CHO-DISSERTATION-2020.Pdf
Total Page:16
File Type:pdf, Size:1020Kb
Copyright by Shin Hum Cho 2020 The Dissertation Committee for Shin Hum Cho Certifies that this is the approved version of the following Dissertation: Infrared Plasmonic Doped Metal Oxide Nanocubes Committee: Delia J. Milliron, Supervisor Brian A. Korgel Thomas M. Truskett Xiaoqin Elaine Li Infrared Plasmonic Doped Metal Oxide Nanocubes by Shin Hum Cho Dissertation Presented to the Faculty of the Graduate School of The University of Texas at Austin in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy The University of Texas at Austin May 2020 Abstract Infrared Plasmonic Doped Metal Oxide Nanocubes Shin Hum Cho, Ph.D. The University of Texas at Austin, 2020 Supervisor: Delia J. Milliron Localized surface plasmon resonance (LSPR) in semiconductor nanocrystals (NCs) that results in resonant absorption, scattering, and near field enhancement around the NC can be tuned across a wide optical spectral range from visible to far-infrared by synthetically varying doping level. Cube-shaped NCs of conventional metals like gold and silver generally exhibit LSPR in the visible region with spectral modes determined by their faceted shapes. However, faceted NCs exhibiting LSPR response in the infrared (IR) region are relatively rare. We describe the colloidal synthesis of nanoscale fluorine- doped indium oxide (F:In2O3) cubes with LSPR response in the IR region, wherein fluorine was found to both direct the cubic morphology and act as an aliovalent dopant. The presence of fluorine was found to impart higher stabilization to the (100) facets, suggesting that the cubic morphology results from surface binding of F-atoms. In addition, fluorine acts as an anionic aliovalent dopant in the cubic bixbyite lattice of In2O3, introducing a high concentration of free electrons leading to LSPR. The cubes exhibit narrow, shape-dependent multimodal LSPR extinction peaks due to corner- and edge-centered modes. The spatial origin of these different contributions to the spectral response are directly visualized by electron energy loss spectroscopy (EELS) in a iv scanning transmission electron microscope (STEM). A synthetic challenge in faceted metal oxide NCs is realizing tunable LSPR near-field response in the IR. We expand to colloidal synthesis of fluorine, tin co-doped indium oxide (F,Sn:In2O3) NC cubes with tunable IR range LSPR. Free carrier concentration is tuned through controlled Sn dopant incorporation, where Sn is an aliovalent n-type dopant in the In2O3 lattice. Monolayer NC arrays are fabricated through liquid-air interface assembly, NC film nanocavities with heightened near-field enhancement (NFE). The tunable F,Sn:In2O3 NC near-field is coupled with PbS quantum dots, via the Purcell effect. The detuning frequency between the nanocavity and exciton is varied, resulting in IR near-field dependent enhanced exciton lifetime decay. v Table of Contents List of Tables ................................................................................................................... viii List of Figures .................................................................................................................... ix Chapter 1: Colloidal Synthesis of Plasmonic Doped Metal Oxide Nanocrystals .............1 Nucleation and Growth Kinetics .................................................................................1 Monomer Chemical Mechanism ...............................................................................13 Doping schemes for LSPR active semiconductor NCs ............................................25 Chapter 2: Free Carriers in Doped Metal Oxide Nanocrystals .......................................54 Introduction ...............................................................................................................54 Free Carriers in Doped Metal Oxide NC ..................................................................57 Optical Properties of the NC Films...........................................................................76 Chapter 3: Faceting in Plasmonic Doped Metal Oxide Nanocrystals .............................85 NC shape control ......................................................................................................85 Capping agent shape control .....................................................................................92 Chapter 4: Fluorine-Induced Faceting in Syntheses of Colloidal Nanocubes ..............103 Introduction .............................................................................................................104 NC Shape Control ...................................................................................................106 Influences of Fluorine on NC Shape.......................................................................121 Chapter 5: Infrared Plasmonic Response in Nanocubes ...............................................136 Fluorine as an Anionic Dopant. ..............................................................................136 Optical Properties ...................................................................................................155 Conclusion ..............................................................................................................163 vi Chapter 6: Infrared Plasmon Spectral Tuning in Nanocubes ........................................171 Introduction .............................................................................................................171 F,Sn:In2O3 NC Synthesis ........................................................................................175 NC Surface Characterization. .................................................................................185 NC Dopant Incorporation. ......................................................................................190 F,Sn:In2O3 NC LSPR Optical Properties. ...............................................................193 Chapter 7: Plasmon-Exciton Coupling in NC Nanocavity Arrays ...............................200 Monolayer F,Sn:In2O3 NC Film Assembly. ...........................................................200 Plasmon-Exciton Coupling and Nanocavity Effects ..............................................208 Near-Field Simulations ...........................................................................................213 Conclusion ..............................................................................................................219 Appendix ..........................................................................................................................227 Supporting Information for Chapter 2 ....................................................................227 Supporting Information for Chapter 4, 5 ................................................................230 Supporting Information for Chapter 6, 7 ................................................................244 References ........................................................................................................................246 vii List of Tables Table 2.1: Electronic properties of NC-based TCO films. ................................................71 Table 4.1: Halide quantification for synthesized NCs .....................................................113 Table A4.1: 115In Simulated Lineshape Parameter ..........................................................239 Table A6.1: Extended Drude Parameters .........................................................................244 viii List of Figures Figure 1.1: Nucleation kinetics schematic ...........................................................................4 Figure 1.2: Colloidal nanocrystal synthesis schematic ........................................................7 Figure 1.3: Chemical Decomposition Pathway .................................................................13 Figure 1.4: Extrinsic dopant incorporation schematic .......................................................22 Figure 1.5: Doping strategies in synthesis of LSPR active metal oxide NCs ....................27 Figure 1.6: Vacancy doping and interstitial doping ...........................................................36 Figure 1.7: Extrinsic aliovalent substitutional doping .......................................................40 Figure 1.8: Dopant spatial distribution schematic .............................................................48 Figure 1.9: Codoping schematic ........................................................................................51 Figure 2.1: SEM image of Ce:In2O3 NCs ..........................................................................58 Figure 2.2: Ce:In2O3 NC-based thin film SEM and spectrum ...........................................59 Figure 2.3: XRD patterns Ce:In2O3 NC .............................................................................61 Figure 2.4: Ce:In2O3 NC film SEM ...................................................................................62 Figure 2.5: FTIR of Ce:In2O3 NC ......................................................................................63 Figure 2.6: Ce:In2O3 NC film surface property .................................................................64 Figure 2.7: SEM images of composite films after in-filling ..............................................66 Figure 2.8: Electrical properties of NC-based TCO films .................................................68 Figure 2.9: Temperature dependent resistivity ..................................................................70