Second International Science Meeting
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Lipid Analysis of CO2-Rich Subsurface Aquifers Suggests an Autotrophy-Based Deep Biosphere with Lysolipids Enriched in CPR Bacteria
The ISME Journal (2020) 14:1547–1560 https://doi.org/10.1038/s41396-020-0624-4 ARTICLE Lipid analysis of CO2-rich subsurface aquifers suggests an autotrophy-based deep biosphere with lysolipids enriched in CPR bacteria 1,2 3,4 1,3 3 3 Alexander J. Probst ● Felix J. Elling ● Cindy J. Castelle ● Qingzeng Zhu ● Marcus Elvert ● 5,6 6 1 7,9 7 Giovanni Birarda ● Hoi-Ying N. Holman ● Katherine R. Lane ● Bethany Ladd ● M. Cathryn Ryan ● 8 3 1 Tanja Woyke ● Kai-Uwe Hinrichs ● Jillian F. Banfield Received: 20 November 2018 / Revised: 5 February 2020 / Accepted: 25 February 2020 / Published online: 13 March 2020 © The Author(s) 2020. This article is published with open access Abstract Sediment-hosted CO2-rich aquifers deep below the Colorado Plateau (USA) contain a remarkable diversity of uncultivated microorganisms, including Candidate Phyla Radiation (CPR) bacteria that are putative symbionts unable to synthesize membrane lipids. The origin of organic carbon in these ecosystems is unknown and the source of CPR membrane lipids remains elusive. We collected cells from deep groundwater brought to the surface by eruptions of Crystal Geyser, sequenced 1234567890();,: 1234567890();,: the community, and analyzed the whole community lipidome over time. Characteristic stable carbon isotopic compositions of microbial lipids suggest that bacterial and archaeal CO2 fixation ongoing in the deep subsurface provides organic carbon for the complex communities that reside there. Coupled lipidomic-metagenomic analysis indicates that CPR bacteria lack complete lipid biosynthesis pathways but still possess regular lipid membranes. These lipids may therefore originate from other community members, which also adapt to high in situ pressure by increasing fatty acid unsaturation. -
HALT Penneast to FERC
R. Steven Richardson 1776 K STREET NW September 12, 2016 202.719.7489 WASHINGTON, DC 20006 [email protected] PHONE 202.719.7000 www.wileyrein.com Kimberly Bose Secretary Federal Energy Regulatory Commission 888 First Street, NE Washington, D.C. 20426 Re: PennEast Pipeline Project’s Impacts on Drinking Water FERC Docket No. CP15-558 Dear Ms. Bose: I am writing on behalf of Homeowners Against Land Taking-PennEast (“HALT”). HALT represents over two hundred impacted landowners in towns along PennEast’s proposed pipeline route. HALT intervened in this proceeding on February 3, 2016. Its members are concerned that the Draft Environmental Impact Statement (DEIS) does not accurately assess the risk of arsenic contamination from the proposed pipeline in groundwater, including landowners’ drinking water. It is well known that arsenic concentrations in water can lead to short-term and long-term health effects, including increased cancer risks, cardiovascular effects, numbness and burning sensations, nausea, and other health risks. HALT is alarmed that FERC has failed to consider these impacts on public health from the construction and operation of the pipeline, despite clear and uncontroverted evidence that the abundant concentrations of arsenic in the areas of New Jersey along the proposed pipeline likely will be mobilized by both construction and operation of PennEast’s pipeline. Although Section 4.1.5.5 of the DEIS provides superficial discussion of the risk that the pipeline would cause arsenic contamination of local water sources, the DEIS’s analysis of this risk is deeply flawed for multiple reasons. First, the DEIS relies on a defective study of arsenic contamination provided by PennEast (the Serfes Report).1 FERC must withdraw the DEIS and base its conclusions on an accurate study. -
ATTACHMENT, SELECTION, and TRANSFORMATION of PREBIOTIC MOLECULES on BRUCITE [Mg(OH)2]
