Axis Scientific Miniature Painted Human Skeleton A-105170

Total Page:16

File Type:pdf, Size:1020Kb

Axis Scientific Miniature Painted Human Skeleton A-105170 Axis Scientific Miniature Painted Human Skeleton A-105170 HAND FOOT FACIAL MUSCLES Dorsal Dorsal Orbiculais Oculi Flexor Pollicis Longus Extensor Digitorum Brevis Zygomaticus Major Flexor Pollicis Brevis Peroneus Brevis Levator Anguli Oris Extensor Carpi Radius Dorsal Interossei Buccinator Extensor Digitorum Longus Plantar Interossei Depressor Anguli Oris Extensor Digitorum Brevis Extensor Digitorum Longus Procerus Dorsal Interosseous Extensor Hallucis Longus Levator Labii Superioris Extensor Carpi Ulnaris Extensor Hallucis Brevis Nasalis Orbicularis Oris Palmar Plantar Mentalis Flexor Digitorum Profundus Abductor Hallucis Depressor Lavii Inferioris Flexor Digitorum Superficialis Abductor Digiti Minimi Flexor Digiti Minimi Brevis Tibialis Anterior Abductor Digiti Minimi Peroneus Longus Abductor Pollicis Tibialis Posterior Opponens Digiti Minimi Adductor Hallucis Flexor Carpi Ulnaris Abductor Hallucis Flexor Digiti Minimi Brevis Flexor Hallucis Brevis Abductor Digiti Minimi Flexor Digitorum Brevis Flexor Carpi Ulnaris Flexor Hallucis Longus Palmar Interossei Flexor Digitorum Brevis Flexor Pollicis Longus Quadratus Plantae Abductor Pollicis Flexor Hallucis Brevis Flexor Pollicis Brevis Tibialis Posterior Abductor Pollicis Brevis Flexor Digiti Minimi Brevis Opponens Pollicis Plantar Interossei Flexor Pollicis Brevis Flexor Digitorum Longus Abductor Pollicis Longus Abductor Pollicis Brevis 1. Pectoralis Major Muscle 36. Pronator Quadratus Muscle 2. Pectoralis Minor Muscle 37. Supinator Muscle 3. Serratus Anterior Muscle 38. Triceps Brachii Muscle 4. Middle Scalene Muscle 39. Flexor Pollicis Longus Muscle 5. Posterior Scalene Muscle 40. Abductor Pollicis Longus Muscle 6. Rectus Abdominis Muscle 41. Extensor Pollicis Longus Muscle 7. External Oblique Muscle 42. Extensor Indicis Muscle 8. Sternocleidomastoid Muscle 43. Extensor Pollicis Brevis Muscle 9. Trapezius Muscle 44. Flexor Carpi Ulnaris Muscle 10. Deltoid Muscle 45. Extensor Carpi Ulnaris Muscle 11. Levator Scapulae Muscle 46. Left Crus of Lumbar Part of 12. Biceps Brachii Muscle Diaphragm 13. Coracobrachialis Muscle 47. Right Crus of Lumbar Part of 14. Supraspinatus Muscle Diaphragm 15. Infraspinatus Muscle 48. Psoas Major Muscle 16. Triceps Brachii Muscle - Long Head 49. Quadratus Lumborum Muscle 17. Teres Minor Muscle 50. Transverse Abdominis Muscle 18. Teres Major Muscle 51. Sartorius Muscle 19. Latissimus Dorsi Muscle 52. Rectus Femoris Muscle 20. Levator Scapulae Muscle 53. Iliacus Muscle 21. Rhomboid Minor Muscle 54. Pectineus Muscle 22. Rhomboid Major Muscle 55. Obturator Internus Muscle 23. Brachialis Muscle 56. Rectus Abdominis Muscle 24. Triceps Brachii Muscle - Lateral 57. Pyramidalis Muscle Head 58. Adductor Longus Muscle 25. Triceps Brachii Muscle - Medial 59. Obturator Externus Muscle Head 60. Quadratus Femoris Muscle KEY: 26. Brachioradialis Muscle 61. Semimembranosus Muscle 27. Extensor Carpi Radialis Longus 62. Long Head of Biceps Femoris Muscle Muscle; Semitendinosus Muscle Red Markings = Muscle Origin Points 28. Extensor Carpi Radialis Brevis 63. Adductor Magnus Muscle Muscle 64. Adductor Brevis Muscle Blue Markings = Muscle Insertion Points 29. Extensor General Tendon 65. Gracilis Muscle 30. Supinator Muscle 