A Solid State 13C NMR, Crystallographic, and Quantum

Total Page:16

File Type:pdf, Size:1020Kb

A Solid State 13C NMR, Crystallographic, and Quantum Published on Web 05/17/2007 A Solid State 13C NMR, Crystallographic, and Quantum Chemical Investigation of Phenylalanine and Tyrosine Residues in Dipeptides and Proteins Dushyant Mukkamala,† Yong Zhang,‡ and Eric Oldfield*,†,‡ Contribution from the Center for Biophysics and Computational Biology, 607 South Mathews AVenue, UniVersity of Illinois at Urbana-Champaign, Urbana, Illinois 61801, and Department of Chemistry, UniVersity of Illinois at Urbana-Champaign, 600 South Mathews AVenue, Urbana, Illinois 61801 Received February 20, 2007; E-mail: [email protected] Abstract: We report the results of a solid-state NMR and quantum chemical investigation of the 13Cγ NMR chemical shifts in phenylalanine and tyrosine in dipeptides and proteins. Accurate computation of the experimental shifts is shown to require a good description of local electrostatic field effects, and we find the best results (R2 ) 0.94, rmsd ) 1.6 ppm, range ) 17.1 ppm, N ) 14) by using a self-consistent reaction field continuum model. There are no obvious correlations with φ, ψ, ø1,orø2 torsion angles, unlike the results seen with other amino acids. There is, however, a linear relation between computed Cγ atomic charges and shifts for the 14 peptide as well as 18 protein residues investigated. This result is similar to the correlation reported in the 1960s between π-electron density and 13C shifts for classical 4n + 2(n ) 0, 1, 2) π-electron aromatic species, such as cyclopentadienide and the tropylium cation, and in fact, we found that the shielding/atomic charge correlation seen in the peptides and proteins is virtually identical to that seen with a broad range of aromatic carbocations/carbanions. These results suggest the dominance of an electrostatic field polarization model in which increasing π electron density results in an increase in γ C atomic charge and increased shielding (of σ11 and σ22, perpendicular to the π orbital) in Phe and Tyr, as well as in the other aromatic species. These results are of general interest since they demonstrate the importance of electrostatic field effects on Phe and Tyr Cγ chemical shifts in peptides and proteins and imply that inclusion of these effects will be necessary in order to interpret the shifts of other aromatic species, such as drug molecules, bound to proteins. Introduction a [5-19F] Trp labeled protein would clearly be too long-range 19 Folding a protein into its native conformation causes a large to affect F shifts directly. The results of a number of range of chemical shift nonequivalence, of obvious importance investigations have shown that most chemical shifts in proteins from the perspective of NMR structure determination. For 1H, (including metal shifts and paramagnetic or hyperfine shifts) 6,7 chemical shifts due to folding are typically about 2 ppm; for can now be computed with good accuracy, but a remaining γ 13C, chemical shift ranges due to folding are typically ∼10 ppm; problem has been that of C of the aromatic amino acids, γ for 19F (in labeled proteins), ∼20 ppm, and for 15N, up to about phenylalanine, and tyrosine. The shift ranges for C in Phe and 8 ∼ - 35 ppm. For 1H, quite good correlations have been found Tyr were found in early studies to be quite small ( 3 4 ppm), 8,9 ∼ - between experiment and prediction using, e.g., ring-current shifts but the shifts of Trp residues were much larger ( 6 7 ppm), and empirical descriptions of electrostatics, but for the heavier and this enhanced shift range facilitates the overall precision nuclei, 13C, 15N, and 19F, quantum chemical methods have to (versus experiment) of quantum chemical shielding predictions, ∼ - γ 2 be used.1 In previous work, we found that backbone (13CR) shifts which are typically 1 2 ppm for Trp C . Here, we report the first 13C NMR chemical shift predictions for Cγ in Phe and were dominated by electronic effects due to