ATTACHMENT, SELECTION, AND TRANSFORMATION OF PREBIOTIC MOLECULES ON BRUCITE [Mg(OH)2] AND THE IMPLICATIONS FOR CHEMICAL EVOLUTION AT HYDROTHERMAL SYSTEMS by Charlene F. Estrada A dissertation submitted to The Johns Hopkins University in conformity with the requirements for the degree of Doctor of Philosophy Baltimore, Maryland September, 2014 Charlene F. Estrada All rights reserved Abstract Serpentinite-hosted hydrothermal vents may have been plausible environments for the origins of life. Mineral assemblages within hydrothermal fields may have selected and concentrated biomolecules, although little is known about molecular interactions at these mineral surfaces. I investigated the adsorption of aspartate and ribose at the surface of brucite [Mg(OH)2], a major mineral phase at serpentinite-hosted hydrothermal vents. I characterized the attachment of these molecules onto a synthetic brucite powder with Mg2+ and Ca2+ using batch adsorption experiments. I observed that Mg2+ inhibits both aspartate and ribose adsorption, whereas Ca2+ enhances adsorption onto the brucite surface. I used surface complexation modeling to predict that both aspartate and ribose attach as cooperative calcium-ligand complexes onto brucite. To further investigate the cooperative effect of Ca2+ on biomolecule adsorption, I introduced an equimolar mixture of aspartate, glycine, lysine, leucine, and phenylalanine to the brucite surface, both with and without Ca2+. Without Ca2+, up to 8.9 % aspartate and ~5 % each of the remaining four amino acids adsorbed onto brucite. When Ca2+ was added, I observed that between 5.7 to 20 times more aspartate (37.3 %) adsorbed onto brucite compared with the remaining four amino acids (~3 % each). These results, when combined with the previous study, suggest that aspartate selectively adsorbs onto brucite as a cooperative calcium-aspartate complex. -
Jesse H. Ausubel the Liberation of the Environment
Jesse H. Ausubel The Liberation of the Environment Di Renzo Dialogues in Science The Dialogues: Science The books of this series result from extensive discussions with the author, who, stimulated by our questions, similar to those which a reader might wish to pose, develops clearly the themes of his professional career. ©2014 Di Renzo Editore Viale Manzoni 59 00185 Roma Tel. 06/77 20 90 20 Fax 06/70 47 40 67 E‐mail: [email protected] Internet: http://www.direnzo.it JESSE H. AUSUBEL La liberazione dell’ambiente Di Renzo Editore Table of Contents My Roots..................................................................................................................................1 My Childhood...........................................................................................................................4 University Years........................................................................................................................8 The US National Academy of Sciences and the First United Nations World Climate Conference..............................................................12 A Bridge over the Cold War: The International Institute for Applied Systems Analysis ........14 Global Warming and Climate Change............................................................. .......................17 The mid‐80s: A General Theory of Environmental Problems.................................................20 A Question of Efficiency.........................................................................................................22 -
Getting Beyond the Toy Domain. Meditations on David Deamer's
Getting beyond the toy domain: meditations on David Deamer’s “Assembling Life” The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Citation Bains, William, "Getting beyond the toy domain: meditations on David Deamer’s 'Assembling Life.'" Life 10, 12 (Feb. 2020): no. 18 doi 10.3390/life10020018 ©2020 Author(s) As Published 10.3390/life10020018 Publisher MDPI Version Final published version Citable link https://hdl.handle.net/1721.1/125661 Terms of Use Creative Commons Attribution 4.0 International license Detailed Terms https://creativecommons.org/licenses/by/4.0/ life Book Review Getting Beyond the Toy Domain. Meditations on David Deamer’s “Assembling Life” William Bains 1,2 1 Five Alarm Bio Ltd., O2h Scitech Park, Mill Lane, Hauxton, Cambridge CB22 5HX, UK; [email protected] 2 Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA Received: 25 October 2019; Accepted: 15 February 2020; Published: 18 February 2020 Abstract: David Deamer has written another book, Assembling Life, on the origin of life. It is unapologetically polemic, presenting Deamer’s view that life originated in fresh water hydrothermal fields on volcanic islands on early Earth, arguing that this provided a unique environment not just for organic chemistry but for the self-assembling structure that drive that chemistry and form the basis of structure in life. It is worth reading, it is an advance in the field, but is it convincing? I argue that the Origin of Life field as a whole is unconvincing, generating results in Toy Domains that cannot be scaled to any real world scenario. -