66. Ischiocavernosus Muscle 31. Anconeus Muscle 67. Deep Transverse Perineal Muscle 32. Pronator Teres Muscle 68. Superficial Transverse Perineal 33. Flexor General Tendon Muscle 34. Flexor Digitorum Superficialis 69. Internal Oblique Muscle Muscle 70. External Oblique Muscle 35. Flexor Digitorum Profundus 71. Latissimus Dorsi Muscle Muscle 72. Erector Spinae Muscle 73. Gluteus Maximus Muscle 92. Fibularis Brevis Muscle 74. Gluteus Medius Muscle 93. Fibularis Longus Muscle 75. Gluteus Minimus Muscle 94. Extensor Digitorum Longus 76. Tensor Fasciae Latae Muscle 95. 3rd Fibularis Muscle 77. Gemellus Superior Muscle 96. Extensor Hallucis Longus Muscle 78. Gemellus Inferior Muscle 97. Tibialis Anterior Muscle 79. Vastus Intermedius Muscle 98. Piriformis Muscle 80. Vastus Lateralis Muscle 99. Masseter Muscle 81. Short Head of Biceps Femoris 100. Temporalis Muscle Muscle 101. Platysma 82. Vastus Medialis Muscle 102. Occipitalis Muscle 83. Medial Head of Gastrocnemius 103. Sternocleidomastoid Muscle Muscle 104. Splenius Capitis Muscle 84. Lateral Head of Gastrocnemius 105. Longissimus Capitis Muscle Muscle 106. Posterior Belly of Digastric Muscle 85. Popliteus Muscle 107. Trapezius Muscle 86. Quadriceps Femoris Muscle 108. Semispinalis Capitis Muscle 87. Semitendinosus Muscle 109. Obliquus Capitis Superior Muscle 88. Soleus Muscle 110. Rectus Capitis Posterior Major 89. Flexor Digitorum Longus Muscle Muscle 90. Tibialis Posterior Muscle 111. Rectus Capitis Posterior Minor 91. Flexor Hallucis Longus Muscle Muscle © 2016 AXIS SCIENTIFIC.
Recommended publications
  • Effect of Preservation of the C-6 Spinous Process and Its Paraspinal Muscular Attachment on the Prevention of Postoperative Axial Neck Pain in C3–6 Laminoplasty
    SPINE CLINICAL ARTICLE J Neurosurg Spine 22:221–229, 2015 Effect of preservation of the C-6 spinous process and its paraspinal muscular attachment on the prevention of postoperative axial neck pain in C3–6 laminoplasty Eiji Mori, MD, Takayoshi Ueta, MD, PhD, Takeshi Maeda, MD, PhD, Itaru Yugué, MD, PhD, Osamu Kawano, MD, PhD, and Keiichiro Shiba, MD, PhD Department of Orthopaedic Surgery, Spinal Injuries Center, Iizuka, Fukuoka, Japan OBJECT Axial neck pain after C3–6 laminoplasty has been reported to be significantly lesser than that after C3–7 laminoplasty because of the preservation of the C-7 spinous process and the attachment of nuchal muscles such as the trapezius and rhomboideus minor, which are connected to the scapula. The C-6 spinous process is the second longest spinous process after that of C-7, and it serves as an attachment point for these muscles. The effect of preserving the C-6 spinous process and its muscular attachment, in addition to preservation of the C-7 spinous process, on the preven- tion of axial neck pain is not well understood. The purpose of the current study was to clarify whether preservation of the paraspinal muscles of the C-6 spinous process reduces postoperative axial neck pain compared to that after using nonpreservation techniques. METHODs The authors studied 60 patients who underwent C3–6 double-door laminoplasty for the treatment of cervi- cal spondylotic myelopathy or cervical ossification of the posterior longitudinal ligament; the minimum follow-up period was 1 year. Twenty-five patients underwent a C-6 paraspinal muscle preservation technique, and 35 underwent a C-6 nonpreservation technique.
