In New Zealand
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Histories of Value Following Deer Populations Through the English Landscape from 1800 to the Present Day
Holly Marriott Webb Histories of Value Following Deer Populations Through the English Landscape from 1800 to the Present Day Master’s thesis in Global Environmental History 1 Abstract Marriott Webb, H. 2019. Histories of Value: Following Deer Populations Through the English Landscape from 1800 to the Present Day. Uppsala, Department of Archaeology and Ancient His- tory. Imagining the English landscape as an assemblage entangling deer and people throughout history, this thesis explores how changes in deer population connect to the ways deer have been valued from 1800 to the present day. Its methods are mixed, its sources are conversations – human voices in the ongoing historical negotiations of the multispecies body politic, the moot of people, animals, plants and things which shapes and orders the landscape assemblage. These conversations include interviews with people whose lives revolve around deer, correspondence with the organisations that hold sway over deer lives, analysis of modern media discourse around deer issues and exchanges with the history books. It finds that a non-linear increase in deer population over the time period has been accompanied by multiple changes in the way deer are valued as part of the English landscape. Ending with a reflection on how this history of value fits in to wider debates about the proper representation of animals, the nature of non-human agency, and trajectories of the Anthropocene, this thesis seeks to open up new ways of exploring questions about human- animal relationships in environmental history. Keywords: Assemblages, Deer, Deer population, England, Hunting, Landscape, Making killable, Moots, Multispecies, Nativist paradigm, Olwig, Pests, Place, Trash Animals, Tsing, United Kingdom, Wildlife management. -
Quaternary Science Reviews 42 (2012) 74E84
Author's personal copy Quaternary Science Reviews 42 (2012) 74e84 Contents lists available at SciVerse ScienceDirect Quaternary Science Reviews journal homepage: www.elsevier.com/locate/quascirev Phylogeographic, ancient DNA, fossil and morphometric analyses reveal ancient and modern introductions of a large mammal: the complex case of red deer (Cervus elaphus) in Ireland Ruth F. Carden a,*, Allan D. McDevitt b, Frank E. Zachos c, Peter C. Woodman d, Peter O’Toole e, Hugh Rose f, Nigel T. Monaghan a, Michael G. Campana g, Daniel G. Bradley h, Ceiridwen J. Edwards h,i a Natural History Division, National Museum of Ireland (NMINH), Merrion Street, Dublin 2, Ireland b School of Biology and Environmental Science, University College Dublin, Belfield, Dublin 4, Ireland c Naturhistorisches Museum Wien, Vienna, Austria d 6 Brighton Villas, University College Cork, Cork, Ireland e National Parks and Wildlife Service, Killarney National Park, County Kerry, Ireland f Trian House, Comrie, Perthshire PH6 2HZ, Scotland, UK g Department of Human Evolutionary Biology, Harvard University, 11 Divinity Avenue, Cambridge 02138, USA h Molecular Population Genetics Laboratory, Smurfit Institute, Trinity College Dublin, Dublin 2, Ireland i Research Laboratory for Archaeology, University of Oxford, Dyson Perrins Building, South Parks Road, Oxford OX1 3QY, UK article info abstract Article history: The problem of how and when the island of Ireland attained its contemporary fauna has remained a key Received 29 November 2011 question in understanding Quaternary faunal assemblages. We assessed the complex history and origins Received in revised form of the red deer (Cervus elaphus) in Ireland using a multi-disciplinary approach. Mitochondrial sequences of 20 February 2012 contemporary and ancient red deer (dating from c 30,000 to 1700 cal. -
Exotic Big Game: a Controversial Resource Stephen Demarals, David A