φ, ψ differences, R and in sidechains, ø /ø or other (gamma-gauche) effects Tyr residues, both in dipeptides and in proteins. Unlike C (and 1 2 â contribute to shielding. Similar conformational contributions C ), there are no obvious correlations with either the backbone were found to dominate 15N shifts,1-3 but for 19F in aromatic torsion angles or ø1/ø2. Rather, our results suggest that electro- amino acids,1,4,5 purely electrostatic field effects dominated static field effects make an important contribution to shielding shielding, since backbone or side chain torsional effects for say (4) Pearson, J. G.; Montez, B.; Le, H.; Oldfield, E.; Chien, E. Y.; Sligar, S. G. Biochemistry 1997, 36, 3590. † Center for Biophysics and Computational Biology. (5) Pearson, J. G.; Oldfield, E.; Lee, F. S.; Warshel, A. J. Am. Chem. Soc. ‡ Department of Chemistry. 1993, 115, 6851. (1) de Dios, A. C.; Pearson, J. G.; Oldfield, E. Science 1993, 260, 1491. (6) Mao, J.; Zhang, Y.; Oldfield, E. J. Am. Chem. Soc. 2002, 124, 13911. (2) Sun, H.; Oldfield, E. J. Am. Chem. Soc. 2004, 126, 4726. (7) Zhang, Y.; Sun, H.; Oldfield, E. J. Am. Chem. Soc. 2005, 127, 3652. (3) Szabo, C. M.; Sanders, L. K.; Le, H. C.; Chien, E. Y.; Oldfield, E. FEBS (8) Oldfield, E.; Norton, R. S.; Allerhand, A. J. Biol. Chem. 1975, 250, 6381. Lett. 2000, 482, 25. (9) Oldfield, E.; Allerhand, A. J. Biol. Chem. 1975, 250, 6403. 10.1021/ja071227y CCC: $37.00 © 2007 American Chemical Society J. AM. CHEM. SOC. 2007, 129, 7385-7392 9 7385 ARTICLES Mukkamala et al. and that use of a “solvent” (self-consistent reaction field, SCRF) model enables the best accord with experiment. Remarkably, we also find that the computed shifts are highly correlated with Cγ atomic charges, reminiscent of the correlations reported many years ago10-14 between 13C shifts and π-electron densities in a variety of other classical aromatic 4n + 2 π-electron systems. Experimental Details NMR Spectroscopy: 13C NMR spectra were obtained by using the cross-polarization “magic-angle” sample-spinning technique15,16 with either full proton decoupling17 or interrupted decoupling18 (using a dipolar dephasing time of 140 µs for phenylalanine and tyrosine residues), for selection of the nonprotonated aromatic carbons (Cγ and Cú). The 1H and 13C90° pulse widths used were 2.6 µs, and the spectra in all cases were collected using a recycle time of 5 s. The chemical shifts were referenced to external glycine, setting the Gly CR carbon to 43.6 ppm downfield from tetramethylsilane (TMS). All the experiments were performed on a Varian (Palo Alto, CA) Infinityplus 600 MHz (1H) NMR spectrometer at a 10 kHz spinning speed using a 3.2 mm Varian/Chemagnetics HXY probe. Fully 1H decoupled experiments were carried out at two different spinning speeds (8 kHz and 10 kHz), in order to determine the isotropic chemical shifts. The compounds for the NMR experiments were obtained from Bachem (King of Prussia, PA). X-ray Crystallography. The structures of the 11 compounds (1- 11) investigated are shown in Supporting Information Figure S1. To verify their actual structures, we obtained powder diffraction data for each system and compared the results with calculated powder spectra for crystal structures obtained from the Cambridge Crystallographic Data Center (CCDC). The powder spectra for each sample were calculated by using DIFFRACplus TOPAS.19 For six dipeptides (1, 2, Figure 1. Structures and models: (a) Crystal structure of compound 6; 4, 7-9), we found a very good match between the calculated and (b) crystal structure of compound 11; (c) N-formyl-phenylalanine-amide model; (d) N-terminus charged model; (e) C-terminus charged model; (f) experimental powder diffraction data, so these structures were used monomer from crystal structure of Phe-Tyr (11); and (g) monomer from directly in the calculations. For three compounds (3, 5, 10), we obtained crystal structure of Gly-Phe (6) with surrounding hydrogen-bond partners. a good match between the computed and experimental diffraction