Jie (Jackie) Li
Jie (Jackie) Li Jie (Jackie) Li Department of Earth and Environmental Sciences, University of Michigan 1100 N. University Ave., Ann Arbor MI 48109 +1 734 6157317, [email protected] http:/www.earth.lsa.umich.edu/jackieli/ EDUCATION 1992 University of Science and Technology of China, B.S. Geochemistry 1997 Harvard University, M.A. Geophysics 1998 Harvard University. Ph.D. Earth and Planetary Sciences POSITIONS HELD University of Michigan 2016- Professor 2010-2016 Associate Professor University of Illinois 2009 Associate Professor 2003-2009 Assistant Professor Carnegie Institution for Science 2000-2003 Postdoctoral Associate, 1998-2000 Gilbert Postdoctoral Fellow 2018 Stanford University, Blaustein Visiting Adjunct Professor, 2013 University of Western Australia, Short-Stay Visitor, Institute of Advanced Studies, 2012 Tohoku University, Japan Global Center of Excellence Scholar, 2012 Columbia University, Tharp Fellow 1996-1997 Harvard University, Resident Tutor, Winthrop House AWARDS AND HONORS 2013 Kavli Fellow, National Academy of Sciences 2010 Fellow, Mineralogical Society of America 2009-2010 COMPRES (Consortium for Materials Properties Research) Distinguished Lecturer 2009 Helen Corley Petit Scholar, University of Illinois, College of Liberal Arts and Sciences 2009-2010 Center for Advanced Study Fellow, University of Illinois 2003-2008 Teachers Ranked as Excellent by Their Students, University of Illinois 1992 Presidential Guo Morou Prize, University of Science and Technology of China PROFESSIONAL SOCIETY MEMBERSHIP 2016- American Association -
NASA Astrobiology Institute 2018 Annual Science Report
A National Aeronautics and Space Administration 2018 Annual Science Report Table of Contents 2018 at the NAI 1 NAI 2018 Teams 2 2018 Team Reports The Evolution of Prebiotic Chemical Complexity and the Organic Inventory 6 of Protoplanetary Disk and Primordial Planets Lead Institution: NASA Ames Research Center Reliving the Past: Experimental Evolution of Major Transitions 18 Lead Institution: Georgia Institute of Technology Origin and Evolution of Organics and Water in Planetary Systems 34 Lead Institution: NASA Goddard Space Flight Center Icy Worlds: Astrobiology at the Water-Rock Interface and Beyond 46 Lead Institution: NASA Jet Propulsion Laboratory Habitability of Hydrocarbon Worlds: Titan and Beyond 60 Lead Institution: NASA Jet Propulsion Laboratory The Origins of Molecules in Diverse Space and Planetary Environments 72 and Their Intramolecular Isotope Signatures Lead Institution: Pennsylvania State University ENIGMA: Evolution of Nanomachines in Geospheres and Microbial Ancestors 80 Lead Institution: Rutgers University Changing Planetary Environments and the Fingerprints of Life 88 Lead Institution: SETI Institute Alternative Earths 100 Lead Institution: University of California, Riverside Rock Powered Life 120 Lead Institution: University of Colorado Boulder NASA Astrobiology Institute iii Annual Report 2018 2018 at the NAI In 2018, the NASA Astrobiology Program announced a plan to transition to a new structure of Research Coordination Networks, RCNs, and simultaneously planned the termination of the NASA Astrobiology Institute -
Nature and Extent of the Deep Biosphere Frederick S
