ATTACHMENT, SELECTION, and TRANSFORMATION of PREBIOTIC MOLECULES on BRUCITE [Mg(OH)2]

Total Page:16

File Type:pdf, Size:1020Kb

ATTACHMENT, SELECTION, and TRANSFORMATION of PREBIOTIC MOLECULES on BRUCITE [Mg(OH)2] ATTACHMENT, SELECTION, AND TRANSFORMATION OF PREBIOTIC MOLECULES ON BRUCITE [Mg(OH)2] AND THE IMPLICATIONS FOR CHEMICAL EVOLUTION AT HYDROTHERMAL SYSTEMS by Charlene F. Estrada A dissertation submitted to The Johns Hopkins University in conformity with the requirements for the degree of Doctor of Philosophy Baltimore, Maryland September, 2014 Charlene F. Estrada All rights reserved Abstract Serpentinite-hosted hydrothermal vents may have been plausible environments for the origins of life. Mineral assemblages within hydrothermal fields may have selected and concentrated biomolecules, although little is known about molecular interactions at these mineral surfaces. I investigated the adsorption of aspartate and ribose at the surface of brucite [Mg(OH)2], a major mineral phase at serpentinite-hosted hydrothermal vents. I characterized the attachment of these molecules onto a synthetic brucite powder with Mg2+ and Ca2+ using batch adsorption experiments. I observed that Mg2+ inhibits both aspartate and ribose adsorption, whereas Ca2+ enhances adsorption onto the brucite surface. I used surface complexation modeling to predict that both aspartate and ribose attach as cooperative calcium-ligand complexes onto brucite. To further investigate the cooperative effect of Ca2+ on biomolecule adsorption, I introduced an equimolar mixture of aspartate, glycine, lysine, leucine, and phenylalanine to the brucite surface, both with and without Ca2+. Without Ca2+, up to 8.9 % aspartate and ~5 % each of the remaining four amino acids adsorbed onto brucite. When Ca2+ was added, I observed that between 5.7 to 20 times more aspartate (37.3 %) adsorbed onto brucite compared with the remaining four amino acids (~3 % each). These results, when combined with the previous study, suggest that aspartate selectively adsorbs onto brucite as a cooperative calcium-aspartate complex. The behavior of biomolecules at high temperatures is essential for evaluating whether hydrothermal systems may have been suitable environments for life’s origins. ii However, the geochemical complexities of a hydrothermal system could significantly affect this process. I characterized aspartate decomposition at 200 ºC and 15.5 bars for 24 hours in inert gold capsules with controlled redox state, added ammonia, and brucite. I determined that the initial experimental conditions significantly affect the decomposition of aspartate. Biomolecule decomposition may be a more complicated process within hydrothermal systems, which may contribute a diverse array of organic species to early Earth. First reader (thesis advisor): Dimitri A. Sverjensky Second reader: Robert M. Hazen iii Acknowledgments This work has been possible with the gracious help and support of many individuals at the Johns Hopkins University Department of Earth and Planetary Sciences and the Geophysical Laboratory at the Carnegie Institution of Washington. I particularly thank my thesis advisor, Dr. Dimitri Sverjensky whose guidance, patience, and overwhelming support in every area of this work has made my experience during this Ph. D. program both pleasant and exciting. Dimitri challenged the limits of what I expected I could do while simultaneously encouraging me that I could achieve almost anything. He has made me a stronger person and scientist, and I will always be grateful. I also thank Dr. Bob Hazen, my supervisor at the Geophysical Laboratory. Bob’s unwavering enthusiasm for science is contagious, and I always look forward to our discussions. His mentorship has been invaluable, and I feel inspired to continue my scientific career with the optimism, passion, and determination that he has imparted to me. Over the three years that I have worked at the Geophysical Laboratory, I have come to think of my colleagues at the Carnegie Institution of Washington as my second family. My experience at the Geophysical Laboratory has been one of the happiest times of my life. I particularly thank Drs. George Cody, Dionysis Foustoukos, Irena Mamajanov, Chris Glein, John Armstrong, Paul Goldey, and Tim Strobel who have taken time from their own schedules to help me with my experiments. I also thank Drs. Andrew Steele, Bjørn Mysen, Karen Rogers, Jim Cleaves, and the Carnegie Institution of Washington Support Staff for their invaluable discussions and support during this work. iv I am also grateful to the professors and staff at Johns Hopkins University who have encouraged me from the first day I began my Ph.D. program. In particular, I thank Drs. Alan Stone, Colin Norman, John Ferry, Ben Passey, and Bill Ball, who served as members on my committee. I also thank Drs. Naomi Levin, Ken Livi, Jocelyne DiRuggiero, and Tom Wright for their kind advice. I am also indebted to my current and former research group members both at the Department of Earth and Planetary Sciences and the Geophysical Laboratory for their animated discussion and advice regarding my experimental techniques, results, and