    [Show full text]
  • Scapular Winging Is a Rare Disorder Often Caused by Neuromuscular Imbalance in the Scapulothoracic Stabilizer Muscles
    SCAPULAR WINGING Scapular winging is a rare disorder often caused by neuromuscular imbalance in the scapulothoracic stabilizer muscles. Lesions of the long thoracic nerve and spinal accessory nerves are the most common cause. Patients report diffuse neck, shoulder girdle, and upper back pain, which may be debilitating, associated with abduction and overhead activities. Accurate diagnosis and detection depend on appreciation on comprehensive physical examination. Although most cases resolve nonsurgically, surgical treatment of scapular winging has been met with success. True incidence is largely unknown because of under diagnosis. Most commonly it is categorized anatomically as medial or lateral shift of the inferior angle of the scapula. Primary winging occurs when muscular weakness disrupts the normal balance of the scapulothoracic complex. Secondary winging occurs when pathology of the shoulder joint pathology. Delay in diagnosis may lead to traction brachial plexopathy, periscapular muscle spasm, frozen shoulder, subacromial impingement, and thoracic outlet syndrome. Anatomy and Biomechanics Scapula is rotated 30° anterior on the chest wall; 20° forward in the sagittal plane; the inferior angle is tilted 3° upward. It serves as the attachment site for 17 muscles. The trapezius muscle accomplishes elevation of the scapula in the cranio-caudal axis and upward rotation. The serratus anterior and pectoralis major and minor muscles produce anterior and lateral motion, described as scapular protraction. Normal Scapulothoracic abduction: As the limb is elevated, the effect is an upward and lateral rotation of the inferior pole of scapula. Periscapular weakness resulting from overuse may manifest as scapular dysfunction (ie, winging). Serratus Anterior Muscle Origin From the first 9 ribs Insert The medial border of the scapula.
    [Show full text]
  • Morphology of Extensor Indicis Proprius Muscle in the North Indian Region: an Anatomy Section Anatomic Study with Ontogenic and Phylogenetic Perspective
    DOI: 10.7860/IJARS/2019/41047:2477 Original Article Morphology of Extensor Indicis Proprius Muscle in the North Indian Region: An Anatomy Section Anatomic Study with Ontogenic and Phylogenetic Perspective MEENAKSHI KHULLAR1, SHERRY SHARMA2 ABSTRACT to the index finger were noted and appropriate photographs Introduction: Variants on muscles and tendons of the forearm were taken. or hand occur frequently in human beings. They are often Results: In two limbs, the EIP muscle was altogether absent. discovered during routine educational cadaveric dissections In all the remaining 58 limbs, the origin of EIP was from the and surgical procedures. posterior surface of the distal third of the ulnar shaft. Out of Aim: To observe any variation of Extensor Indicis Proprius (EIP) these 58 limbs, this muscle had a single tendon of insertion in 52 muscle and to document any accessory muscles or tendons limbs, whereas in the remaining six limbs it had two tendinous related to the index finger. slips with different insertions. Materials and Methods: The EIP muscle was dissected in 60 Conclusion: Knowledge of the various normal as well as upper limb specimens. After reflection of the skin and superficial anomalous tendons on the dorsal aspect of the hand is fascia from the back of the forearm and hand, the extensor necessary for evaluating an injured or diseased hand and also at retinaculum was divided longitudinally and the dorsum of the the time of tendon repair or transfer. Awareness of such variants hand was diligently dissected. The extensor tendons were becomes significant in surgeries in order to avoid damage to the delineated and followed to their insertions.