RANGELANDS12(2), April 1990 121 operation was substantially higher because of the addi- allocating15% of the fixed vehiclecosts to the enterprise, tional driving associated with guiding hunters and may the break-even charge is $77.90 per hunter day. In com- also involve picking up hunters in town. Providing guid- paring the break-even chargeswith the estimated fee of ing services requiresadditional labor and includesa cost $111.93, it appears this option is also profitable. for the operator to becomelicensed as an outfitter and Discussion and Conclusions This is a in if the guide. requirement Wyoming hunting Additional income was the reason cited enterpriseused landsnot owned by the operator, includ- primary by lands, or if are hired the operators for beginning a recreation enterprise. While ing public guides by operator. ranch recreationhas the to earna realiz- The budget for Example 2 is shown in Table 2. In this potential profit, the breakeven is hunter ing that potential dependson each operator'ssituation. example charge $24.81 per day. evaluate his the break-even with the estimated fee Eachoperator must particularsituation and Comparing charge consider suchas with the of $36.32 that this of any subjectivefactors, dealing per day (Table 1) suggests type when a ranch recreation is also public, assessing the potential of operation profitable. When landowners and are able to Example 3 describes an agricultural operation that pro- enterprise. recognize realize a situation and other vides 14,400 acres for deer and The profitable through hunting antelope hunting. recreation activitieson their land, wildlife habitat will be hunting enterprise operates for 28 days with thirty-five viewed as an asset and not a customershunting an average of four days per hunteror liability. -
Ecology of Red Deer a Research Review Relevant to Their Management in Scotland
Ecologyof RedDeer A researchreview relevant to theirmanagement in Scotland Instituteof TerrestrialEcology Natural EnvironmentResearch Council á á á á á Natural Environment Research Council Institute of Terrestrial Ecology Ecology of Red Deer A research review relevant to their management in Scotland Brian Mitchell, Brian W. Staines and David Welch Institute of Terrestrial Ecology Banchory iv Printed in England by Graphic Art (Cambridge) Ltd. ©Copyright 1977 Published in 1977 by Institute of Terrestrial Ecology 68 Hills Road Cambridge CB2 11LA ISBN 0 904282 090 Authors' address: Institute of Terrestrial Ecology Hill of Brathens Glassel, Banchory Kincardineshire AB3 4BY Telephone 033 02 3434. The Institute of Terrestrial Ecology (ITE) was established in 1973, from the former Nature Conservancy's research stations and staff, joined later by the Institute of Tree Biology and the Culture Centre of Algae and Protozoa. ITE contributes to and draws upon the collective knowledge of the fourteen sister institutes which make up the Natural Environment Research Council, spanning all the environmental sciences. The Institute studies the factors determining the structure, composition and processes of land and freshwater systems, and of individual plant and animal species. It is developing a Sounder scientific basis for predicting and modelling environmental trends arising from natural or man-made change. The results of this research are available to those responsible for the protection, management and wise use of our natural resources. Nearly half of ITE'Swork is research commissioned by customers, such as the Nature Conservancy Council who require information for wildlife conservation, the Forestry Commission and the Department of the Environment. The remainder is fundamental research supported by NERC. -
Species Fact Sheet: Sika Deer (Cervus Nippon) [email protected] 023 8023 7874
Species Fact Sheet: Sika Deer (Cervus nippon) [email protected] www.mammal.org.uk 023 8023 7874 Quick Facts Recognition: A medium-sized deer. Has a similar spotted coat to fallow deer in summer, but usually is rougher, thicker, dark grey-brown in winter. Tail is shorter than fallow deer, but with similar white “target” and black margins. Usually has a distinctive “furrowed brow” look, and if seen well, evident white spots on the limbs, marking the site of pedal glands. Males have rounded, not pamate, antlers, looking like a small version of a red deer stag’s antlers. Size: 138-179 cm; Tail length: 14-21cm; Shoulder height 50-120 cm. Weight: Males 40-63kg; females 31-44kg. Life Span: Maximum recorded lifespan in captivity is 26 years; 16 in the wild. Distribution & Habitat Sika are native to SE China, including Taiwan, Korea and Japan. It was introduced to Powerscourt Park, Co Wicklow, Ireland, in 1860, and to London Zoo. Sika then spread to many other parks and escaped or were deliberately released; in some cases they were deliberately released into surrounding woodlands to be hunted on horseback. This resulted in feral populations S England (especially Dorset and the New Forest), in the Forest of Bowland and S Cumbria, and, especially, in Scotland. It is still spreading. Its preference for conifer plantations, especially the thick young stages, has been a big advantage to it. It can reach densities up to 45/km2 in prime habitat. General Ecology Behaviour They typically live in small herds of 6-7 animals, at least in more open habitats, but in dense cover may only live in small groups of 1-3 only. -