theoretical predictions. I specifically thank Namhey Lee, Alyssa Adcock, Clare Flynn, Patrick Griffin, David Azzolini, Branden Harrison, Jihua Hao, Fang Huang, Katya Klochko, Adrian Villegas-Jimenez, Xiaoming Liu, and Cécile Feuillie. I also thank Caroline and Christopher Jonsson who, as my first mentors at the Geophysical Laboratory, taught me how to conduct most of the experiments presented in this work. I am unimaginably grateful for their hard work in teaching me, and their work with me has been an inspiration over these past five years. I am extremely grateful to my friend and colleague Dr. Bob Downs who was my first mentor in science. I believe that much of my success today is a result of his mentorship. If I had not walked into his office that day at the University of Arizona, my journey in science would have never been the same. My experience at the Carnegie Institution and JHU are direct results of my work with Bob Downs, and I hope that one day I can pay forward the kindness he has shown me by becoming the same type of mentor. v I thank my friends for making me a better and stranger person. I’m grateful to Jen McAlonan, Brian Olnick, Kelsey Wright, Corinne Warren, and Will Genschow. I also thank my best friend, my cat Rio, who has eaten my physical chemistry homework, sat on my laptop as I wrote these chapters, and purred in my ear (yes, my ear) as I practiced my thesis presentation. Throughout my time in this Ph.D. program, he has kept me sane, and acted as a not-so-subtle reminder that there is more to life than work. Most importantly, I thank my family for helping me every step of the way in this endeavor. I especially thank my parents, Antonio and Barbara Estrada, for their unwavering support of everything I have done. I thank my brother, Eric and his wonderful growing family, and my sister, Gloria. I thank my grandmother, Shirley Polk. I am also grateful to my grandparents, Sharon and Don Ridlen, and my mother, Janis Ridlen, who are all missed. This thesis is dedicated my family for everything they have done to make me who I am today. I love you all! All of the chapters included in this thesis were a collaborative effort. The contributions of those who have made each chapter possible are listed below. Chapter 2 This chapter was co-authored with Dimitri Sverjensky, Manuel Pelletier, Angélina Razafitianamaharavo, and Robert Hazen. In our adsorption studies, we suspected that aspartate was adsorbing onto the edge surfaces of brucite. Drs. Manuel Pelletier and Angélina Razafitianamaharavo at the Université de Lorraine measured the specific edge surface area of our synthetic brucite powder with a novel low-pressure Ar adsorption method. This enabled us to calculate the amount of aspartate adsorption per m2 of brucite. I am also grateful to Cécile Feuillie, Namhey Lee, Alyssa Adcock, Adrian vi Villegas-Jimenez, John Armstrong, Paul Goldey, Tim Strobel, Stephen Hodge, and Steven Coley for their supportive discussions and assistance in the laboratory. Chapter 3 This chapter was co-authored with Alyssa Adcock, Dimitri Sverjensky, Manuel Pelletier, Angélina Razafitianamaharavo, and Robert Hazen. As a summer intern at the Geophysical Laboratory, Alyssa conducted nearly half of the ribose adsorption experiments. Alyssa’s tremendous amount of work in a short amount of time became the foundation for this chapter. I am also grateful to Cécile Feuillie, Namhey Lee, George Cody, Adrian Villegas-Jimenez, John Armstrong, Paul Goldey, Tim Strobel, Stephen Hodge, and Steven Coley for their supportive discussions and assistance in the laboratory. Chapter 5 This chapter was co-authored with Irena Mamajanov, Dimitri Sverjensky, Jihua Hao, George Cody, and Robert Hazen. Dr. Irena Mamajanov analyzed samples with Ultra-High Performance Liquid Chromatography-Mass Spectrometry on numerous occasions and helped us determine the identity and concentration of organic species that had formed from the decomposition of aspartate. George Cody provided us with expertise on conducting high temperature experiments involving gold capsules, and during several discussions, he suggested possible reaction mechanisms and explanations to account for the products we detected. Jihua Hao calculated the speciation of the aqueous fluid in our experiments using the program EQ3 to estimate variables that we were unable to measure during our experiments, including solution pH, CO2(g) concentrations, and the extent of Mg2+ complexing, which hold important implications for our interpretation of the data. I vii am also extremely grateful to Dionysis Foustoukos who helped me with several of the experimental methods and analyzed the samples with ion chromatography. I also thank Chris Glein, Namhey Lee, Paul Goldey, and John Armstrong for useful discussions and aid in the laboratory. Thank you, everyone, for this experience. I had a wonderful time! viii Contents Abstract ii Acknowledgments iv List of Tables xiii List of Figures xv 1. Introduction. 1 References. 8 2. Interactions between L-aspartate and the brucite [Mg(OH)2]-water interface. .12 1. Introduction. 15 2. Materials and Methods. 20 2.1. Brucite Synthesis. 20 2.2.
