fellow in RNA/Protein Biochemistry and Molecular Biology to study Genetic Compensation A highly motivated postdoctoral candidate is invited to lead new projects to address fundamental questions in Genetic Compensation and Transcriptional Adaptation. We have recently discovered a new form of genetic compensation that we have termed transcriptional adaptation. Briefly, transcriptional adaptation occurs when a premature termination codon leads to mutant mRNA degradation. The degradation fragments in turn modulate the expression of related genes, and consequently varying degrees of phenotypic rescue in some cases. We have observed this phenomenon in zebrafish, mouse, C. elegans, and more recently humans. This is a novel and quickly developing field of research where many open questions remain to be addressed including 1) the nature and trafficking of the degradation fragments, and 2) the regulation of related genes by the degradation fragments, or their derivatives. For more detailed information please see our recent publications: (https://www.nature.com/articles/s41586-019-1064-z; https://www.nature.com/articles/nature14580; https://elifesciences.org/articles/50014) REQUIRED QUALIFICATIONS: A Ph.D. in biology, biochemistry, genetics or a similar subject with a focus on molecular biology, cell biology, biochemistry and/or genetics. Knowledge of RNA and/or protein biochemistry and molecular biology is a plus. ABOUT THE EMPLOYER: The Max Planck Institute for Heart and Lung Research in Bad Nauheim is an interdisciplinary research institution with international flair. Our researchers have the opportunity to work on various model systems by making use of the latest cutting-edge technologies.
    [Show full text]
  • Mr Michel Barnier Chief Negotiator Task Force for the Preparation And
    Mr Michel Barnier Chief Negotiator Task Force for the Preparation The Chairman and Conduct of the Negotiations with the United Prof. Dr. Tobias Bonhoeffer Kingdom under Article 50 TEU Office of the Scientific Council Rue de la Loi / Wetstraat 200 Ela Steiner-Brembor 1049 Brussels Belgium Tel.: +49 (0)89 2108-1349 Email: [email protected] Rt Hon David Davis, MP Secretary of State for Exiting the European Union Department for Exiting the European Union 9 Downing Street London, SW1A 2AG UK Dr Christian Ehler, MEP 15E264 Bâtiment Altiero Spinelli European Parliament 60 Rue Wiertz 1047 Brussels Belgium Ms Anja Karliczek Federal Minister for Education and Research Heinemannstraße 2 und 6 53175 Bonn Germany Mr Carlos Moedas Commissioner for Research, Science and Innovation European Commission Rue de la Loi / Wetstraat 200 1049 Brussels Belgium Dr Dan Nica, MEP 10G115 Bâtiment Altiero Spinelli European Parliament 60 Rue Wiertz 1047 Brussels Belgium Büro des Wissenschaftlichen Rates: Ela Steiner-Brembor Tel. +49 89 2108–1349 [email protected] Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. Postfach 10 10 62 80084 München Deutschland - 2 - 19 June 2018 Dear Mr Michel Barnier, dear Rt Hon David Davis MP, dear Dr Christian Ehler MEP, dear Federal Minister Anja Karliczek, dear Commissioner Moedas, and dear Dr Dan Nica MEP, We the 153 undersigned Max Planck Directors write to share our view on the importance of securing a strong Brexit deal on science and innovation to support European science. It is important to find a way for the UK to participate in Horizon Europe as an associated country, and for researchers to move as freely as possible between the UK and EU.