Estimating Sika Deer Abundance Using Camera Surveys
ESTIMATING SIKA DEER ABUNDANCE USING CAMERA SURVEYS by Sean Q. Dougherty A thesis submitted to the Faculty of the University of Delaware in partial fulfillment of the requirements for the degree of Master of Science in Wildlife Ecology Fall 2010 Copyright 2010 Sean Q. Dougherty All Rights Reserved ESTIMATING SIKA DEER ABUNDANCE USING CAMERA SURVEYS by Sean Q. Dougherty Approved: ___________________________________________________________ Jacob L. Bowman, Ph.D. Professor in charge of thesis on behalf of the Advisory Committee Approved: ___________________________________________________________ Douglas W. Tallamy, Ph.D. Chair of the Department of Entomology and Wildlife Ecology Approved: ___________________________________________________________ Robin W. Morgan, Ph.D. Dean of the College of Agriculture & Natural Resources Approved: ___________________________________________________________ Charles G. Riordan, Ph.D. Vice Provost for Graduate and Professional Education ACKNOWLEDGMENTS I would like to thank the funding sources that made my research possible; the College of Agriculture and Natural Resources Research Partnership Grant, the University of Delaware Graduate School, the University of Delaware McNair Scholar’s program, Maryland Department of Natural Resources, University of Delaware Department of Entomology and Wildlife Ecology, the West Virginia University McNair Scholar’s program, and Tudor Farms LLC. I would also like to thank my committee members Jake Bowman, Greg Shriver, Brian Eyler, and the staff Tudor Farms LLC for all the support and invaluable advice with all aspects of my research and fieldwork. All my friends and family have been especially valuable for their love and support throughout all my endeavors. Finally, I have to acknowledge Traci Hunt for her support, advice and hours of attentiveness throughout the writing portion of my thesis. -
Reeves' Muntjac Populations Continue to Grow and Spread Across Great
European Journal of Wildlife Research (2021) 67:34 https://doi.org/10.1007/s10344-021-01478-2 ORIGINAL ARTICLE Reeves’ muntjac populations continue to grow and spread across Great Britain and are invading continental Europe Alastair I. Ward1 & Suzanne Richardson1 & Joachim Mergeay2,3 Received: 27 August 2020 /Revised: 18 November 2020 /Accepted: 5 March 2021 # The Author(s) 2021 Abstract The appropriate response for controlling an invasive non-native species depends on the extent to which its invasion has progressed, which can be revealed by information on its distribution and abundance. Reeves’ muntjac is a native deer to China and Taiwan, but has been introduced and become well-established in Great Britain. Moreover, in recent years, reports and verified records in the wild from other European countries have become more frequent. We reviewed the status of Reeves’ muntjac in Britain and evaluated its national range expansion from 2002 to 2016. While the British population appears to have tripled in size since 1995, the rate at which it has expanded its range seems to have peaked at approximately 12% per year between 2002 and 2005 and has since declined. We also consolidated observations on its international distribution, including a conservative evaluation of its presence in zoological collections. We predict that this species could expand its range to include every European country, although the availability of suitable landcover and climate is likely to vary substantially between countries. To prevent the significant impacts to conservation interests that have been observed in Great Britain from extending across Europe, national administrations should consider eradicating Reeves’ muntjac while that is still feasible. -
H Ybridisation Among Deer and Its Implications for Conservation