results after refining the unit-cell parameters using the Pawley fitting method,20 approach as that used in studying tryptophan chemical shifts,2 with the plus 19 as incorporated in DIFFRAC TOPAS. The experimental and torsion angles (φ, ψ, ø1, and ø2, as appropriate) set to the values seen calculated powder patterns for two compounds (6, 11) did not match in the X-ray structures. After this, we performed calculations on charged those reported, so we recrystallized them and determined their structures models of the N-formyl-phenylalanine-amide structures, converting the + - by X-ray crystallography. Compound 6 was crystallized from water, terminal N-formyl group to NH3 or the amide to CO2 , for N-terminal while 11 was crystallized from 5% DMSO-water, and the structures and C-terminal models, respectively (Figure 1d and e). The next set of so obtained are shown in Figure 1a,b. Full crystallographic details are calculations used the monomers found in the X-ray crystal structures, given in Table S1 in the Supporting Information. as shown for example in Figure 1f. In the fourth set of calculations, Computational Aspects: We performed eight sets of calculations we used hydrogen-bond partner cluster models in which the effects of in order to compute the 13C NMR shieldings for the phenylalanine and neighboring residues were included by incorporating acetate or me- tyrosine dipeptides (1-11) shown in Figure S1. In six cases, we used thylammonium ions, or formamide or methanol molecules, to represent the Hartree-Fock method as incorporated in Gaussian 9821 and the lattice partners, e.g., Figure 1g. And, in the case of tyrosine, since Gaussian 03,22 using the locally dense basis set scheme (6-311++G some structures had what appeared to be bad (∼0.6 Å) OH bond lengths, (2d,2p)/6-31G*) with the denser basis set on the atoms of interest (and we performed geometry optimization of the Cú hydroxyl group (using their nearest neighbors), combined with the gauge-including atomic the HF method and a locally dense basis set scheme, 6-311++G orbitals (GIAO) method.23 The first set of calculations utilized the (2d,2p)/6-31G*).
Recommended publications
  • Enhanced Phosphorylation of High-Mobility-Group Proteins In
    Proc. Nati. Acad. Sci. USA Vol. 78, No. 4, pp. 2189-2193, April 1981 Biochemistry Enhanced phosphorylation of high-mobility-group proteins in nuclease-sensitive mononucleosomes from butyrate-treated HeLa cells (hyperphosphorylation/transcriptionally active chromatin/sodium butyrate) BEATRIZ LEVY-WILSON Department of Molecular Biology and Biochemistry, University of California, Irvine, California 92717 Communicated by James F. Bonner, December 29, 1980 ABSTRACT The protein composition of nucleosome fractions MATERIALS AND METHODS differing in their sensitivity to micrococcal nuclease and derived from butyrate-treated or untreated HeLa cells has been com- Cell Cultures. HeLa cells, line S3, were grown in monolay- pared. Most of the high-mobility-group-14 (HMG-14) and HMG- ers, either in T-150 culture flasks or in roller bottles, at 370C 17 content of HeLa cell chromatin is associated with those nu- in minimal essential medium (Flow Laboratories, Rockville, cleosomes that are preferentially sensitive to micrococcal nu- MD) supplemented with 7% bovine calfserum (KC Biologicals) clease. Furthermore, electrophoresis of these two HMG proteins and penicillin (100 units/ml) and streptomycin (100 Ag/ml) from the transcriptionally active chromatin fraction MN, of bu- (Sigma). In experiments involving sodium butyrate, this com- tyrate-treated cells resolves them into a series ofbands. The mul- pound was added to the cultures at a final concentration of5 mM tiple band pattern of HMG-14 and -17 from butyrate-treated cells about 20 hr prior to harvesting of the cells. results from hyperphosphorylation rather than hyperacetylation. Preparation of Nuclei. HeLa cell nuclei were prepared as Phosphorylation of these two small nonhistone proteins may play described by Milcarek et al.