    [Show full text]
  • Brexit and Research: 58 Life Science Good Bye EU Money Researchers Elected and Colleagues? PAGES 4 –5 PAGE 8
    SUMMER 2016 ISSUE 33 EMBO | EMBL Symposium | Tubulin discovery’s 50th anniversary Moving on transient tracks PAGES 12 – 13 © Carsten Janke © Commentary EMBO Members Brexit and research: 58 life science Good bye EU money researchers elected and colleagues? PAGES 4 –5 PAGE 8 EMBO Gold Medal 2016 awarded to Sharing of preprint manuscripts From potential to policy Interview with Richard Benton and Ben Lehner Are biologists ready? Carlos Moedas, European Commissioner for Research, Science and Innovation PAGE 6 PAGE 7 PAGES 10 – 11 www.embo.org Table of contents The EMBO community welcomes Malta and Lithuania Page 2 New EMBO Members 2016 Page 4 Richard Benton and Ben Lehner awarded EMBO Gold Medal Page 6 Are biologists ready for preprints? How transparency in publishing is opening up research Page 7 Brexit and research: Good bye EU money and Editorial colleagues? Commentary ince the creation of EMBO and Page 8 Sits intergovernmental funding body EMBC, the European idea has probably never been questioned How objective can one be? Metrics in research more than in the last few months. assessment With the vote in the UK to leave the Page 9 European Union, European organi- zations will have an important From potential to policy role in showing the value of an a Interview with EU Commissioner Carlos Moedas common and open European space Page 10 – in general, but also for us a scien- © Marietta Schupp, EMBL Photolab Marietta Schupp, © tists in particular. On pages 8 and 9, we publish commentaries from Moving on transient tracks: 50th anniversary of two concerned scientists. EMBO will not directly the discovery of tubulin affected by the UK leaving Europe, as its funding Science story comes from an intergovernmental organization of Page 12 which the UK will remain a member.
    [Show full text]
  • The Transmembrane Protein Crb2a Regulates Cardiomyocyte Apicobasal Polarity
    bioRxiv preprint doi: https://doi.org/10.1101/398909; this version posted August 23, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. The transmembrane protein Crb2a regulates cardiomyocyte apicobasal polarity and adhesion in zebrafish Vanesa Jiménez-Amilburu and Didier Y.R. Stainier Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany Corresponding author: Didier Y.R. Stainier, PhD Correspondence to: Didier Stainier, Max Planck Institute for Heart and Lung Research, Ludwigstrasse 43, 61231 Bad Nauheim, Germany. E-mail: [email protected] Tel.: +49 (0)6032 705-1302 Running title: Crb2a in cardiac development Key words: cardiac trabeculation, apicobasal polarity, Crumbs, junctions, adhesion 1 bioRxiv preprint doi: https://doi.org/10.1101/398909; this version posted August 23, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Summary statement Investigation of the Crumbs polarity protein Crb2a in zebrafish reveals a novel role in cardiac development via regulation of cell-cell adhesion and apicobasal polarity. 2 bioRxiv preprint doi: https://doi.org/10.1101/398909; this version posted August 23, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.
    [Show full text]
  • Id4 Functions Downstream of Bmp Signaling to Restrict TCF Function in Endocardial Cells During Atrioventricular Valve Development
    Id4 functions downstream of Bmp signaling to restrict TCF function in endocardial cells during atrioventricular valve development Dissertation zur Erlangung des Doktorgrades der Naturwissenschaften vorgelegt beim Fachbereich 15 der Johann Wolfgang Goethe-Universität in Frankfurt am Main Von Suchit Ahuja aus Neu Delhi, Indien Frankfurt 2016 (D30) Vom Fachbereich der Goethe Universität als Dissertation angenommen. Dekan: Gutachter: Datum der Disputation: SUPERVISED BY Dr. Sven Reischauer, Ph.D. Department of Developmental Genetics Max Planck Institute for Heart and Lung Research Bad Nauheim, Germany REVIEWER Prof. Dr. Didier Stainier, Ph.D. Department of Developmental Genetics Max Planck Institute for Heart and Lung Research Bad Nauheim, Germany and Prof. Dr. Anna Starzinski-Powitz, Ph.D. Department of Molecular Cell Biology and Human Genetics Institute of Cell Biology and Neuroscience Johann Wolfgang Goethe University Frankfurt am Main, Germany ERKLÄRUNG Ich erkläre hiermit, dass ich mich bisher keiner Doktorprüfung im Mathematisch- Naturwissenschaftlichen Bereich unterzogen habe. Frankfurt am Main, den ............................................ (Unterschrift) Versicherung Ich erkläre hiermit, dass ich die vorgelegte Dissertation über Id4 functions downstream of Bmp signaling to restrict TCF function in endocardial cells during atrioventricular valve development selbständig angefertigt und mich anderer Hilfsmittel als der in ihr angegebenen nicht bedient habe, insbesondere, dass alle Entlehnungen aus anderen Schriften mit Angabe der betreffenden Schrift gekennzeichnet sind. Ich versichere, die Grundsätze der guten wissenschaftlichen Praxis beachtet, und nicht die Hilfe einer kommerziellen Promotionsvermittlung in Anspruch genommen zu haben. Vorliegende Ergebnisse der Arbeit sind in folgendem Publikationsorgan veröffentlicht: Ahuja S, et al. Dev. Biol. 2016; 412(1): 71-82. Id4 functions downstream of Bmp signaling to restrict TCF function in endocardial cells during atrioventricular valve development.
