The Effect of Cervico-Thoracic Adjustments On

Total Page:16

File Type:pdf, Size:1020Kb

The Effect of Cervico-Thoracic Adjustments On THE EFFECT OF CERVICO-THORACIC ADJUSTMENTS ON THE ACTIVITY OF THE LATTISIMUS DORSI MUSCLE AND ITS TRIGGER POINTS USING ELECTROMYOGRAPHY AND ALGOMETER READINGS RESPECTIVELY. A dissertation submitted to the Faculty of Health Sciences, University of Johannesburg, in partial fulfilment of the requirements for the Master's Degree in Technology: Chiropractic. By Nico Goosen (Student number 802013714) SUPERVISOR: oS og DR. M. MOODLEY DATE (M. Tech. Chiropractic (Natal)) DECLARATION I, Nico Goosen, do hereby declare that this dissertation is my own, unaided work except where otherwise indicated in the text. It is being submitted for the Degree of Master of Technology at the University of Johannesburg, Johannesburg. It has not been submitted before for any degree or examination at any other Technikon or University. Signature of Candidate: Date: °7 i&S—/Ok Signature of Supervisor: n/■,e■I'■-c•c>U2_s--k Date: S Dr. M. Moodley M.Tech. Chiropractic (Natal) ii DEDICATION This work is dedicated to my parents, Braam and Beneta Goosen, two extraordinary people whose love and support made everything possible. I am truly blessed to be your son and love you with all my heart. And To my wife, Terina Goosen, an amazing woman whose kindness and love is an example for us all. Thank you for all your support. Thank you for all the sacrifices you have made for me to reach my goals. You are a wonderful wife and friend. iii ACKNOWLEDGEMENTS First and foremost, praise and glory to our Lord and Saviour, Jesus Christ, through whom all things are possible. To Dr. Moodley, my supervisor, for her support and constant enthusiasm throughout this study. Her assistance in this study is greatly appreciated and her ongoing motivation made the world of difference. To my friends and family for their unwaving love and support, especially my wife and parents, for their constant guidance and prayers. And finally, a special thanks to all the patients who participated in this study. iv ABSTRACT OBJECTIVE: To determine and compare the effect of Spinal Manipulative Therapy (SMT) to the cervico-thoracic junction on the activity of the ipsilateral latissimus dorsi with regards to muscle activity measured by electromyography and activity of the trigger points measured by the algometer. STUDY DESIGN: Fourty subjects with lower cervical spine pain and dysfunction underwent six spinal manipulative treatments on alternative days over a 3 week period (excluding weekends) to test the changes in activity of the ipsi-lateral Latissimus Dorsi muscle. SETTING: Chiropractic Day Clinic at the University of Johannesburg, Johannesburg, South Africa. SUBJECTS: Forty subjects with lower cervical spine pain participated in this study. Each of the subjects was randomly assigned to one of two groups. Group A consisted of 20 subjects receiving SMT to the cervico thoracic junction. Group B consisted of 20 subjects receiving de-tuned ultra-sound to the area of cervical spine pain. METHODS: Latissimus Dorsi muscle activity and its trigger point activity were tested before and after the first consultation using electromyography and the algometer respectively. After consultations two, four and six readings were taken. For the electromyography readings subjects were asked to lie down in a prone position with their arms next to their sides. They were then instructed to lie as still as possible for three minutes. The mean, peak and minimum values from the surface electromyographic meter were recorded, analysed and compared for reference. For the algometer readings, the researcher grasped the Latissimus Dorsi muscle along the free border at the posterior axillary fold of the midscapular level. The algometer was