H ybridisation among Deer and its implications for conservation RORY HARRINGTONl INTRODUCTION The Red Deer (Cervus elaphus scoticus Lonnberg, 1906) is generally considered to be the only native hoofed animal that has lived contemporaniously with man in Ireland (Charlesworth, 1963 and O'Rourke, 1970). Ecologically, the red deer appears to be an animal of the transition zone between forest and steppe (Dzieciolowski, 1969) and it was widely distributed in Ireland up to the mid-eighteenth century (Pococke, 1752; Moryson, 1735 and Scouler, 1833). The present distribution of the species in the wild is however confined to three of the thirty two counties of Ireland and only in County Kerry are the deer considered to be indigenous. The other two counties, Wicklow and Donegal, have stock of mainly alien origin. There is a general recognition of the threat that an alien red deer stock could present to the genetic integrity of the Irish race of red deer in county Kerry if these two red deer stocks were brought into contact. However, until recently few people realized that, in areas where red deer and the exotic Japanese sika deer (Cervus nippon Temminck) are living sympatrically (within the same geographical area) as in County Kerry, there is any threat of the two species hybridising. A current ecological study of red deer and sika deer in County Wicklow has produced evidence that clearly supports the early reports made by Powerscourt (1884), Brooke (\898) and F. W. B. (J 902) that red deer and sika deer can hybridise freely. The evid ed~e also indicates that hybridisation between these species is an insidious phenomonen which can result in an apparent total amal gamation of a red deer popUlation during a relatively [hort period of time. -
The European Fallow Deer (Dama Dama Dama)
Heredity (2017) 119, 16–26 OPEN Official journal of the Genetics Society www.nature.com/hdy ORIGINAL ARTICLE Strong population structure in a species manipulated by humans since the Neolithic: the European fallow deer (Dama dama dama) KH Baker1, HWI Gray1, V Ramovs1, D Mertzanidou2,ÇAkın Pekşen3,4, CC Bilgin3, N Sykes5 and AR Hoelzel1 Species that have been translocated and otherwise manipulated by humans may show patterns of population structure that reflect those interactions. At the same time, natural processes shape populations, including behavioural characteristics like dispersal potential and breeding system. In Europe, a key factor is the geography and history of climate change through the Pleistocene. During glacial maxima throughout that period, species in Europe with temperate distributions were forced south, becoming distributed among the isolated peninsulas represented by Anatolia, Italy and Iberia. Understanding modern patterns of diversity depends on understanding these historical population dynamics. Traditionally, European fallow deer (Dama dama dama) are thought to have been restricted to refugia in Anatolia and possibly Sicily and the Balkans. However, the distribution of this species was also greatly influenced by human-mediated translocations. We focus on fallow deer to better understand the relative influence of these natural and anthropogenic processes. We compared modern fallow deer putative populations across a broad geographic range using microsatellite and mitochondrial DNA loci. The results revealed highly insular populations, depauperate of genetic variation and significantly differentiated from each other. This is consistent with the expectations of drift acting on populations founded by small numbers of individuals, and reflects known founder populations in the north. -
AWA IR C-AK Secure.Pdf
United States Department of Agriculture Customer: 3415 Animal and Plant Health Inspection Service Inspection Date: 25-JUN-14 Animal Inspected at Last Inspection Cust No Cert No Site Site Name Inspection 3415 96-C-0015 001 ALASKA WILDLIFE 25-JUN-14 CONSERVATION CENTER INC. Count Species 000002 Canadian lynx 000004 Reindeer 000009 Muskox 000004 Moose 000002 North American black bear 000003 Brown bear 000001 North American porcupine 000130 American bison 000001 Red fox 000021 Elk 000177 Total United States Department of Agriculture Customer: 7106 Animal and Plant Health Inspection Service Inspection Date: 15-SEP-14 Animal Inspected at Last Inspection Cust No Cert No Site Site Name Inspection 7106 96-C-0024 001 S.A.A.M.S 15-SEP-14 Count Species 000008 Stellers northern sealion 000006 Harbor seal 000003 Sea otter 000017 Total United States Department of Agriculture Customer: 7106 Animal and Plant Health Inspection Service Inspection Date: 24-JUN-15 Animal Inspected at Last Inspection Cust No Cert No Site Site Name Inspection 7106 96-C-0024 001 S.A.A.M.S 24-JUN-15 Count Species 000008 Stellers northern sealion 000006 Harbor seal 000014 Total DBARKSDALE United States Department of Agriculture Animal and Plant Health Inspection Service 2016082567946548 Insp_id Inspection Report S.A.A.M.S Customer ID: 7106 P. O. Box 1329 Certificate: 96-C-0024 Seward, AK 99664 Site: 001 S.A.A.M.S Type: ROUTINE INSPECTION Date: 26-SEP-2016 No non-compliant items identified during this inspection. This inspection and exit briefing was conducted with facility representatives. -
