RESEARCH ARTICLE Transcriptional adaptation in Caenorhabditis elegans Vahan Serobyan1*, Zacharias Kontarakis1†, Mohamed A El-Brolosy1, Jordan M Welker1, Oleg Tolstenkov2,3‡, Amr M Saadeldein1, Nicholas Retzer1, Alexander Gottschalk2,3,4, Ann M Wehman5, Didier YR Stainier1* 1Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany; 2Institute for Biophysical Chemistry, Goethe University, Frankfurt Am Main, Germany; 3Cluster of Excellence Frankfurt - Macromolecular Complexes (CEF-MC), Goethe University, Frankfurt Am Main, Germany; 4Buchmann Institute for Molecular Life Sciences (BMLS), Goethe University, Frankfurt Am Main, Germany; 5Rudolf Virchow Center, University of Wu¨ rzburg, Wu¨ rzburg, Germany Abstract Transcriptional adaptation is a recently described phenomenon by which a mutation in *For correspondence: one gene leads to the transcriptional modulation of related genes, termed adapting genes. At the
[email protected] molecular level, it has been proposed that the mutant mRNA, rather than the loss of protein (VS); function, activates this response. While several examples of transcriptional adaptation have been
[email protected] (DYRS) reported in zebrafish embryos and in mouse cell lines, it is not known whether this phenomenon is observed across metazoans. Here we report transcriptional adaptation in C. elegans, and find that † Present address: Genome this process requires factors involved in mutant mRNA decay, as in zebrafish and mouse. We Engineering and Measurement further uncover a requirement for Argonaute proteins and Dicer, factors involved in small RNA Lab, ETH Zurich, Functional maturation and transport into the nucleus. Altogether, these results provide evidence for Genomics Center Zurich of ETH transcriptional adaptation in C.