then pushed into this point and candidates had to indicate when they started to feel pain. This measurement was then recorded. RESULTS: Data was analysed using the T-test for independent samples to compare the two individual groups. Repeated measures ANOVA was useful to investigate changes over time. If one considers Group A as the superior group, no statistical significant difference were noted between Group A and Group B regarding the electromyographic readings. With regards to the algometer readings no statistically significant differences were identified between the two groups except for the last consultation (treatment 4) of Group A where the p-value = 0.035<0.05. CONCLUSION: In light of these findings, it can be concluded that there were no statistically significant differences between Group A and Group B, regarding the electromyographic readings. Group A showed the most favourable treatment efficacy in terms of the algometer readings. The trends shown in this study should be used and tested in future similar research studies incorporating larger sample groups. vi TABLE OF CONTENTS DECLARATION ii DEDICATION iii ACKNOLEDGMENTS iv ABSTRACT TABLE OF CONTENTS vii LIST OF APPENDICES xii LIST OF FIGURES xiii LIST OF TABLES xiv CHAPTER ONE — INTRODUCTION 1.1 Introduction 1 1.2 Statement of the problem 2 1.3 Objectives 2 1.4 Benefits of the study 2 vii CHAPTER TWO — LITERATURE REVIEW 4 2.1 Anatomy 4 2.1.1 Anatomy of aTypical Cervical Vertebra 4 2.1.2 Anatomy of the Seventh Cervical Vertebra 4 2.1.3 Anatomy of a Typical Thoracic Vertebra 6 2.1.4 Anatomy of the First Thoracic Vertebra 6 2.1.5 Anatomy of the Sacro-iliac Joint 7 2.1.6 Anatomy of the Latissimus Dorsi Muscle 7 2.1.7 Anatomy of the Gluteus Maximus Muscle 8 2.2 Biomechanics of the Cervico-thoracic Junction 10 2.3 Functional Anatomy 11 2.4 Stability vs. Instability of the Sacro-iliac Joint 13 2.5 The Self-locking Mechanism 14 2.5.1 Form Closure 14 2.5.2 Force Closure 16 2.6 The Vertebral Subluxation Complex (VSC) 17 2.6.1 The Kinesiological Component 19 2.6.2 The Neurological Component 20 2.6.3 The Connective Tissue Component 20 2.6.4 The Myologic Component 21 2.7 Effects of Chiropractic Adjustive Technique 21 2.8 Surface Electromyography 23 2.9 Algometry 24 viii CHAPTER 3 — MATERIALS AND METHODS 25 3.1 Introduction 25 3.2 Study Design 25 3.2.1 Patient Selection 25 3.2.2 Patient Consent 26 3.2.3 Patient Sampling 27 3.3 Interventions 27 3.3.1 Chiropractic Motion Palpation 27 3.3.2 Spinal Manipulative Therapy 28 3.4 Measurements 29 3.4.1 Objective Measurements 29 3.4.1.1 Surface Electromyography 29 3.4.1.2 Algometer 30 3.5 Data Analysis 30 CHAPTER 4 — RESULTS 31 4.1 Introduction 31 4.1.1 Graphical Representation of Data 31 4.2 Demographic Data 32 ix 4.3 Objective Measurements 33 4.3.1 The Mean Surface Electromyographic Readings 33 4.3.1.1 Column statistics for the improvement in the average sEMG readings of the ipsi-lateral Lattissimus Dorsi muscle for group A and group B from data collected on the initial, second, fourth and final consultation 35 4.3.2 The Peak Surface Electromyographic Readings 36 4.3.2.1 Column statistics for the improvement in the peak sEMG readings of the ipsi-lateral Lattissimus Dorsi muscle for group A and group B from data collected on the initial, second, fourth and final consultation 38 4.3.3 The Minimum Surface Electromyographic Readings 39 4.3.3.1 Column statistics for the improvement in the minimum sEMG readings of the ipsi-lateral Lattissimus Dorsi muscle for group A and group B from data collected on the initial, second, fourth and final consultation 41 4.3.4 Algometer Readings 42 4.3.4.1 Column statistics for the improvement in the algometer readings of the ipsi-lateral Lattissimus Dorsi muscle for group A and group B from data collected on the initial second, fourth and final