Management and Control of Populations of Foxes, Deer, Hares, and Mink in England and Wales, and the Impact of Hunting with Dogs
A Report to the Committee of Inquiry into Hunting with Dogs Management and Control of Populations of Foxes, Deer, Hares, and Mink in England and Wales, and the Impact of Hunting with Dogs Macdonald, D.W.1, Tattersall, F.H.1, Johnson, P.J.1, Carbone, C.1, Reynolds, J. C.2, Langbein, J.3, Rushton, S. P.4 and Shirley, M.D.F.4 1Wildlife Conservation Research Unit, Dept. of Zoology, South Parks Rd., Oxford, OX1 3PS; 2The Game Conservancy Trust, Fordingbridge, Hampshire, SP6 1EF; 3Wildlife Research Consultant, “Greenleas”, Chapel Cleeve, Minehead, Somerset TA24 6HY; 4Centre for Land Use and Water Resources Research, University of Newcastle upon Tyne, Porter Building, Newcastle upon Tyne NE1 7RU Management and Control of the Population of Foxes, Deer, Hares and Mink, Macdonald et al: and the Impact of Hunting with Dogs Executive Summary 1. Why seek to control populations of foxes, deer, hares, and mink in England and Wales? · A number of interest groups seek to control populations of foxes, deer, hares and mink for various, and often for several, reasons, summarised in Chapter 2. These reasons should be considered in the context of: ¨ An often ambivalent attitude to the species and its control. ¨ The general lack of a simple relationship between damage and abundance. ¨ Differences between perceived and actual damage sustained. · Foxes are widely controlled because they are perceived to kill livestock (lambs, poultry and piglets), game (including hares) and other ground-nesting birds. ¨ Fox predation on livestock is usually low level, but widespread and sometimes locally significant. Evidence is strong that fox predation has a significant impact on wild game populations, but less so for other ground-nesting birds. -
Seasonal Differences in Rumen Bacterial Flora of Wild Hokkaido Sika
Seasonal differences in rumen bacterial flora of wild Hokkaido sika deer and partial characterization of an unknown Title bacterial group possibly involved in fiber digestion in winter Author(s) Yamano, Hidehisa; Ichimura, Yasuhiro; Sawabe, Yoshihiko; Koike, Satoshi; Suzuki, Yutaka; Kobayashi, Yasuo Animal science journal, 90(6), 790-798 Citation https://doi.org/10.1111/asj.13203 Issue Date 2019-06 Doc URL http://hdl.handle.net/2115/78283 This is the peer reviewed version of the following article: "Seasonal differences in rumen bacterial flora of wild Hokkaido sika deer and partial characterization of an unknown bacterial group possibly involved in fiber digestion in Rights winter", Animal Science Journal 90(6) 790-798,June 2019, which has been published in final form at https://doi.org/10.1111/asj.13203. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Use of Self-Archived Versions. Type article (author version) File Information ASJ_Yamano et al._final.pdf Instructions for use Hokkaido University Collection of Scholarly and Academic Papers : HUSCAP 1 1 ORIGINAL ARTICLE 2 3 Seasonal differences in rumen bacterial flora of wild Hokkaido sika deer and partial 4 characterization of an unknown bacterial group possibly involved in fiber digestion in winter 5 6 Hidehisa Yamano, Yasuhiro Ichimura, Yoshihiko Sawabe, Satoshi Koike, Yutaka Suzuki and Yasuo 7 Kobayashi* 8 9 Graduate School of Agriculture, Hokkaido University, Hokkaido 060-8589, Japan 10 11 Correspondence 12 Yasuo Kobaayashi, Graduate School of Agriculture, Hokkaido University, 13 Kita, Sapporo, Hokkaido, Japan 14 E mail: [email protected] 15 16 Funding information 17 Ministry of Education, Culture, Sports, Science and Technology, Japan, 18 Grant/Award Numbers 15580231 and 17380157 19 20 21 22 23 24 25 2 1 ABSTRACT 2 Rumen digesta was obtained from wild Hokkaido sika deer to compare bacterial flora between 3 summer and winter.