    [Show full text]
  • M1 – Muscled Arm
    M1 – Muscled Arm See diagram on next page 1. tendinous junction 38. brachial artery 2. dorsal interosseous muscles of hand 39. humerus 3. radial nerve 40. lateral epicondyle of humerus 4. radial artery 41. tendon of flexor carpi radialis muscle 5. extensor retinaculum 42. median nerve 6. abductor pollicis brevis muscle 43. flexor retinaculum 7. extensor carpi radialis brevis muscle 44. tendon of palmaris longus muscle 8. extensor carpi radialis longus muscle 45. common palmar digital nerves of 9. brachioradialis muscle median nerve 10. brachialis muscle 46. flexor pollicis brevis muscle 11. deltoid muscle 47. adductor pollicis muscle 12. supraspinatus muscle 48. lumbrical muscles of hand 13. scapular spine 49. tendon of flexor digitorium 14. trapezius muscle superficialis muscle 15. infraspinatus muscle 50. superficial transverse metacarpal 16. latissimus dorsi muscle ligament 17. teres major muscle 51. common palmar digital arteries 18. teres minor muscle 52. digital synovial sheath 19. triangular space 53. tendon of flexor digitorum profundus 20. long head of triceps brachii muscle muscle 21. lateral head of triceps brachii muscle 54. annular part of fibrous tendon 22. tendon of triceps brachii muscle sheaths 23. ulnar nerve 55. proper palmar digital nerves of ulnar 24. anconeus muscle nerve 25. medial epicondyle of humerus 56. cruciform part of fibrous tendon 26. olecranon process of ulna sheaths 27. flexor carpi ulnaris muscle 57. superficial palmar arch 28. extensor digitorum muscle of hand 58. abductor digiti minimi muscle of hand 29. extensor carpi ulnaris muscle 59. opponens digiti minimi muscle of 30. tendon of extensor digitorium muscle hand of hand 60. superficial branch of ulnar nerve 31.
    [Show full text]
  • S. CAVDAR and U. SEHIRLI the Extensor Indicis (Proprius)
    Okajimas Folia Anat. Jpn. , 73(2-3): 139-142, August, 1996 The Accessory Tendon of the Extensor Indicis Muscle By S. CAVDAR and U. SEHIRLI Marmara University, Faculty of Medicine, Department of Anatomy, Haydarpasa 81326, Istanbul-Turkiye -Received for Publication, August 9, 1995- Key Words: Accessory tendon, Extensor Indicis Muscle, Variation Summary: The extensor indicis and the extensor pollicis longus muscles differentiates from the extensor digitorum profundus muscle. The extensor indicis musde is an unstable muscle concerning its variations. Kosugi (1989) found the frequency of variations of this muscle to be 20% and described 18 different types of variations of this muscle. This study describes a rare case of the extensor indicis muscle. The extensor indicis muscle develops an accessory tendon in between the extensor indicis and extensor pollicis longus muscle. It passes under the extensor retinaculum. At the level of 2nd metacarpal bone, the accessory extensor indicis tendon is connected to the tendon of the extensor pollicis longus muscle by a intertendinous connection. The extensor indicis (proprius) is a narrow quadrupeds have been classified by Straus (1941) elongated muscle located in the deep extensor group into three groups. of the forearm. It arises from the posterior surface of 1. Brachio-antebrachial group the ulna distal to the extensor pollicis longus and 2. Antebrachio-manual group from the interosseus membrane. Its tendon passes 3. Manual group under the extensor retinaculum in company with the The brachio-antebrachial group basically takes its tendons of extensor digitorum communis. At the origin from the dorsal aspect of the brachial bone level of the second metacarpal bone it joins the ulnar and inserts onto the antebrachial bones.