Recommended publications
  • Getting Beyond the Toy Domain. Meditations on David Deamer's
    Getting beyond the toy domain: meditations on David Deamer’s “Assembling Life” The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Citation Bains, William, "Getting beyond the toy domain: meditations on David Deamer’s 'Assembling Life.'" Life 10, 12 (Feb. 2020): no. 18 doi 10.3390/life10020018 ©2020 Author(s) As Published 10.3390/life10020018 Publisher MDPI Version Final published version Citable link https://hdl.handle.net/1721.1/125661 Terms of Use Creative Commons Attribution 4.0 International license Detailed Terms https://creativecommons.org/licenses/by/4.0/ life Book Review Getting Beyond the Toy Domain. Meditations on David Deamer’s “Assembling Life” William Bains 1,2 1 Five Alarm Bio Ltd., O2h Scitech Park, Mill Lane, Hauxton, Cambridge CB22 5HX, UK; [email protected] 2 Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA Received: 25 October 2019; Accepted: 15 February 2020; Published: 18 February 2020 Abstract: David Deamer has written another book, Assembling Life, on the origin of life. It is unapologetically polemic, presenting Deamer’s view that life originated in fresh water hydrothermal fields on volcanic islands on early Earth, arguing that this provided a unique environment not just for organic chemistry but for the self-assembling structure that drive that chemistry and form the basis of structure in life. It is worth reading, it is an advance in the field, but is it convincing? I argue that the Origin of Life field as a whole is unconvincing, generating results in Toy Domains that cannot be scaled to any real world scenario.
    [Show full text]
  • NASA Astrobiology Institute 2018 Annual Science Report
    A National Aeronautics and Space Administration 2018 Annual Science Report Table of Contents 2018 at the NAI 1 NAI 2018 Teams 2 2018 Team Reports The Evolution of Prebiotic Chemical Complexity and the Organic Inventory 6 of Protoplanetary Disk and Primordial Planets Lead Institution: NASA Ames Research Center Reliving the Past: Experimental Evolution of Major Transitions 18 Lead Institution: Georgia Institute of Technology Origin and Evolution of Organics and Water in Planetary Systems 34 Lead Institution: NASA Goddard Space Flight Center Icy Worlds: Astrobiology at the Water-Rock Interface and Beyond 46 Lead Institution: NASA Jet Propulsion Laboratory Habitability of Hydrocarbon Worlds: Titan and Beyond 60 Lead Institution: NASA Jet Propulsion Laboratory The Origins of Molecules in Diverse Space and Planetary Environments 72 and Their Intramolecular Isotope Signatures Lead Institution: Pennsylvania State University ENIGMA: Evolution of Nanomachines in Geospheres and Microbial Ancestors 80 Lead Institution: Rutgers University Changing Planetary Environments and the Fingerprints of Life 88 Lead Institution: SETI Institute Alternative Earths 100 Lead Institution: University of California, Riverside Rock Powered Life 120 Lead Institution: University of Colorado Boulder NASA Astrobiology Institute iii Annual Report 2018 2018 at the NAI In 2018, the NASA Astrobiology Program announced a plan to transition to a new structure of Research Coordination Networks, RCNs, and simultaneously planned the termination of the NASA Astrobiology Institute
    [Show full text]
  • World Premier International Research Center Initiative (WPI) FY 2017 WPI Project Progress Report
    World Premier International Research Center Initiative (WPI) FY 2017 WPI Project Progress Report Host Institution Tokyo Institute of Technology Host Institution Head Yoshinao Mishima Research Center Earth-Life Science Institute Center Director Kei Hirose Common instructions: * Unless otherwise specified, prepare this report from the timeline of 31 March 2018. * So as to base this fiscal year’s follow-up review on the “last” center project, please prepare this report from the perspective of the latest project plan. * Use yen (¥) when writing monetary amounts in the report. If an exchange rate is used to calculate the yen amount, give the rate. * Please prepare this report within 10-20 pages (excluding the appendices, and including Summary of State of WPI Center Project Progress (within 2 pages)). Summary of State of WPI Center Project Progress (write within 2 pages) 1. Conducting research of the highest world level In FY2017, ELSI members contributed to the