consultation 44 4.4 Non-Parametric Tests 45 CHAPTER 5 — DISCUSSION 47 5.1 Introduction 47 5.2 Demographic Data 47 5.2.1 Mean Age at Onset of Treatment 47 5.2.2 Gender 47 5.3 Objective Data 48 5.3.1 Electromyographic Readings 48 5.3.2 Algometer Readings 50 CHAPTER 6 — CONCLUSION AND RECOMMENDATIONS 52 6.1 Conclusion 52 6.2 Recommendations 53 REFERENCES 55 xi LIST OF APPENDICES Appendix A: Advertisement 60 Appendix B: Contra-indications to Spinal Manipulative Therapy 61 Appendix C: Consent Form 63 Appendix D: Illustration of Adjustment 64 Appendix E: Case History 65 Appendix F: Physical Examination 70 Appendix G: Cervical Spine Regional Examination 80 xii LIST OF FIGURES Figure 2.1: A Comparison between a typical cervical vertebrae and an atypical cervical vertebrae 6 Figure 2.2: Location'of the Lattissimus Dorsi muscle and the Gluteus Maximus muscle in relation to the thoracolumbar fascia 9 Figure 2.3: Model of the self-locking mechanism: To illustrate the combination of form and force closure to establish stability in the sacro-iliac joint 13 Figure 2.4: Form closure: decreasing sacroiliac joint shear through the "keystone in a Roman arch" effect, with the sacrum being "trapped" vertically 16 Figure 2.5: The posterior oblique sling 17 Figure 2.6: A Model of the Vertebral Subluxation Complex 18 Figure 4.1: Intra- and inter-group comparison of the mean improvement in the average sEMG readings of the ipsi- lateral Lattissimus Dorsi muscle for both groups using data collected on the initial, second, fourth and final consultations 34 Figure 4.2: Intra- and inter-group comparison of the improvement in the peak sEMG readings of the ipsi-lateral Lattissimus dorsi muscle for both groups using data collected on the initial, second, fourth and final consultations 37 Figure 4.3: Intra- and inter-group comparison of the improvement in the minimum sEMG readings of the ipsi-lateral Lattissimus Dorsi muscle for both groups using data collected on the initial,
Recommended publications
  • Effect of Preservation of the C-6 Spinous Process and Its Paraspinal Muscular Attachment on the Prevention of Postoperative Axial Neck Pain in C3–6 Laminoplasty
    SPINE CLINICAL ARTICLE J Neurosurg Spine 22:221–229, 2015 Effect of preservation of the C-6 spinous process and its paraspinal muscular attachment on the prevention of postoperative axial neck pain in C3–6 laminoplasty Eiji Mori, MD, Takayoshi Ueta, MD, PhD, Takeshi Maeda, MD, PhD, Itaru Yugué, MD, PhD, Osamu Kawano, MD, PhD, and Keiichiro Shiba, MD, PhD Department of Orthopaedic Surgery, Spinal Injuries Center, Iizuka, Fukuoka, Japan OBJECT Axial neck pain after C3–6 laminoplasty has been reported to be significantly lesser than that after C3–7 laminoplasty because of the preservation of the C-7 spinous process and the attachment of nuchal muscles such as the trapezius and rhomboideus minor, which are connected to the scapula. The C-6 spinous process is the second longest spinous process after that of C-7, and it serves as an attachment point for these muscles. The effect of preserving the C-6 spinous process and its muscular attachment, in addition to preservation of the C-7 spinous process, on the preven- tion of axial neck pain is not well understood. The purpose of the current study was to clarify whether preservation of the paraspinal muscles of the C-6 spinous process reduces postoperative axial neck pain compared to that after using nonpreservation techniques. METHODs The authors studied 60 patients who underwent C3–6 double-door laminoplasty for the treatment of cervi- cal spondylotic myelopathy or cervical ossification of the posterior longitudinal ligament; the minimum follow-up period was 1 year. Twenty-five patients underwent a C-6 paraspinal muscle preservation technique, and 35 underwent a C-6 nonpreservation technique.