    [Show full text]
  • 7 the Soft-Tissue Anatomy of the Highly Derived Hand of Perodicticus Relative to the More Generalised Nycticebus
    7 The Soft-Tissue Anatomy of the Highly Derived Hand of Perodicticus Relative to the More Generalised Nycticebus Marissa Boettcher, Kaitlyn C. Leonard, Anthony Herrel and Adam Hartstone-Rose 7.1 Introduction 7.1.1 Characteristics of Perodicticus The African lorisid subfamily Perodicticinae includes the slow-moving angwantibos (Arctocebus) and the pottos (Perodicticus) (Lambert, 2014), the focal taxon of this chapter. The distinguishing physical features of this subfamily include their short tails and vestigial manual second digit (Charles-Dominique, 1977a). Perodicticus potto, first described by Bosman in 1704 and further characterised by Müller in 1776 (Bosman, 1705; Müller, 1773; Smeenk et al., 2006), was originally placed in the genus Nycticebus by Geoffroy, but the subsequent rediscovery of the animal in Sierra Leone by Bennett in the early nineteenth century became the basis for his naming the genus Perodicticus (Bennett, 1831; Hill, 1953a; Smeenk et al., 2006). Perodicticus is the largest of the African lorisids and has a geographical distribution that includes West and Central Africa, extending from Liberia to Kenya (Chiarelli, 1972; Fleagle, 1999; Nekaris and Bearder, 2007; Poindexter and Nekaris, 2017a). On average, across the three known species, the males have an average body length of 337–406 mm and tail length of 50–81 mm, while the females are slightly smaller, with an average body and tail length of 355–417 mm and 56–72 mm, respectively (Chiarelli, 1972). Like most primates, they are arboreal and often main- tain a height of 30 m above the ground in the canopy (Lambert, 2014). 7.1.2 Locomotion and Limb Anatomy The locomotion of Perodicticus is highly characteristic of the species.
    [Show full text]
  • Ultrasonographic Analysis of Optimal Needle Placement for Extensor Indicis
    Original Article Ann Rehabil Med 2020;44(6):450-458 pISSN: 2234-0645 • eISSN: 2234-0653 https://doi.org/10.5535/arm.20035 Annals of Rehabilitation Medicine Ultrasonographic Analysis of Optimal Needle Placement for Extensor Indicis Jin Young Kim, MD1, Hyun Seok, MD1, Sang-Hyun Kim, MD1, Yoon-Hee Choi, MD2, Jun Young Ahn, MD1, Seung Yeol Lee, MD1 1Department of Physical Medicine and Rehabilitation, Soonchunhyang University Bucheon Hospital, Soonchunhyang University College of Medicine, Bucheon; 2Department of Physical Medicine and Rehabilitation, Soonchunhyang University Seoul Hospital, Soonchunhyang University College of Medicine, Seoul, Korea Objective To determine the most optimal needle insertion point of extensor indicis (EI) using ultrasound. Methods A total 80 forearms of 40 healthy volunteers were recruited. We identified midpoint (MP) of EI using ultrasound and set MP as optimal needle insertion point. The location of MP was suggested using distances from landmarks. Distance from MP to medial border of ulna (MP-X) and to lower margin of ulnar head (MP-Y) were measured. Ratios of MP-X to Forearm circumference (X ratio) and MP-Y to forearm length (Y ratio) were calculated. In cross-sectional view, depth of MP (Dmp), defined as middle value of superficial depth (Ds) and deep depth (Dd) was measured and suggested as proper depth of needle insertion. Results Mean MP-X was 1.37±0.14 cm and mean MP-Y was 5.50±0.46 cm. Mean X ratio was 8.10±0.53 and mean Y ratio was 22.15±0.47. Mean Dmp was 7.63±0.96 mm. Conclusion We suggested that novel optimal needle insertion point of the EI.