    [Show full text]
  • Termin Translat Trna Utr Mutat Protein Signal
    Drugs & Chemicals 1: Tumor Suppressor Protein p53 2: Heterogeneous-Nuclear Ribonucleo- (1029) proteins (14) activ apoptosi arf cell express function inactiv induc altern assai associ bind mdm2 mutat p53 p73 pathwai protein regul complex detect exon famili genom respons suppress suppressor tumor wild-typ interact intron isoform nuclear protein sensit site specif splice suggest variant 3: RNA, Transfer (110) 4: DNA Primers (1987) codon contain differ eukaryot gene initi amplifi analysi chain clone detect dna express mrna protein region ribosom rna fragment gene genotyp mutat pcr sequenc site speci suggest synthesi polymorph popul primer reaction region restrict sequenc speci termin translat trna utr 5: Saccharomyces cerevisiae Proteins 6: Apoptosis Regulatory Proteins (291) (733) activ apoptosi apoptosis-induc albican bud candida cerevisia complex encod apoptot bcl-2 caspas caspase-8 cell eukaryot fission function growth interact involv death fasl induc induct ligand methyl necrosi pathwai program sensit surviv trail mutant pomb protein requir saccharomyc strain suggest yeast 7: Plant Proteins (414) 8: Membrane Proteins (1608) access arabidopsi cultivar flower hybrid leaf leav apoptosi cell conserv domain express function gene human identifi inhibitor line maiz plant pollen rice root seed mammalian membran mice mous mutant seedl speci thaliana tomato transgen wheat mutat protein signal suggest transport 1 9: Tumor Suppressor Proteins (815) 10: 1-Phosphatidylinositol 3-Kinase activ arrest cell cycl cyclin damag delet dna (441) 3-kinas activ
    [Show full text]
  • Nucleosome Phasing and Micrococcal Nuclease Cleavage of African Green Monkey Component a DNA (Nucleosomes and Chromatdn/Primate Dnas/DNA Sequence) PHILLIP R
    Proc. Natl Acad. Sci. USA Vol. 79, pp. 118-122, January 1982 Cell Biology Nucleosome phasing and micrococcal nuclease cleavage of African green monkey component a DNA (nucleosomes and chromatdn/primate DNAs/DNA sequence) PHILLIP R. MUSICH*, FRED L. BROWN, AND JOSEPH J. MAIO Department of Cell Biology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, New York 10461 Communicated by Harry Eagle, September 14, 1981 ABSTRACT The micrococcal nuclease cleavage of intact nu- gestion was made that these results simply reflect a DNA se- clear chromatin from African green monkey cells and ofthe com- quence specificity of the micrococcal nuclease. Nucleosome pletely deproteinized sequences was studied by using high-reso- phasing would not have to be invoked. Although phase rela- lution analytical and DNA sequencing gels and secondary restric- tionships have been observed for other repetitive and 5S DNA tion enzyme analysis. When deproteinized component a DNAwas (5, 10), some tRNA coding regions (11), gene domains (12), and used as substrate, not all phosphodiester bonds in the 172-base- regions of the simian virus 40 genome (13, 14), these results pair repeat units were cleaved with equal frequency by the nu- would also now be in doubt if micrococcal nuclease shows site clease. A distinct preference for the cleavage of A-T rather than specificity with deproteinized DNA that could give rise to spu- G-C bonds was observed: however, A+T-richness in itselfdid not rious phase relationships in chromatin. confer susceptibility to cleavage by micrococcal nuclease. The re- We performed detailed sequence analysis ofthe micrococcal sults suggested that, in deproteinized DNA, nuclease cleavage at a particular dinucleotides may be influenced more by the effect of nuclease products of completely deproteinized component adjacent sequences than by the composition of the dinucleotide.