Reviews in Mineralogy & Geochemistry Vol. 75 pp. 547-574, 2013 17 Copyright © Mineralogical Society of America Nature and Extent of the Deep Biosphere Frederick S. Colwell College of Earth, Ocean, and Atmospheric Sciences Oregon State University Corvallis, Oregon 97331-5503, U.S.A. [email protected] Steven D’Hondt Graduate School of Oceanography University of Rhode Island Narragansett, Rhode Island 02882, U.S.A. [email protected] INTRODUCTION In the last three decades we have learned a great deal about microbes in subsurface envi- ronments. Once, these habitats were rarely examined, perhaps because so much of the life that we are concerned with exists at the surface and seems to pace its metabolic and evolutionary rhythms with the overt planetary, solar, and lunar cycles that dictate our own lives. And it cer- tainly remains easier to identify with living beings that are in our midst, most obviously strug- gling with us or against us for survival over time scales that are easiest to track using diurnal, monthly or annual periods. Yet, research efforts are drawn again and again to the subsurface to consider life there. No doubt this has been due to our parochial interests in the resources that exist there (the water, minerals, and energy) that our society continues to require and that in some cases are created or modified by microbes. However, we also continue to be intrigued by the scientific curiosities that might only be solved by going underground and examining life where it does and does not exist. But really, is life underground just a peculiarity of most life on the planet and only a re- cently discovered figment of life? Or is it actually a more prominent and fundamental, if unseen, theme for life on our planet? Our primary purpose in this chapter is to provide an incremental assembly of knowledge of subsurface life with the aim of moving us towards a more complete conceptual model of deep life on the planet. -
Commodore of a Global DNA Census
Commodore of a Global DNA Census Tue Apr 26 2011 Page: D1 / Science Times Byline: NICHOLAS WADE Column: SCIENTIST AT WORK JESSE H. AUSUBEL Length: 1,704 words Ad Value: $940,680 Circulation: 1,126,190 "Dinochelus ausubeli" was the name conferred earlier this year on a strange deep sea monster, a lobster discovered off the Philippine coast whose right claw is elongated into a fearsome pincer. The new species was named not after its discoverer, but in honor of the person under whose auspices a fleet of 540 ships from 80 nations has found the lobster and 6,000 other new marine species in the last 10 years. He is Jesse H. Ausubel, a Rockefeller University environmental researcher who is also vice president of the Alfred P. Sloan Foundation of New York. With his academic hat, Mr. Ausubel, 59, writes and thinks about the environment. Under his foundation hat, he has so far started four major international programs to survey the planet and catalog its biological diversity. He began the Census of Marine Life in 2000 after discussions with Fred Grassle, a deep-sea biologist at Rutgers University. The project began as a census of the fishes, but as more biologists got involved it expanded to include invertebrates, a wide range of habitats from shoreline to the ocean abysses, and a system for monitoring the distribution of ocean species. The Sloan Foundation invested $75 million in the census, but all the ship time was paid for by the participating institutions. By the time the first census finished, in 2010, total investment in the project had reached $650 million. -
World Premier International Research Center Initiative (WPI) FY 2017 WPI Project Progress Report
World Premier International Research Center Initiative (WPI) FY 2017 WPI Project Progress Report Host Institution Tokyo Institute of Technology Host Institution Head Yoshinao Mishima Research Center Earth-Life Science Institute Center Director Kei Hirose Common instructions: * Unless otherwise specified, prepare this report from the timeline of 31 March 2018. * So as to base this fiscal year’s follow-up review on the “last” center project, please prepare this report from the perspective of the latest project plan. * Use yen (¥) when writing monetary amounts in the report. If an exchange rate is used to calculate the yen amount, give the rate. * Please prepare this report within 10-20 pages (excluding the appendices, and including Summary of State of WPI Center Project Progress (within 2 pages)). Summary of State of WPI Center Project Progress (write within 2 pages) 1. Conducting research of the highest world level In FY2017, ELSI members contributed to the publication of thematic issues in Geoscience Frontiers (titled “Frontiers in early Earth history and primordial life”) and Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences (titled “Re-conceptualizing the