    [Show full text]
  • Scapular Winging Is a Rare Disorder Often Caused by Neuromuscular Imbalance in the Scapulothoracic Stabilizer Muscles
    SCAPULAR WINGING Scapular winging is a rare disorder often caused by neuromuscular imbalance in the scapulothoracic stabilizer muscles. Lesions of the long thoracic nerve and spinal accessory nerves are the most common cause. Patients report diffuse neck, shoulder girdle, and upper back pain, which may be debilitating, associated with abduction and overhead activities. Accurate diagnosis and detection depend on appreciation on comprehensive physical examination. Although most cases resolve nonsurgically, surgical treatment of scapular winging has been met with success. True incidence is largely unknown because of under diagnosis. Most commonly it is categorized anatomically as medial or lateral shift of the inferior angle of the scapula. Primary winging occurs when muscular weakness disrupts the normal balance of the scapulothoracic complex. Secondary winging occurs when pathology of the shoulder joint pathology. Delay in diagnosis may lead to traction brachial plexopathy, periscapular muscle spasm, frozen shoulder, subacromial impingement, and thoracic outlet syndrome. Anatomy and Biomechanics Scapula is rotated 30° anterior on the chest wall; 20° forward in the sagittal plane; the inferior angle is tilted 3° upward. It serves as the attachment site for 17 muscles. The trapezius muscle accomplishes elevation of the scapula in the cranio-caudal axis and upward rotation. The serratus anterior and pectoralis major and minor muscles produce anterior and lateral motion, described as scapular protraction. Normal Scapulothoracic abduction: As the limb is elevated, the effect is an upward and lateral rotation of the inferior pole of scapula. Periscapular weakness resulting from overuse may manifest as scapular dysfunction (ie, winging). Serratus Anterior Muscle Origin From the first 9 ribs Insert The medial border of the scapula.
    [Show full text]
  • SŁOWNIK ANATOMICZNY (ANGIELSKO–Łacinsłownik Anatomiczny (Angielsko-Łacińsko-Polski)´ SKO–POLSKI)
    ANATOMY WORDS (ENGLISH–LATIN–POLISH) SŁOWNIK ANATOMICZNY (ANGIELSKO–ŁACINSłownik anatomiczny (angielsko-łacińsko-polski)´ SKO–POLSKI) English – Je˛zyk angielski Latin – Łacina Polish – Je˛zyk polski Arteries – Te˛tnice accessory obturator artery arteria obturatoria accessoria tętnica zasłonowa dodatkowa acetabular branch ramus acetabularis gałąź panewkowa anterior basal segmental artery arteria segmentalis basalis anterior pulmonis tętnica segmentowa podstawna przednia (dextri et sinistri) płuca (prawego i lewego) anterior cecal artery arteria caecalis anterior tętnica kątnicza przednia anterior cerebral artery arteria cerebri anterior tętnica przednia mózgu anterior choroidal artery arteria choroidea anterior tętnica naczyniówkowa przednia anterior ciliary arteries arteriae ciliares anteriores tętnice rzęskowe przednie anterior circumflex humeral artery arteria circumflexa humeri anterior tętnica okalająca ramię przednia anterior communicating artery arteria communicans anterior tętnica łącząca przednia anterior conjunctival artery arteria conjunctivalis anterior tętnica spojówkowa przednia anterior ethmoidal artery arteria ethmoidalis anterior tętnica sitowa przednia anterior inferior cerebellar artery arteria anterior inferior cerebelli tętnica dolna przednia móżdżku anterior interosseous artery arteria interossea anterior tętnica międzykostna przednia anterior labial branches of deep external rami labiales anteriores arteriae pudendae gałęzie wargowe przednie tętnicy sromowej pudendal artery externae profundae zewnętrznej głębokiej
    [Show full text]
  • Axis Scientific Miniature Painted Human Skeleton A-105170
    Axis Scientific Miniature Painted Human Skeleton A-105170 HAND FOOT FACIAL MUSCLES Dorsal Dorsal Orbiculais Oculi Flexor Pollicis Longus Extensor Digitorum Brevis Zygomaticus Major Flexor Pollicis Brevis Peroneus Brevis Levator Anguli Oris Extensor Carpi Radius Dorsal Interossei Buccinator Extensor Digitorum Longus Plantar Interossei Depressor Anguli Oris Extensor Digitorum Brevis Extensor Digitorum Longus Procerus Dorsal Interosseous Extensor Hallucis Longus Levator Labii Superioris Extensor Carpi Ulnaris Extensor Hallucis Brevis Nasalis Orbicularis Oris Palmar Plantar Mentalis Flexor Digitorum Profundus Abductor Hallucis Depressor Lavii Inferioris Flexor Digitorum Superficialis Abductor Digiti Minimi Flexor Digiti Minimi Brevis Tibialis Anterior Abductor Digiti Minimi Peroneus Longus Abductor Pollicis Tibialis Posterior Opponens Digiti Minimi Adductor