    [Show full text]
  • Screening for Insulin-Independent Pathways That Modulate Glucose
    SHORT REPORT Screening for insulin-independent pathways that modulate glucose homeostasis identifies androgen receptor antagonists Sri Teja Mullapudi1, Christian SM Helker1†, Giulia LM Boezio1, Hans-Martin Maischein1, Anna M Sokol2, Stefan Guenther3, Hiroki Matsuda1‡, Stefan Kubicek4, Johannes Graumann2,5, Yu Hsuan Carol Yang1, Didier YR Stainier1* 1Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany; 2Biomolecular Mass Spectrometry, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany; 3ECCPS Bioinformatics and Deep Sequencing Platform, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany; 4CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria; 5German Centre for Cardiovascular Research, Berlin, Germany *For correspondence: Abstract Pathways modulating glucose homeostasis independently of insulin would open new [email protected] avenues to combat insulin resistance and diabetes. Here, we report the establishment, characterization, and use of a vertebrate ‘insulin-free’ model to identify insulin-independent Present address: †Faculty of modulators of glucose metabolism. insulin knockout zebrafish recapitulate core characteristics of Biology, Cell Signaling and diabetes and survive only up to larval stages. Utilizing a highly efficient endoderm transplant Dynamics, Philipps-University insulin Marburg, Marburg, Germany; technique, we generated viable chimeric adults that provide the large numbers of mutant ‡Department of Biomedical larvae required for our screening platform. Using glucose as a disease-relevant readout, we insulin Sciences, College of Life screened 2233 molecules and identified three that consistently reduced glucose levels in Sciences, Ritsumeikan University, mutants. Most significantly, we uncovered an insulin-independent beneficial role for androgen Kusatsu, Japan receptor antagonism in hyperglycemia, mostly by reducing fasting glucose levels.
    [Show full text]
  • Comité D'évaluation Atip-Avenir 2018
    Evaluation committee ATIP-Avenir Edition 2018 Transversal Committee Wolfgang BAUMEISTER – LS1 panel chair Max-Planck Institute of Biochemistry, Martinsried (DE) Gavin KELSEY – LS2 panel chair The Babraham Institute, Cambridge (UK) Didier STAINIER – LS3 panel chair Max Planck Institute for Heart and Lung Research, Bad Nauheim (DE) Jane APPERLEY – LS4 panel chair Imperial College, London (UK) Enrico CHERUBINI – LS5 panel chair European Brain Research Institute (EBRI) "Fondazione Rita Levi- Montalcini" Roma (IT) Vincent GEENEN – LS6 panel chair GIGA Research Institute, Liège (BE) Scott MONTGOMERY– LS7 panel chair Elisabete WEIDERPASS VAINIO Karolinska Institutet, Stockholm (SE) Pierre LEOPOLD Institut de Biologie Valrose (iBV), Nice (FR) LS1 Molecular and Structural Biology and Biochemistry Wolfgang BAUMEISTER – LS1 panel chair Andreas BAUSCH Max-Planck Institute of Biochemistry, Martinsried (DE) Technische Universität München, Garching (DE) Martin BECK Gerhard HUMMER European Molecular Biology Laboratory, Heidelberg (DE) Max Planck Institute of Biophysics, Frankfurt (DE) Michael SATTLER Marat YUSUPOV Institute of Structural Biology, Helmholtz Zentrum München, Institut de génétique et de biologie moléculaire et Neuherberg (DE) cellulaire, Strasbourg (FR) LS2 Genetics, Genomics, Bioinformatics and Systems Biology Gavin KELSEY – LS2 panel chair Giacomo CAVALLI The Babraham Institute, Cambridge (UK) Institut de Génétique Humaine, Montpellier (FR) Bart DESPLANCKE Martin EMBLEY Swiss Federal Institute of Technology (EPFL), Lausanne (CH) Institute
    [Show full text]