    [Show full text]
  • Mechanisms of Interaction Between Haemophilus Parainfluenzae and Streptococcus Mitis
    University of Rhode Island DigitalCommons@URI Open Access Dissertations 2021 MECHANISMS OF INTERACTION BETWEEN HAEMOPHILUS PARAINFLUENZAE AND STREPTOCOCCUS MITIS Dasith Perera Follow this and additional works at: https://digitalcommons.uri.edu/oa_diss MECHANISMS OF INTERACTION BETWEEN HAEMOPHILUS PARAINFLUENZAE AND STREPTOCOCCUS MITIS BY DASITH PERERA A DISSERTATION SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY IN CELL & MOLECULAR BIOLOGY UNIVERSITY OF RHODE ISLAND 2021 DOCTOR OF PHILOSOPHY DISSERTATION OF DASITH PERERA APPROVED: Thesis Committee: Matthew Ramsey, Major professor David Nelson David Rowley Brenton DeBoef DEAN OF THE GRADUATE SCHOOL UNIVERSITY OF RHODE ISLAND 2021 ABSTRACT The human oral cavity is a complex polymicrobial environment, home to an array of microbes that play roles in health and disease. Oral bacteria have been shown to cause an array of systemic diseases and are particularly concerning to type II diabetics (T2D) with numerous predispositions that exacerbate bacterial infection. In this dissertation, we investigated the serum of healthy subjects and T2D subjects to determine whether we see greater translocation of oral bacteria into the bloodstream of T2D indiviDuals. We didn’t observe any significant enrichment of oral taxa, however we detected the presence of an emerging pathogen, Acinetobacter baumannii that is also associated with impaired inflammation in T2D. While some are associated with disease, many oral taxa are important in the pre- vention of disease. In this dissertation we investigated the interactions between two abundant health-associated commensal microbes, Haemophilus parainfluenzae and Streptococcus mitis. We demonstrated that H. parainfluenzae typically exists adjacent to Mitis group streptococci in vivo in healthy subjects.
    [Show full text]
  • UC Santa Barbara Dissertation Template
    UNIVERSITY OF CALIFORNIA Santa Barbara Engineering Regulation in Anaerobic Gut Fungi during Lignocellulose Breakdown A dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Chemical Engineering by John Kyle Henske Committee in charge: Professor Michelle A. O’Malley, Chair Professor M. Scott Shell Professor Todd M. Squires Professor Irene A. Chen September 2017 The dissertation of John Kyle Henske is approved. _________________________________________ Irene A. Chen _________________________________________ M. Scott Shell _________________________________________ Todd M. Squires _________________________________________ Michelle A. O’Malley, Committee Chair September 2017 Engineering Regulation in Anaerobic Gut Fungi during Lignocellulose Breakdown Copyright © 2017 by John Kyle Henske iii ACKNOWLEDGEMENTS It would not have been possible to accomplish the work described in this thesis without the help and support of many different people in many different forms. I would like to thank my advisor, Michelle O’Malley, for all of her support throughout the past five years. She has always been readily available to provide rapid and useful feedback and has enabled valuable opportunities to present my work at research conferences enabling me to develop an important ability to discuss and explain my work to a wide audience. She even let me teach an entire lecture on the science of brewing beer. I would also like to thank all the members of the O’Malley lab, for the part they played in various experiments either through collaboration on experiments or scientific discussions at group meetings. Special thanks, of course, go to all the members of Team Fungus. Also, thank you to Dr. Kevin Solomon for the role he played as a mentor, particularly during the early stages, while he was a post-doc in the O’Malley lab.