Hallucis Flexor Carpi Ulnaris Abductor Hallucis Flexor Digiti Minimi Brevis Flexor Hallucis Brevis Abductor Digiti Minimi Flexor Digitorum Brevis Flexor Carpi Ulnaris Flexor Hallucis Longus Palmar Interossei Flexor Digitorum Brevis Flexor Pollicis Longus Quadratus Plantae Abductor Pollicis Flexor Hallucis Brevis Flexor Pollicis Brevis Tibialis Posterior Abductor Pollicis Brevis Flexor Digiti Minimi Brevis Opponens Pollicis Plantar Interossei Flexor Pollicis Brevis Flexor Digitorum Longus Abductor Pollicis Longus Abductor Pollicis Brevis 1. Pectoralis Major Muscle 36. Pronator Quadratus Muscle 2. Pectoralis Minor Muscle 37. Supinator Muscle 3. Serratus Anterior Muscle 38. Triceps Brachii Muscle 4. Middle Scalene Muscle 39. Flexor Pollicis Longus Muscle 5. Posterior Scalene Muscle 40. Abductor Pollicis Longus Muscle 6. Rectus Abdominis Muscle 41. Extensor Pollicis Longus Muscle 7. External Oblique Muscle 42. Extensor Indicis Muscle 8. Sternocleidomastoid Muscle 43. Extensor Pollicis Brevis Muscle 9. Trapezius Muscle 44. Flexor Carpi Ulnaris Muscle 10. Deltoid Muscle 45. Extensor Carpi Ulnaris Muscle 11. Levator Scapulae Muscle 46.
    [Show full text]
  • DISSERTATION O Attribution
    COPYRIGHT AND CITATION CONSIDERATIONS FOR THIS THESIS/ DISSERTATION o Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use. o NonCommercial — You may not use the material for commercial purposes. o ShareAlike — If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the original. How to cite this thesis Surname, Initial(s). (2012) Title of the thesis or dissertation. PhD. (Chemistry)/ M.Sc. (Physics)/ M.A. (Philosophy)/M.Com. (Finance) etc. [Unpublished]: University of Johannesburg. Retrieved from: https://ujdigispace.uj.ac.za (Accessed: Date). THE EFFECT OF COSTOVERTEBRAL ADJUSTMENT VERSUS ISCHAEMIC COMPRESSION OF RHOMBOID MUSCLES FOR INTERSCAPULAR PAIN A dissertation presented to the Faculty of Health Sciences, University of Johannesburg, as partial fulfilment for the Masters Degree in Technology: Chiropractic by Jared Ashley Irwin 200676004 Supervisor: _________________________ Date:_________________________ Dr C. Yelverton Co-Supervisor: _______________________ Date:_________________________ Dr D. Whelan DECLARATION I, Jared Ashley Irwin do hereby declare that this is my own unaided work except where otherwise indicated in the text. This dissertation is being submitted for the degree of Masters Degree in Technology at the University of Johannesburg. It has not been previously submitted for any degree or examination at any other Technikon or University. Signature On this the ______ day of ________________ year 2015 AFFIDAVIT TO WHOM IT MAY CONCERN This serves to confirm that I: Jared Irwin I.D.
    [Show full text]
  • Intramuscular Neural Distribution of Rhomboid Muscles: Evaluation for Botulinum Toxin Injection Using Modified Sihler’S Method
    toxins Article Intramuscular Neural Distribution of Rhomboid Muscles: Evaluation for Botulinum Toxin Injection Using Modified Sihler’s Method Kyu-Ho Yi 1, Hyung-Jin Lee 2, You-Jin Choi 2, Ji-Hyun Lee 2 , Kyung-Seok Hu 2 and Hee-Jin Kim 2,3,* 1 Inje County Public Health Center, Inje 24633, Korea; [email protected] 2 Division in Anatomy and Developmental Biology, Department of Oral Biology, Human Identification Research Institute, BK21 PLUS Project, Yonsei University College of Dentistry, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea; [email protected] (H.-J.L.); [email protected] (Y.-J.C.); [email protected] (J.-H.L.); [email protected] (K.-S.H.) 3 Department of Materials Science & Engineering, College of Engineering, Yonsei University, Seoul 03722, Korea * Correspondence: [email protected] Received: 28 February 2020; Accepted: 30 April 2020; Published: 3 May 2020 Abstract: This study describes the nerve entry point and intramuscular nerve branching of the rhomboid major and minor, providing essential information for improved performance of botulinum toxin injections and electromyography. A modified Sihler method was performed on the rhomboid major and minor muscles (10 specimens each). The nerve entry point and intramuscular arborization areas were identified in terms of the spinous processes and medial and lateral angles of the scapula. The nerve entry point for both the rhomboid major and minor was found in the middle muscular area between levels C7 and T1. The intramuscular neural distribution for the rhomboid minor had the largest arborization patterns in the medial and lateral sections between levels C7 and T1. The rhomboid major muscle had the largest arborization area in the middle section between levels T1 and T5.