publication of thematic issues in Geoscience Frontiers (titled “Frontiers in early Earth history and primordial life”) and Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences (titled “Re-conceptualizing the origins of life”), which illustrates ELSI is recognized as a leading institute in the study of the early Earth and the emergence of life on the Earth. New and original ideas, scenarios, theories, and technical advances that have been cultivated at ELSI over the past years were presented, such as messy chemistry. The following are representative research topics and highlights that have advanced at ELSI in FY2017. Compositional evolution of the Earth’s core: PI Hirose, PI Hernlund, and PI Helffrich revealed that SiO2 crystallization in the core is an alternative mechanism for core convection to thermal convection (Hirose et al., 2017 Nature; Hirose et al., 2017 Science).
    [Show full text]
  • Robert T Downs
    Curriculum Vitae – Robert T. Downs 1 Field of Specialization: The crystallography and spectroscopy of minerals, with emphasis on crystal chemistry, bonding, temperature and pressure effects, characterization and identification. Contact Information: Dr Robert T Downs Department of Geosciences Voice: 520-626-8092 Gould-Simpson Building Lab: 520-626-3845 University of Arizona Fax: 520-621-2672 Tucson Arizona 85721-0077 [email protected] Education: University of British Columbia 1986 B.S. Mathematics Virginia Tech 1989 M.S. Geological Sciences Virginia Tech 1992 Ph.D. Geological Sciences Graduate Advisors: G.V. Gibbs (Mineralogy) and M.B. Boisen, Jr. (Mathematics) Carnegie Institution of Washington, Geophysical Laboratory, 1993 – 1996 Post-doc Advisors: R.M. Hazen and L.W. Finger Academic and Professional Appointments: Assistant Professor, Department of Geosciences, University of Arizona, August 1996 – 2002 Associate Professor, Department of Geosciences, University of Arizona, 2002 – 2008 Professor, Department of Geosciences, University of Arizona, 2008 – present Assistant to curator Joe Nagel: University of British Columbia, 1985 Assistant to curator Gary Ansell: National Mineral Collections of Canada, 1986 Assistant to curator Susan Eriksson: Virginia Tech Museum of Geological Sciences, 1990 Graduate teaching assistant: Virginia Tech, 1988 – 1992 Pre-doctoral Fellowship: Carnegie Institution of Washington, Geophysical Laboratory, 1991 Post-doctoral Fellowship: CIW, Geophysical Laboratory, February 1993 – July 1996 Visiting Professor,
    [Show full text]
  • States of Origin: Influences on Research Into the Origins of Life
    COPYRIGHT AND USE OF THIS THESIS This thesis must be used in accordance with the provisions of the Copyright Act 1968. Reproduction of material protected by copyright may be an infringement of copyright and copyright owners may be entitled to take legal action against persons who infringe their copyright. Section 51 (2) of the Copyright Act permits an authorized officer of a university library or archives to provide a copy (by communication or otherwise) of an unpublished thesis kept in the library or archives, to a person who satisfies the authorized officer that he or she requires the reproduction for the purposes of research or study. The Copyright Act grants the creator of a work a number of moral rights, specifically the right of attribution, the right against false attribution and the right of integrity. You may infringe the author’s moral rights if you: - fail to acknowledge the author of this thesis if you quote sections from the work - attribute this thesis to another author - subject this thesis to derogatory treatment which may prejudice the author’s reputation For further information contact the University’s Director of Copyright Services sydney.edu.au/copyright Influences on Research into the Origins of Life. Idan Ben-Barak Unit for the History and Philosophy of Science Faculty of Science The University of Sydney A thesis submitted to the University of Sydney as fulfilment of the requirements for the degree of Doctor of Philosophy 2014 Declaration I hereby declare that this submission is my own work and that, to the best of my knowledge and belief, it contains no material previously published or written by another person, nor material which to a substantial extent has been accepted for the award of any other degree or diploma of a University or other institute of higher learning.