    [Show full text]
  • A Re-Investigation of the Ribonuclease Sensitivity of a DNA Demethylationprovided by Elsevier - Publisher Connector Reaction in Chicken Embryo and G8 Mouse Myoblasts
    FEBS 21919 FEBS Letters 449 (1999) 251^254 View metadata, citation and similar papers at core.ac.uk brought to you by CORE A re-investigation of the ribonuclease sensitivity of a DNA demethylationprovided by Elsevier - Publisher Connector reaction in chicken embryo and G8 mouse myoblasts Jean-Pierre Jost*, Michel Siegmann, Ste¨phane Thiry, Yan-Chim Jost, Don Benjamin, Ste¡en Schwarz Friedrich-Miescher-Institut, P.O. Box 2543, CH-4002 Basel, Switzerland Received 9 March 1999 In chicken embryos we have previously shown [3] that the Abstract Recently published results (Nucleic Acids Res. 26, 5573^5580, 1998) suggest that the ribonuclease sensitivity of the demethylation of a hemimethylated oligonucleotide requires DNA demethylation reaction may be an experimental artifact both protein and RNA. RNA was isolated from SDS- due to the possible tight binding of the nucleases to the PAGE puri¢ed enzyme and cloned [4]. We have also shown methylated DNA substrate. Using an improved protocol we that the RNA tightly associated with 5-MeC-DNA glycosy- show for two different systems that demethylation of hemi- lase is very rich in CpGs and when added to the ribonuclease methylated DNA is indeed sensitive to micrococcal nuclease, inactivated enzyme it could restore the full glycosylase activ- requires RNA and is not an experimental artifact. The purified ity. Further studies carried out with in situ hybridization with 5-MeC-DNA glycosylase from chicken embryos and G8 mouse one representative RNA showed that it was only expressed in myoblasts was first incubated for 5 min at 37³C with micrococcal dividing and di¡erentiating cells [5].
    [Show full text]
  • Mechanism of Action of Ribonuclease H Isolated from Avian Myeloblastosis Virus and Escherichia Coli* (RNA-Dependent DNA Polymerase/Processive Exonuclease/E
    Proc. Nat. Acad. Sci. USA Vol. 70, No. 2, pp. 466-470, February 1973 Mechanism of Action of Ribonuclease H Isolated from Avian Myeloblastosis Virus and Escherichia coli* (RNA-dependent DNA polymerase/processive exonuclease/E. coli endonuclease) JONATHAN P. LEIS, IRA BERKOWER, AND JERARD HURWITZ Department of Developmental Biology and Cancer, Albert Einstein College of Medicine, Bronx, New York 10461 Communicated by Leon A. Heppel, November 16, 1972 ABSTRACT Purified preparations of RNA-dependent nucleotide kinase (13) were prepared by Drs. R. Silber and DNA polymerase isolated from avian myeloblastosis virus V. G. Malathi. [,y-32P]ATP was purchased from New En- contain RNase H activity. Labeled ribohomopolymers are degraded in the presence of their complementary deoxyri- gland Nuclear; labeled polynucleotides and other nucleotides bopolymer, except [3HJpoly(U).poly(dA). The degradation were from Schwarz/Mann Research or Miles Laboratories, products formed from [3Hpoly(A) . poly(dT) were identified Inc. N-cyclohexyl-N'-3(4-methylmorpholinium)ethyl carbo- as oligonucleotides containing 3'-hydroxyl and 5'-phos- diimide p-toluene sulfonate was from Aldrich Chemical Co. pbate termini, while AMP was not detected. The nuclease has been characterized as a processive exonuclease that All other reagents were described (14). requires ends of poly(A) chains for activity. Exonucleolytic Assay for RNase H. Reaction mixtures (0.05 ml) containing attack occurs in both 5' to 3' and 3' to 5' directions. RNase H has also been purified from E. coli. This nu- 1 4mol of Tris - HCl (pH 8.0), 0.5 umol of MgC12, 0.3 jumol of clease degrades all homoribopolymers tested in the pres- dithioerythritol, 2 ,ug of albumin, 0.52 nmol of poly(dT), ence of their complementary deoxyribopolymers to yield 0.56 nmol of [3H]poly(A), and enzyme were incubated for 30 oligonucleotides with 5'-phosphate and 3'-hydroxyl ter- min at 380.