    [Show full text]
  • Anatomy and Physiology Model Guide Book
    Anatomy & Physiology Model Guide Book Last Updated: August 8, 2013 ii Table of Contents Tissues ........................................................................................................................................................... 7 The Bone (Somso QS 61) ........................................................................................................................... 7 Section of Skin (Somso KS 3 & KS4) .......................................................................................................... 8 Model of the Lymphatic System in the Human Body ............................................................................. 11 Bone Structure ........................................................................................................................................ 12 Skeletal System ........................................................................................................................................... 13 The Skull .................................................................................................................................................. 13 Artificial Exploded Human Skull (Somso QS 9)........................................................................................ 14 Skull ......................................................................................................................................................... 15 Auditory Ossicles ....................................................................................................................................
    [Show full text]
  • Treatment of Congenital Thoracic Scoliosis with Associated Rib Fusions Using VEPTR Expansion Thoracostomy: a Surgical Technique
    Eur Spine J (2014) 23 (Suppl 4):S424–S431 DOI 10.1007/s00586-014-3338-3 IDEAS AND TECHNICAL INNOVATIONS Treatment of congenital thoracic scoliosis with associated rib fusions using VEPTR expansion thoracostomy: a surgical technique Romain Dayer • Dimitri Ceroni • Pierre Lascombes Received: 19 April 2014 / Revised: 24 April 2014 / Accepted: 24 April 2014 / Published online: 14 May 2014 Ó Springer-Verlag Berlin Heidelberg 2014 Abstract thoracoplasty Á Opening-wedge thoracostomy Á Surgical Introduction Untreated growing patients with congenital technique scoliosis and fused ribs will develop finally thoracic insufficiency syndrome. The technique of expansion tho- racoplasty with implantation of a vertical expandable Introduction prosthetic titanium rib (VEPTR) was introduced initially to treat these children. A unique method of expansion thoracoplasty (termed an Methods This article attempts to provide an overview of opening-wedge thoracostomy) with primary longitudinal the surgical technique of opening-wedge thoracostomy and lengthening using a chest wall distractor known as vertical VEPTR instrumentation in children with congenital tho- expandable prosthetic titanium rib (VEPTR) has been racic scoliosis and fused ribs. developed by Campbell and Smith since 1989 [1]. The Results Our modification of the surgical approach using a VEPTR (Synthes Spine Co., West Chester, Pennsylvania, posterior midline incision rather than the modified thora- USA; European Patent no. 0530177) is a modular longi- cotomy incision initially described could potentially help to tudinal rib-based distraction device, which is used as a rib- diminish wound dehiscence and secondary infection, while to-rib construct, a hybrid construct (rib-to-lumbar hook) or preserving a more acceptable esthetic appearance of the a rib-to-pelvis construct (rib-to-Dunn McCarthy hook) [2– back.