    [Show full text]
  • Carnegie Institution
    CIYB13_00-CV_rv_0506_0/COVERrv.qxd 2/6/14 7:41 AM Page 1 2012-2013 YEAR BOOK CARNEGIE INSTITUTIONFOR SCIENCE 2 0 1 2 - 2 0 1 3 1530 P Street, N.W. Washington DC 20005 Carnegie Institution Phone: 202.387.6400 Fax: 202.387.8092 www.CarnegieScience.edu FOR SCIENCE CARNEGIE INSTITUTION FOR SCIENCE Y E A R B O O K This year book contains 30% post-consumer recycled fiber. By using recycled fiber in place of virgin fiber, the Carnegie Institution preserved 13 trees, saved 36 pounds of waterborne waste, saved 5,352 gallons of water, and prevented 2,063 pounds of green- house gasses. The energy used to print the report was produced by wind power. Using this energy source for printing saved 3,245 pounds of CO2 emissions, which is the equivalent to saving 2,211 miles of automobile travel. Design by Tina Taylor, T2 Design Printed by DigiLink, Inc. ISSN 0069-066X CIYB13_01-24_0506_1/FM01-182F.qxd 1/27/14 7:25 AM Page 1 2012-2013 YEAR BOOK The President’s Report July 1, 2012 - June 30, 2013 CARNEGIE INSTITUTION FOR SCIENCE CIYB13_01-24_0506_1/FM01-182F.qxd 1/27/14 7:25 AM Page 2 Former Presidents Former Trustees Daniel C. Gilman, 1902–1904 Philip H. Abelson, 1978–2004 Patrick E. Haggerty, 1974–1975 William Church Osborn, 1927–1934 Robert S. Woodward, 1904–1920 Alexander Agassiz, 1904–1905 Caryl P. Haskins, 1949–1956, 1971-2001 Walter H. Page, 1971–1979 John C. Merriam, 1921–1938 Robert O. Anderson, 1976–1983 John Hay, 1902–1905 James Parmelee, 1917–1931 Vannevar Bush, 1939–1955 Lord Ashby of Brandon, 1967–1974 Richard Heckert, 1980–2010 William Barclay Parsons, 1907–1932 Caryl P.
    [Show full text]
  • ROBERT MILLER HAZEN – June 2017 Work Address
    CURRICULUM VITAE – ROBERT MILLER HAZEN – June 2017 Work Address (CIW): Geophysical Laboratory 5251 Broad Branch Road, NW Washington, DC 20015-1305 Work Telephone: 202-478-8962 FAX 202-478-8901 E-mail [email protected] Websites: http://hazen.gl.ciw.edu http://deepcarbon.net http://dtdi.carnegiescience.edu Work Address (GMU): George Mason University Mail Stop 1D6 Fairfax, VA 22030-4444 Work Telephone: 703-993-2163 FAX 703-993-2175 Place of Birth: Rockville Centre, NY Citizenship: USA Date of Birth: November 1, 1948 Marital Status: Married August 9, 1969 to Margaret Joan Hindle Children: Benjamin Hindle Hazen (b. June 18, 1976) Elizabeth Brooke Hazen (b. September 1, 1978) Education: Massachusetts Inst. of Tech. 1966-1970 B.S. Earth Science Massachusetts Inst. of Tech. 1970-1971 S.M. Earth Science Indiana University 1969 Summer Field Geology Harvard University 1971-1975 Ph.D. Mineralogy & Crystallography Employment History (Scientific Research and Education): Executive Director and PI, Deep Carbon Observatory, 2008- Clarence Robinson Professor of Earth Science, George Mason University, 1989- Senior Staff Scientist, Geophysical Laboratory, Carnegie Institution, 1978- President, Robert & Margaret Hazen Foundation, 2008- Research Associate, Smithsonian Institution, Department of Paleobiology, 2007- President, Hazen Associates, Ltd., 1994-2007 Professional Trumpeter, 1965-2013 Visiting Researcher, Univ. California at Santa Barbara, Chemistry Department, 1987. Summer Faculty, IBM T. J. Watson Research Center, 1978. Research Associate, Geophysical Laboratory, 1976-1978. NATO Postdoctoral Fellow, University of Cambridge, Department of Mineralogy and Petrology, Cambridge, England, 1975-1976. Research Assistant and Teaching Fellow, Harvard, 1973-1975. Field Assistant, U. S. Geological Survey, Summers of 1970 and 1971. Curator of Geological Collections, M.I.T., 1967-1970.
