New Observations on Impossible Differential Cryptanalysis of Reduced-Round Camellia⋆ Ya Liu1, Leibo Li2,3⋆⋆, Dawu Gu1, Xiaoyun Wang2,3,4, Zhiqiang Liu1, Jiazhe Chen2,3, Wei Li5,6 1 Department of Computer Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China {liuya0611,dwgu,ilu zq}@sjtu.edu.cn 2 Key Laboratory of Cryptologic Technology and Information Security, Ministry of Education, Shandong University, Jinan 250100, China 3 School of Mathematics, Shandong University, Jinan 250100, China {lileibo, jiazhechen}@mail.sdu.edu.cn 4 Institute for Advanced Study, Tsinghua University, Beijing 100084, China
[email protected] 5 School of Computer Science and Technology, Donghua University, Shanghai 201620, China 6 Shanghai Key Laboratory of Integrate Administration Technologies for Information Security, Shanghai 200240, China
[email protected] Abstract. Camellia is one of the widely used block ciphers, which has been selected as an in- ternational standard by ISO/IEC. In this paper, by studying the properties of the key-dependent transformations F L/F L−1, we improve the previous results on impossible differential cryptanalysis of reduced-round Camellia and gain some new observations. First, we introduce some new 7-round impossible differentials of Camellia for weak keys. These weak keys that work for the impossible differential take 3/4 of the whole key space, therefore, we further get rid of the weak-key assump- tion and leverage the attacks on reduced-round Camellia to all keys by utilizing a method that is called the multiplied method. Second, we build a set of differentials which contains at least one 8-round impossible differential of Camellia with two F L/F L−1 layers.