origins of life”), which illustrates ELSI is recognized as a leading institute in the study of the early Earth and the emergence of life on the Earth. New and original ideas, scenarios, theories, and technical advances that have been cultivated at ELSI over the past years were presented, such as messy chemistry. The following are representative research topics and highlights that have advanced at ELSI in FY2017. Compositional evolution of the Earth’s core: PI Hirose, PI Hernlund, and PI Helffrich revealed that SiO2 crystallization in the core is an alternative mechanism for core convection to thermal convection (Hirose et al., 2017 Nature; Hirose et al., 2017 Science). -
Summary of Finding Signs of Past Rock-Hosted Life
Mars-2020 Landing Site Workshop Summary of Finding Signs of Past Rock-Hosted Life on Behalf of the Rock-Hosted Life Working Group Bethany Ehlmann (Caltech) and TC Onstott (Princeton) February 8, 2017 NOTE ADDED BY JPL WEBMASTER: This content has not been approved or adopted by NASA, JPL, or the California Institute of Technology. This document is being made available for information purposes only, and any views and opinions expressed herein do not necessarily state or reflect those of NASA, JPL, or the California Institute of Technology. Outline of presentation 1. Background and Objectives 2. How knowledge of terrestrial life leads to an exploration strategy 3. Examples of biosignatures 4. Summary of biosignatures and exploration strategy 5. Conclusions & Future Work International Team of On-Site Participants and Significant Contributors to Webinars Abigail Allwood JPL Anna Neubeck Stockholm University Jan Amend University of Southern California Paul Niles (Org.) NASA Johnson Luther Beegle JPL Tullis Onstott (Org.) Princeton University Roh Bhartia JPL Maggie Osburn Northwestern University Penny Boston NASA Ames Aaron Regberg NASA Johnson Charles Cockell University of Edinburgh Cecilia Sanders (student) Caltech Max Coleman (Org.) JPL Haley Sapers (Org.) Caltech, JPL, USC Bethany Ehlmann (Org.) Caltech, JPL Barbara Sherwood-Lollar University of Toronto Jen Eigenbrode NASA Goddard Greg Slater McMaster University Danny Glavin NASA Goddard Nathan Stein (student) Caltech Lindsay Hays JPL Alexis Templeton University of Colorado Keyron Hickman-Lewis -
The Department of Geosciences at Princeton University Cover: Schoene Research Group Field Work in Southwestern Colorado, Summer 2014
Guyot Science The Department of Geosciences at Princeton University Cover: Schoene research group field work in southwestern Colorado, summer 2014. Photo courtesy of C. Brenhin Keller. Guyot Science A Summary of the Research Progress and Accomplishments made by the Faculty Members of the Department of Geosciences Climate, biogeochemical cycles and planetary tectonics are the three basic processes that shape the Earth system. Geoscientists face a unique challenge in seeking to understand the complexity of the Earth’s physical and biogeochemical systems. The surface environment of the Earth is controlled by interactions between the deep Earth, the atmosphere, the hydrosphere and the biosphere. These interactions occur on timescales ranging from picoseconds for chemical reactions on particle surfaces to the billions of years over which plate tectonic processes and biological evolution have radically altered the composition of the atmosphere, and in space from nanometer to planetary scales. Princeton’s Department of Geosciences is at the forefront of scientific discovery in the solid earth, the environmental geosciences and oceanography/ climate science. Our faculty and students address critical societal issues, such as climate change and geo- logic hazards, through research and education at all levels. Our mission is to understand Earth’s history and its future, the energy and resources required to support an increasing global population, and the challenge of sustainability in a changing climate. Geosciences Faculty (Left to Right): Lincoln Hollister (emeritus), Jessica Irving, George Philander, Stephan Fueglistaler, David Medvigy, Daniel Sigman, Adam Maloof, Jorge Sarmiento, Bess Ward (chair), Jeroen Tromp, Thomas Duffy, Satish Myneni, Gerta Keller, Blair Schoene, François Morel, Frederik Simons, Michael Bender (emeritus) and Allan Rubin.