TEMATICS FOR PHYSICS WRITTEN EXAM

e: essay, d: definition t: theorem f: formula

I. Kinematics

 Cartesian coordinate system (e)  Position vector (d)  Polar coordinate system in 2 dimension (e)  Mechanical particle (d)  Path (d)  Mechanical distance (d)  Displacement vector (d)  Average velocity (d+f)  Average speed (d+f)  Instantaneous velocity (d+f)  Average acceleration (d+f)  Instantaneous acceleration (d+f)  Motion on a straight line with constant velocity (d+f)  Motion on a straight line with constant acceleration (d+f)  Motion on a circular path, circle motion (d+f)  Magnitude of the velocity on the circle (d)  Angular displacement (d)  angular velocity (d+f)  Angular acceleration (d+f)  Time of one cycle (d+f)  Number of rotations (d+f)

II. Dynamics of linear motion

 Newton`s first law (d)  Newton`s second law (d+f)  Newton`s third law, action-reaction law (d+f)  Newton`s fourth law, principle of superposition (d+f)  Fundamental equation of dyamics (d+f)  Momentum or impulse theorem (t)  Conservation of momentum (or impulse) theorem (t)  Work – if force vector is parallel to displacement vector (d+f)  Work – if force vector is not parallel to displacement vector (d+f)  Work – total mechanical work, on general path (d+f)  Work of the gravitational force (e)  Conservative field (d)  Nonconservative field (d)  Frictional force (d)  Kinetical energy (d+f)  Potential energy (d+f)  Conservation of mechanical energy (t)

1

 Work - energy theorem (t)  Power (d+f)

III. Dynamics of circular motion

 Torque or moment (d+f)  Angular momentum (d+f)  Angular momentum theorem (t+f)  Conservation of angular momentum (t+f)

IV. Many-body-system (Particle systems)

 Internal force (d)  External force (d)  Center of mass (d)  Vector of the center of mass (f)  Momentum theorem for particle systems (t+f)  Conservation of momentum of particle systems (t+f)  Center of mass theorem (t+f)  Conservation of center of mass theorem (t+f)  Elastic collisions (e)  Non-elastic or inelastic collisions (e)  Angular momentum theorem for particle systems (t+f)  Conservation of angular momentum theorem of particle systems (t+f)

V. Dynamics of a rigid body

 Rigid body (d)  Angular velocity vector (d+f)  Moment of inertia (d+f)  Rotational analog of Newton`s second law for a rigid body  Translational kinetic energy of a rigid body (d+f)  Rotational kinetic energy of a rigd body (d+f)  Total kinetic energy of a rigid body (d+f)  Power of rotating rigid body (d+f)

VI. Relative motion

 Galilean relativity theorem (e)  Galilean transformation (f)  Relative motion – noninertial reference frames (e)  Rotating reference frame – centrifugal force (f) 2

 Rotating reference frame – Coriolis force (f)

VII. Elements of the theory of special relativity

 Light clock moves parallel to its axis (e)  Light clock moves perpendicular to its axis (e)  Michelson – Morley interference experiment (e)  Einstein`s postulates, principle of relativity and invariance of c (t)  Lorentz-transformations (f)  Inverse Lorentz-transformations (f)  Length contraction (f)  Time dilatation (f)  Relativistic mass increase (f)  Pulse, impulse (f)  Rest energy (f)  Kinetical energy (f)  Total energy (f)

VIII. Thermodynamics. part I.

 Temperature scales (e)  Linear thermal expansion (e)  Surface or area thermal expansion (e)  Volume thermal expansion (e)

IX. Thermodynamics. part II.

 Thermometers (e)  (d)  Combined gas law, general gas law (f)  Ideal gas law in some forms (f)  Boyle – Mariotte`s law, Boyle`s law (t+f)  Gay-Lussac`s I. law, Charles`s law (t+f)  Gay-Lussac`s II. law, Gay-Lussac`s law (t+f)  Heat (f)  Specific heat (d+f)  Specific heats for ideal gases (specific heat at constant pressure or constant volume) (d+f)  Constant volume molar heat, molar at constant volume (f)  Constant pressure molar heat, molar heat capacity at constant pressure (f)  Molar heats for ideal gases (content of the table) (f)  Heat capacity, thermal capacity (d+f)