    [Show full text]
  • Second International Science Meeting
    DEEP CARBON OBSERVATORY SECOND INTERNATIONAL SCIENCE MEETING 26–28 March 2015 Munich, Germany PROGRAM COMMITTEE Craig Manning, Program Committee Chair DCO Executive Committee and DCO Extreme Physics and Chemistry Community Scientific Steering Committee, University of California Los Angeles Donald Dingwell, Local Host DCO Executive Committee, Ludwig Maximilian University Magali Ader DCO Deep Energy Community Scientific Steering Committee, Institut de Physique du Globe de Paris Liz Cottrell DCO Reservoirs and Fluxes Community Scientific Steering Committee, Smithsonian Institution National Museum of Natural History Craig Schiffries DCO Secretariat, Carnegie Institution of Washington Matt Schrenk DCO Deep Life Community Scientific Steering Committee, Michigan State University VENUES Conference Hotel (Included breakfast buffet begins each morning at 06:00) Holiday Inn Munich–City Centre, Hochstraße 3, 81669 Icebreaker (Wednesday, 25 March, 18:00 – 20:00) Holiday Inn Munich–City Centre, Hochstraße 3, 81669 Science Meeting (Thursday, 26 March, Registration and coffee, 08:00; Program 09:00 - 17:00; Friday and Saturday, 27–28 March, Registration and coffee, 08:30; Program 09:00 - 17:00) Deutsches Museum, Museumsinsel 1, 80538 DCO Community Dinners (Thursday, 26 March, 20:00 - 22:00) Deep Energy and Deep Life, Restaurant Alter Hof, Alter Hof 3, 80331 Reservoirs and Fluxes and Extreme Physics and Chemistry, Zum Spöckmeier, Rosenstraße 9 (direct by the Marienplatz), D-80331 Poster Sessions (Friday, 27 March and Saturday, 28 March, 17:00 - 19:00) Holiday
    [Show full text]
  • Mineral Evolution: What's Next? Geobiology Or Biogeology?
    Perspectives Mineral evolution: Earth, life has also influenced the that is required is to look into the rocks mineral kingdom. The main example on other planets to find life! what’s next? provided by Hazen2 is that of life Geobiology or producing a ‘toxic gas’—oxygen— How is it being said? which allowed the formation of oxidic The language used in the articles biogeology? minerals that did not exist before, such covering this new topic sounds like as azurite—Cu3(CO3)2(OH)2. Of the an evolutionary Esperanto: mineral Emil Silvestru approximately 4,300 known mineral evolution, co-evolution, niches and species, Hazen claims that two thirds such like. Hazen clearly states in lthough Charles Darwin are ‘life-mediated’.2 his interview2: ‘You cannot be a Aconsidered himself a geologist, he This seems to close the circle geologist without thinking of biology is revered today as the pillar of modern because some speculations,4 presented and you cannot be a biologist without biology. But that soon may change if as facts by philosopher Michael Ruse thinking of geology.’ The motivation his evolutionary ideas will be applied in Ben Stein’s film Expelled: No here seems obvious: we need to to minerals too. There is now a trend Intelligence Allowed, were made reinforce both biology and geology towards the blurring of the frontiers of that life may have evolved on crystal by integrating them into one, larger the earth and life sciences, a push for surfaces where certain chemicals tend and more defendable body. Such a motivation undoubtedly reveals integration.