    [Show full text]
  • Netter's Anatomy Flash Cards – Section 2 – List 4Th Edition
    Netter's Anatomy Flash Cards – Section 2 – List 4th Edition https://www.memrise.com/course/1577191/ Section 2 Back and Spinal Cord (21 cards) Plate 2-1 Vertebral Column 1.1 Atlas (C1) 1.2 T1 1.3 L1 1.4 Coccyx 1.5 Sacrum (S1-5) 1.6 Lumbar vertebrae 1.7 Thoracic vertebrae 1.8 Cervical vertebrae 1.9 Axis (C2) Plate 2-2 Cervical Vertebrae 2.1 Body 2.2 Transverse process 2.3 Foramen transversarium 2.4 Pedicle 2.5 Lamina 2.6 Dens 2.7 Spinous processes Plate 2-3 Thoracic Vertebrae 3.1 Vertebral foramen 3.2 Lamina 3.3 Pedicle 3.4 Body 3.5 Inferior articular process and facet 3.6 Spinous process 3.7 Inferior vertebral notch 3.8 Inferior costal facet 3.9 Transverse costal facet 3.10 Superior costal facet Plate 2-4 Lumbar Vertebra 4.1 Vertebral body 4.2 Vertebral foramen 4.3 Pedicle 4.4 Transverse process 4.5 Superior articular process 4.6 Lamina 4.7 Spinous process Plate 2-5 Lumbar Vertebrae 5.1 Anulus fibrosus 5.2 Nucleus pulposus 5.3 Intervertebral disc 5.4 Inferior articular process 5.5 Inferior vertebral notch 5.6 Intervertebral foramen 5.7 Superior vertebral notch Plate 2-6 Vertebral Ligaments: Lumbar Region 6.1 Anterior longitudinal ligament 6.2 Intervertebral disc 6.3 Posterior longitudinal ligament 6.4 Pedicle (cut surface) 6.5 Ligamentum flavum 6.6 Supraspinous ligament 6.7 Interspinous ligament 6.8 Ligamentum flavum Netter's Anatomy Flash Cards – Section 2 – List 01.07.2017 1/3 http://www.mementoslangues.fr/ 6.9 Capsule of zygapophysial joint (partially opened) Plate 2-7 Sacrum and Coccyx 7.1 Lumbosacral articular surface 7.2 Ala (lateral
    [Show full text]
  • Axis Scientific 27-Part Half Life-Size Muscular Figure A-105165
    Axis Scientific 27-Part Half Life-Size Muscular Figure A-105165 I. Region of Head and Neck 17. Masseter Muscle 1.Frontal Belly of Occipitofrontalis 18. Temporalis Muscle Muscle 19. Lateral Pterygoid Muscle 2. Epieranial Aponeurosis 20. Medial Pterygoid Muscle 3. Occipital Belly of Occipitofrontalis 21. Buccinator Muscle Muscle 22. Cerebrum 4. Auricularis Anterior Muscle 23. Frontal Lobe 5. Auricularis Posterior Muscle 24. Parietal Lobe 6. Auricularis Superior Muscle 25. Occipital Lobe 7. Procerus Muscle 26. Temporal Lobe 8. Orbicularis Oculi Muscle 27. Cerebellum 9. Levator Labii Superioris Alaeque 28. Corpus Callosum Nasi Muscle 29. Septum Pellucidum 10. Levator Labii Superioris Muscle 30. Fornix 11. Zygomaticus Minor Muscle 31. Thalamus 12. Zygomaticus Major Muscle 32. Midbrain 13. Depressor Anguli Oris Muscle 33. Pons 14. Depressor Labii Inferioris Muscle 34. Medulla Oblongata 15. Mentalis Muscle 35. Olfactory Bulb 16. Orbicularis Oris Muscle 36. Optic Nerve II 37. Oculomotor Nerve III II. Body Wall 3. Oblique Fissure 43. Small Cardiac Vein 38. Trochlear Nerve IV 1. Pectoralis Major Muscle 4. Horizontal Fissure of Right Lung 44. Coronary Sinus 39. Trigeminal Nerve V a. Clavicular Head 5. Superior Lobe 40. Abducent Nerve VI b. Sternocostal Head 6. Inferior Lobe IV. Abdominal and Pelvic Viscera 41. Facial Nerve VII c. Abdominal Head 7. Middle Lobe of Right Lung 1. Left Lobe of Liver 42. Vestibulocochlear Nerve VIII 2. Pectoralis Minor Muscle 8. Hilum of Lung 2. Right Lobe of Liver 43. Glossopharyngeal Nerve IX 3. External Intercostal Muscles 9. Trachea 3. Falciform Ligament of Liver 44. Vagus Nerve X 4. Internal Intercostal Muscles 10.