    [Show full text]
  • Ribonuclease P: Anenzyme with an Essential Rnacomponent
    Proc. Natl. Acad. Sci. USA Vol. 75, No. 8, pp. 3717-3721, August 1978 Biochemistry Ribonuclease P: An enzyme with an essential RNA component (endoribonuclease/precursor tRNA substrates/RNA subunit) BENJAMIN C. STARK*, RYSZARD KOLEt, EMMA J. BOWMAN*, AND SIDNEY ALTMAN§ Department of Biology, Yale University, New Haven, Connecticut 06520 Communicated by Joseph G. Gall, June 8,1978 ABSTRACT The activity of ribonuclease P on precursor same buffer. The RNase P eluted after the rRNA peak and tRNA substrates from Escherichia coli can be abolished by before the 4S RNA peak. The active fractions were pooled and pretreatment of this enzyme with micrococcal nuclease or concentrated as described above and then applied to a Sephadex pancreatic ribonuclease A, as well as by proteases and by ther- mal denaturation. Highly purified RNase P exhibits one prom- G-200 column (1 X 90 cm) equilibrated and eluted in the same inent RNA and one prominent polypeptide com nent when manner as the Sepharose 4B column. The RNase P eluted just examined in polyacrylamide gels containing sodum dodecyl after the void volume. This material was again pooled, con- sulfate. The buoyant density in CsCl of RNase P, 1.71 g/ml, is centrated, redissolved in 2 M (NH4)2SO4 in buffer B, applied characteristic of a protein-RNA complex. The activity of RNase to an n-octyl-Sepharose (a gift of H. Taira, Yale University, P is inhibited by various RNA molecules. The presence of a New Haven, CT) column (0.5 X 2 cm) that had been equili- discrete RNA component in RNase P appears to be essential for brated with 2 M in buffer and then eluted with enzymatic function.
    [Show full text]
  • ABSTRACT BOZDAG, AHMET. Investigation of Methanol and Formaldehyde Metabolism in Bacillus Methanolicus
    ABSTRACT BOZDAG, AHMET. Investigation of Methanol and Formaldehyde Metabolism in Bacillus methanolicus.(Under the direction of Prof. Michael C. Flickinger). Bacillus methanolicus is a Gram-positive aerobic methylotroph growing optimally at 50-53 °C. Wild-type strains of B. methanolicus have been reported to secrete 58 g/l of L- glutamate in fed-batch cultures. Mutants of B. methanolicus created via classical mutangenesis can secrete 37 g/l of L-lysine, at 50 °C. The genes required for methylotrophyin B. methanolicus are encoded by an endogenous plasmid, pBM19 in strain MGA3, except for hexulose phosphate synthase (hps) and phosphohexuloisomerase (phi) which are encoded on the chromosome.It is a promising candidate for industrial production of chemical intermediates or amino acids from methanol. B. methanolicus employs the ribulose monophospate (RuMP) pathway to assimilate the carbon derived from the methanol, but enzymes that dissimilate carbon are not identified, although formaldehyde and formate were identified as intermediates by 13C NMR. It is important to understand how methanol is oxidized to formaldehyde and then, to formate and carbon dioxide. This study aims to elucidate the methanol dissimilation pathway of B. methanolicus. Growth rates of B. methanolicus MGA3 were assessed on methanol, mannitol, and glucose as a substrate. B. methanolicus achieved maximum growth rate, µmax, when growing on 25 mM methanol, 0.65±0.007 h-1, and it gradually decreased to 0.231±0.004 h-1 at 2Mmethanol concentration which demonstrates substrate inhibition. The maximum growth rates (µmax) of B. methanolicus MGA3 on mannitol and glucose are 0.532±0.002 and 0.336±0.003 h-1, respectively.