X. Thermodynamics. part III. 3

 Isolated system (d)  Closed system (d)  Opened system (d)  Work done by the outer system on the gas (f)  Work done by the gas on the outer system (f)  Internal energy of the ideal gas (d)  First law of thermodynamics in 3 versions (t+f)  Isochoric process (e)  Isobar process (e)  Enthalpy (d)  Isotherm process (e)  Adiabatic process (e)

XI. Thermodynamics. part IV.

 Thermal efficiency of a cycle (f)  Carnot cycle (d)  Thermal efficiency of the Carnot cycle (e)  Second law of thermodynamics – Clausius (t)  Second law of thermodynamics – Thomson (t)  Second law of thermodynamics – Planck (t)  Second law of thermodynamics – Ostwald(t)  Reversible process (d)  Irreversible process (d)  Reduced heat (d)  Entrophy (d)  Second law of thermodynamics for isolated closed thermal systems (t+f)  Free energy (d)  Second law of thermodynamics using free energy (t+f)  Free enthalpy (d)  Second law of thermodynamics using free enthalpy (t+f)

XII. Kinetic gas theory

 Pressure (f)  Equation of ideal gases according to the kinetic gas theory (f)  Temperature (f)  Equipartition theorem (f)  Internal energy of the gas (f)  Specific heat and molar heat (f)  Entrophy by Boltzmann (d)

XIII. Oscillations

4

 Amplitude (d)  Undamped oscillations (d)  Harmonic oscillations (d)  Position coordinate – time function (f)  Angular frequency (f)  Phase (f)  Initial phase (f)  Velocity of harmonic oscillation (e)  Acceleration of harmonic oscillation (e)  Dynamics of harmonic oscillation (e)  Potential energy of oscillation (d+f)  Kinetic energy od oscillation (d+f)  Theorem for energies in oscillations (d+f)  Damped oscillations (e)  Forced oscillations (f)  Resonance catastrophe (example)

XIV. Waves

 wave motion (d)  mechanical waves (d)  electromagnetic waves (d)  shock waves (d)  traveling waves (d)  periodic waves (d)  harmonic waves (d)  wavelength of a wave (d)  phase of the wave (d)  period of time of the wave (d)  frequency of a wave (d)  amplitude (d)  longitudinal wave (d, e)  transverse wave (d, e)  wave function (f)  properties of waves (e)

XV. Optics

 Fermat`s principle (t, f)  reflection of light (t)  refraction of light – Snell`s law (t, f)  total reflection of light (e)  interference of light waves (e)  Amplification maximum at interference (f)

5

 Maximum attenuation at interference (f)  diffraction of light (e)  Huygens – Fresnel`s principle (t)

XVI. Duality of electromagnetic radiations

 thermal radiation (e)  spectral emission (d)  absolute black body (d)  Stefan – Boltzmann`s law (t, f)  Wien`s displacement law (t, f, graphs)  Rayleigh – Jeans law (f)  the “ultraviolet catastrophe” (e)  Planck`s hypotheses #1 and #2 (t, f)  Planck`s law (f)  towards the photoeffect – preliminary experimental results (e)  description of photoeffect (e)  generating x-rays (e)  Compton scattering, Compton effect (e, f)  Proof for the “particle forms” of electromagnetic radiations (e)  Proof for the “wave forms” of electromagnetic radiations (e)  de Broglie equation (f)

XVII. Atom models, quantum numbers, Pauli exclusion principle

– Thomson model (e)  Rutherford experiment (e)  Rutherford atom model (e)  What is wrong with the Rutherford atom model? (e)  Bohr atom model (laws I, II, III) (t, f)  principal quantum number (d)  Bohr – Sommerfeld atom model  azimuthal quantum number (d)  magnetic quantum number (d)  (d)  spin quantum number (d)  Pauli exclusion principle (t)

XVIII. Physics of condensed matters

 Interpretation of metallic bond based on free electron model (e)  specific resistance (d, f)  specific conductivity (d, f)  conductivity based on free electron model (f) 6

 conductivity based on wave model (f)  electric band theory of based on free electron model (e)  conductive band (d)  valence (ground) band (d)  electric conductors (e)  electric insulators (e)  electric (e)  electric band theory of solids based on wave model (e)  restricted wavelengths (d, f)  restricted impulses (d, f)  restricted energies (d, f)  Fermi function (d, f)  (d)  energy distribution function (d)  work function (workfunction) (d)  contact potential difference or contact voltage (d)  Volta-type voltage (d)  Galvani-type voltage (d)  Volta-type potential serie (d)  primary conductor (d)  Seebeck-effect  Peltier-effect

7