    [Show full text]
  • The Effect of Cervico-Thoracic Adjustments On
    THE EFFECT OF CERVICO-THORACIC ADJUSTMENTS ON THE ACTIVITY OF THE LATTISIMUS DORSI MUSCLE AND ITS TRIGGER POINTS USING ELECTROMYOGRAPHY AND ALGOMETER READINGS RESPECTIVELY. A dissertation submitted to the Faculty of Health Sciences, University of Johannesburg, in partial fulfilment of the requirements for the Master's Degree in Technology: Chiropractic. By Nico Goosen (Student number 802013714) SUPERVISOR: oS og DR. M. MOODLEY DATE (M. Tech. Chiropractic (Natal)) DECLARATION I, Nico Goosen, do hereby declare that this dissertation is my own, unaided work except where otherwise indicated in the text. It is being submitted for the Degree of Master of Technology at the University of Johannesburg, Johannesburg. It has not been submitted before for any degree or examination at any other Technikon or University. Signature of Candidate: Date: °7 i&S—/Ok Signature of Supervisor: n/■,e■I'■-c•c>U2_s--k Date: S Dr. M. Moodley M.Tech. Chiropractic (Natal) ii DEDICATION This work is dedicated to my parents, Braam and Beneta Goosen, two extraordinary people whose love and support made everything possible. I am truly blessed to be your son and love you with all my heart. And To my wife, Terina Goosen, an amazing woman whose kindness and love is an example for us all. Thank you for all your support. Thank you for all the sacrifices you have made for me to reach my goals. You are a wonderful wife and friend. iii ACKNOWLEDGEMENTS First and foremost, praise and glory to our Lord and Saviour, Jesus Christ, through whom all things are possible. To Dr. Moodley, my supervisor, for her support and constant enthusiasm throughout this study.
    [Show full text]
  • Extensor Pollicis Longus Superficialis and Extensor Indicis Superficialis, Can They Be Considered As a New Anatomical Variation in the Long Extensors of Fingers?
    Int. J. Curr. Res. Med. Sci. (2016). 2(12): 27-32 International Journal of Current Research in Medical Sciences ISSN: 2454-5716 www.ijcrims.com Volume 2, Issue 12 -2016 Case study DOI: http://dx.doi.org/10.22192/ijcrms.2016.02.12.005 Extensor pollicis longus superficialis and extensor indicis superficialis, can they be considered as a new anatomical variation in the long extensors of fingers? Ahmed Farid Al-Neklawy, M.D. Anatomy and Embryology Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt E-mail: [email protected], Tel: 00201001850336 Running title: Two extra muscles for thumb and index fingers Abstract Background: Variations of anomalies of hand extensors have been described by many authors. These anomalies are often discovered during routine surgical procedures and cadaveric dissections. Being aware of such anomalies is important to the physician in order to avoid unintentional damage to healthy tendons during surgical procedures. In addition, accessory tendons have the potential to be used in the surgical repair or replacement of damaged tendons. We reported a cadaveric case with bilateral two additional superficial extensors to the thumb and index fingers with unique features. The names of extensor pollicis longus superficialis (EPL-S) and extensor indicis superficialis(EI-S) were proposed. Methods: A female cadaver was used in this study. Bilateral dissection of the forearm and wrist was done. Results: Two extra muscles were observed in the superficial group of the extensors of the forearm. They were situated between extensor carpi radialis brevis and extensor digitorum muscles. Both muscles originated from the common extensor origin.
    [Show full text]
  • Neuroanatomy for Nerve Conduction Studies
    Neuroanatomy for Nerve Conduction Studies Kimberley Butler, R.NCS.T, CNIM, R. EP T. Jerry Morris, BS, MS, R.NCS.T. Kevin R. Scott, MD, MA Zach Simmons, MD AANEM 57th Annual Meeting Québec City, Québec, Canada Copyright © October 2010 American Association of Neuromuscular & Electrodiagnostic Medicine 2621 Superior Drive NW Rochester, MN 55901 Printed by Johnson Printing Company, Inc. AANEM Course Neuroanatomy for Nerve Conduction Studies iii Neuroanatomy for Nerve Conduction Studies Contents CME Information iv Faculty v The Spinal Accessory Nerve and the Less Commonly Studied Nerves of the Limbs 1 Zachary Simmons, MD Ulnar and Radial Nerves 13 Kevin R. Scott, MD The Tibial and the Common Peroneal Nerves 21 Kimberley B. Butler, R.NCS.T., R. EP T., CNIM Median Nerves and Nerves of the Face 27 Jerry Morris, MS, R.NCS.T. iv Course Description This course is designed to provide an introduction to anatomy of the major nerves used for nerve conduction studies, with emphasis on the surface land- marks used for the performance of such studies. Location and pathophysiology of common lesions of these nerves are reviewed, and electrodiagnostic methods for localization are discussed. This course is designed to be useful for technologists, but also useful and informative for physicians who perform their own nerve conduction studies, or who supervise technologists in the performance of such studies and who perform needle EMG examinations.. Intended Audience This course is intended for Neurologists, Physiatrists, and others who practice neuromuscular, musculoskeletal, and electrodiagnostic medicine with the intent to improve the quality of medical care to patients with muscle and nerve disorders.