    [Show full text]
  • Mineral Evolution
    Mineral Evolution Dan Britt University of Central Florida Center for Lunar and Asteroid Surface Science (CLASS) [email protected] “You are not in Kansas anymore” • Robert Hazen and colleagues (2008) had a fundamental insight on Uraninite UO2 mineralogical evolution. • The mineralogy of terrestrial planets and moons evolves as a consequence of varied physical, chemical, and biological processes that lead to the formation of new mineral species. • Mineral evolution is a change over time in…. – The diversity of mineral species – The relative abundances of minerals – The compositional ranges of minerals Autunite Ca(UO2)2(PO4)2 x 8-12 H2O – The grain sizes and morphologies of minerals A Few Definitions • Mineral: – A crystalline compound with a fairly well-defined chemical composition and a specific crystal structure. – For example, water ice is a mineral. • Evolution: – In biology the process by which different kinds of living organisms are thought to have developed and diversified from earlier forms during the history of the earth. – More broadly it is the gradual development of something from simple to more complex forms. • What we will be talking about is a form of radiation where minerals react in changing chemical and physical environments. – The result are changes to their crystal structure along with their physical and chemical properties. Take Olivine Olivine • Olivine is one of the most abundant minerals in the solar system and the universe. • Forsterite is the Mg-rich endmember: Mg2SiO4 – Add water and time, it weathers to serpentine Mg3Si2O5(OH)4 – Add high pressure the chemistry stays the same, but the crystal structure transforms to Ringwoodite.
    [Show full text]
  • The Scientific Quest for Life's Origin
    GENESIS: The Scientific Quest for Life’s Origin The Brookings Institution June 15, 2007 Robert Hazen, Geophysical Laboratory Chemical Evolution Life arose by a natural process of “emergent complexity,” consistent with natural laws. This hypothesis predicts that life began as a sequence of chemical steps. Intelligent Design Life is “irreducibly complex.” Therefore, a supernatural designer must have formed it. This hypothesis requires a combination of natural and supernatural processes. Is ID Science? ON THE ONE HAND: ID makes predictions, albeit negative ones. These predictions are falsifiable. BUT: ID is based on supernatural processes. ID is therefore inherently untestable, and is unsupported by observational evidence. THE “DEBATE” “Both sides ought to be properly taught ... so people can understand what the debate is about.” G. W. Bush “Intelligent design should not be taught in high school biology classes as an alternative to evolution.” American Chemical Society How Should Science Respond to ID? Design a research program that demonstrates the natural transition from chemical simplicity to emergent complexity. If biological complexity can be shown to arise spontaneously as the result of natural processes, then ID is unnecessary. STONEHENGE What is Emergent Complexity? Emergent phenomena arise from interactions among numerous individual particles, or “agents.” The Emergence of Slime Mold à Chemical Potential Gradients Dictyostelium The Emergence of Slime Mold Dictyostelium The Emergence of Consciousness à Neural connections and electrical impulses The Emergence of Consciousness Emergent Phenomena – Space Emergent Phenomena – Life Emergent Phenomena – Society Central Assumptions of Origin-of-Life Research The first life forms were carbon-based. Life’s origin was a chemical process that relied on water, air, and rock.
    [Show full text]
  • New Mineral Classification System Captures Earth's Complex Past 3 June 2019
    New mineral classification system captures Earth's complex past 3 June 2019 compositions and crystalline structures. This is an unambiguous, robust, and reproducible designation scheme. Carnegie's Robert Hazen suggests an additional classification system, which could amplify existing knowledge of how minerals evolve over time without superseding the existing designations. In American Mineralogist's Roebling Medal Paper, Hazen argues for categories that reflect a deeper, more-modern understanding of planetary scale transformation over time. A system grouping minerals and non-crystalline Currently 32 different mineral species of the "tourmaline natural solids—which are not currently classified by group" are delineated by the distribution of the major the existing system—into what Hazen calls "natural elements of which they are comprised. So, a single kind clusters" would better reflect the inherent shard of tourmaline with slight variations in chemistry messiness of planetary evolution, he explains. often contains multiple species of the mineral, even if they all formed in the same geologic event. Credit: Public domain "For maximum efficacy, scientific classification systems must not just organize and define, but also reflect current theory, and allow it to expand and guide us to new conclusions," Hazen says. The first minerals to form in the universe were nanocrystalline diamonds, which condensed from He pioneered the concept of mineral gases ejected when the first generation of stars evolution—linking an explosion in mineral diversity to exploded. Diamonds that crystallize under the the rise of life on Earth and the resulting oxygen- extreme pressure and temperature conditions deep rich atmosphere. Hazen then added another layer inside of Earth are more typically encountered by to his vision by introducing mineral ecology—which humanity.
    [Show full text]