    [Show full text]
  • Shop5619400.Images.HP1182-HP1328-Spier.Pdf
    Nr Latina English Deutsch 1 Musculus pectoralis major Pectoralis Major Muscle großer Brustmuskel 2 musculus pectoralis minor Pectoralis Minor Muscle kleiner Brustmuskel 3 Musculus serratus anterior Serratus Anterior Muscle vorderer Sägemuskel 4 Musculus scalenus medius Middle Scalene Muscle mittlerer Rippenhaltermuskel 5 Musculus scalenus posterior Posterior Scalene Muscle hinterer Rippenhaltermuskel 6 Musculus rectus abdominis Rectus Abdominis Muscle gerader Bauchmuskel 7 Musculus obliquus externus abdominis External Oblique Muscle äußerer schräger Bauchmuskel 8 Musculus sternocleidomastoideus Sternocleidomastoid Muscle großer Kopfwender 9 Musculus trapezius Trapezius Muscle Trapezmuskel 10 Musculus deltoideus Deltoid Muscle Deltamuskel 11 Musculus levator scapulae Levator Scapulae Muscle Schulterblattheber 12 Musculus biceps brachii Biceps Brachii Muscle Bizeps 13 Musculus coracobrachialis Coracobrachialis Muscle Hakenarmmuskel 14 Musculus supraspinatus Supraspinatus Muscle Obergrätenmuskel 15 Musculus infraspinatus Infraspinatus Muscle Untergrätenmuskel 16 Musculus triceps brachii, Caput longum Triceps Brachii Muscle-Long Head Trizeps, Caput longum 17 Musculus teres minor Teres Minor Muscle kleiner Rundmuskel 18 Musculus teres major Teres Major Muscle großer Rundmuskel 19 Musculus latissimus dorsi Latissimus Dorsi Muscle Großer Rückenmuskel 20 Musculus levator scapulae Levator Scapulae Muscle Schulterblattheber 21 Musculus rhomboideus minor Rhomboid Minor Muscle kleiner Rautenmuskel 22 Musculus rhomboideus major Rhomboid Major Muscle
    [Show full text]
  • Musculus Cervicis Accessorius: a Variant Accessory Muscle of the Axiomuscles Dr
    East African Scholars Journal of Medicine and Surgery Abbreviated Key Title: EAS J Med Surg ISSN: 2663-1857 (Print) & ISSN: 2663-7332 (Online) | Published By East African Scholars Publisher, Kenya Volume-1 | Issue-2 | Mar -Apr-2019 | Research Article Musculus Cervicis Accessorius: A Variant Accessory Muscle of the Axiomuscles Dr. Gabriel J. Mchonde, PhD Department of Anatomy, School of Medicine and Dentistry, College of Health Sciences, The University of Dodoma. Dodoma, Tanzania. *Corresponding Author Dr. Gabriel J. Mchonde, PhD. Abstract: Supernumerally anatomical structures is of clinical and surgical importance and requires a greater knowledge on their existence. The present article reports the anatomic variation on the number and position of axiomuscles in the cervicothoracic region observed during routine dissection of a 72-years-old embalmed male cadaver on the left shoulder region. According to the origin, insertion and innervation topographies of the extra muscle, it was considered as musculus cervicis accessorius. The existence of this muscle is of importance to surgeons, anatomists and physiotherapist during their normal routine procedures or during evaluation of CT and MRI scans by the radiologists. Keywords: axiomuscles; levator scapula; musculus cervicis accessorius; variation. Background serratus muscles (Williams, P.L. et al.., 1995). The muscles of the shoulder region are usually However, the current article describes the anatomical grouped into three topographic units basing on the variation in which a strap-like muscle originate from the origin, direction and insertion of their fibers: the first cervical vertebrae descends and inserts on the third scapulohumeral, axiohumeral, and axioscapular groups. and fourth Levator scapulae muscle (LSM) forms part of the axiomuscles belonging to the latter group together with MATERIAL, METHODS AND RESULTS rhomboid major, rhomboid minor, serratus anterior, and A detailed cadaveric study of the left shoulder trapezius.
    [Show full text]