    [Show full text]
  • SŁOWNIK ANATOMICZNY (ANGIELSKO–Łacinsłownik Anatomiczny (Angielsko-Łacińsko-Polski)´ SKO–POLSKI)
    ANATOMY WORDS (ENGLISH–LATIN–POLISH) SŁOWNIK ANATOMICZNY (ANGIELSKO–ŁACINSłownik anatomiczny (angielsko-łacińsko-polski)´ SKO–POLSKI) English – Je˛zyk angielski Latin – Łacina Polish – Je˛zyk polski Arteries – Te˛tnice accessory obturator artery arteria obturatoria accessoria tętnica zasłonowa dodatkowa acetabular branch ramus acetabularis gałąź panewkowa anterior basal segmental artery arteria segmentalis basalis anterior pulmonis tętnica segmentowa podstawna przednia (dextri et sinistri) płuca (prawego i lewego) anterior cecal artery arteria caecalis anterior tętnica kątnicza przednia anterior cerebral artery arteria cerebri anterior tętnica przednia mózgu anterior choroidal artery arteria choroidea anterior tętnica naczyniówkowa przednia anterior ciliary arteries arteriae ciliares anteriores tętnice rzęskowe przednie anterior circumflex humeral artery arteria circumflexa humeri anterior tętnica okalająca ramię przednia anterior communicating artery arteria communicans anterior tętnica łącząca przednia anterior conjunctival artery arteria conjunctivalis anterior tętnica spojówkowa przednia anterior ethmoidal artery arteria ethmoidalis anterior tętnica sitowa przednia anterior inferior cerebellar artery arteria anterior inferior cerebelli tętnica dolna przednia móżdżku anterior interosseous artery arteria interossea anterior tętnica międzykostna przednia anterior labial branches of deep external rami labiales anteriores arteriae pudendae gałęzie wargowe przednie tętnicy sromowej pudendal artery externae profundae zewnętrznej głębokiej
    [Show full text]
  • DISSERTATION O Attribution
    COPYRIGHT AND CITATION CONSIDERATIONS FOR THIS THESIS/ DISSERTATION o Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use. o NonCommercial — You may not use the material for commercial purposes. o ShareAlike — If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the original. How to cite this thesis Surname, Initial(s). (2012) Title of the thesis or dissertation. PhD. (Chemistry)/ M.Sc. (Physics)/ M.A. (Philosophy)/M.Com. (Finance) etc. [Unpublished]: University of Johannesburg. Retrieved from: https://ujdigispace.uj.ac.za (Accessed: Date). THE EFFECT OF COSTOVERTEBRAL ADJUSTMENT VERSUS ISCHAEMIC COMPRESSION OF RHOMBOID MUSCLES FOR INTERSCAPULAR PAIN A dissertation presented to the Faculty of Health Sciences, University of Johannesburg, as partial fulfilment for the Masters Degree in Technology: Chiropractic by Jared Ashley Irwin 200676004 Supervisor: _________________________ Date:_________________________ Dr C. Yelverton Co-Supervisor: _______________________ Date:_________________________ Dr D. Whelan DECLARATION I, Jared Ashley Irwin do hereby declare that this is my own unaided work except where otherwise indicated in the text. This dissertation is being submitted for the degree of Masters Degree in Technology at the University of Johannesburg. It has not been previously submitted for any degree or examination at any other Technikon or University. Signature On this the ______ day of ________________ year 2015 AFFIDAVIT TO WHOM IT MAY CONCERN This serves to confirm that I: Jared Irwin I.D.
    [Show full text]