    [Show full text]
  • Supplemental Table S1: Comparison of the Deleted Genes in the Genome-Reduced Strains
    Supplemental Table S1: Comparison of the deleted genes in the genome-reduced strains Legend 1 Locus tag according to the reference genome sequence of B. subtilis 168 (NC_000964) Genes highlighted in blue have been deleted from the respective strains Genes highlighted in green have been inserted into the indicated strain, they are present in all following strains Regions highlighted in red could not be deleted as a unit Regions highlighted in orange were not deleted in the genome-reduced strains since their deletion resulted in severe growth defects Gene BSU_number 1 Function ∆6 IIG-Bs27-47-24 PG10 PS38 dnaA BSU00010 replication initiation protein dnaN BSU00020 DNA polymerase III (beta subunit), beta clamp yaaA BSU00030 unknown recF BSU00040 repair, recombination remB BSU00050 involved in the activation of biofilm matrix biosynthetic operons gyrB BSU00060 DNA-Gyrase (subunit B) gyrA BSU00070 DNA-Gyrase (subunit A) rrnO-16S- trnO-Ala- trnO-Ile- rrnO-23S- rrnO-5S yaaC BSU00080 unknown guaB BSU00090 IMP dehydrogenase dacA BSU00100 penicillin-binding protein 5*, D-alanyl-D-alanine carboxypeptidase pdxS BSU00110 pyridoxal-5'-phosphate synthase (synthase domain) pdxT BSU00120 pyridoxal-5'-phosphate synthase (glutaminase domain) serS BSU00130 seryl-tRNA-synthetase trnSL-Ser1 dck BSU00140 deoxyadenosin/deoxycytidine kinase dgk BSU00150 deoxyguanosine kinase yaaH BSU00160 general stress protein, survival of ethanol stress, SafA-dependent spore coat yaaI BSU00170 general stress protein, similar to isochorismatase yaaJ BSU00180 tRNA specific adenosine
    [Show full text]
  • 12) United States Patent (10
    US007635572B2 (12) UnitedO States Patent (10) Patent No.: US 7,635,572 B2 Zhou et al. (45) Date of Patent: Dec. 22, 2009 (54) METHODS FOR CONDUCTING ASSAYS FOR 5,506,121 A 4/1996 Skerra et al. ENZYME ACTIVITY ON PROTEIN 5,510,270 A 4/1996 Fodor et al. MICROARRAYS 5,512,492 A 4/1996 Herron et al. 5,516,635 A 5/1996 Ekins et al. (75) Inventors: Fang X. Zhou, New Haven, CT (US); 5,532,128 A 7/1996 Eggers Barry Schweitzer, Cheshire, CT (US) 5,538,897 A 7/1996 Yates, III et al. s s 5,541,070 A 7/1996 Kauvar (73) Assignee: Life Technologies Corporation, .. S.E. al Carlsbad, CA (US) 5,585,069 A 12/1996 Zanzucchi et al. 5,585,639 A 12/1996 Dorsel et al. (*) Notice: Subject to any disclaimer, the term of this 5,593,838 A 1/1997 Zanzucchi et al. patent is extended or adjusted under 35 5,605,662 A 2f1997 Heller et al. U.S.C. 154(b) by 0 days. 5,620,850 A 4/1997 Bamdad et al. 5,624,711 A 4/1997 Sundberg et al. (21) Appl. No.: 10/865,431 5,627,369 A 5/1997 Vestal et al. 5,629,213 A 5/1997 Kornguth et al. (22) Filed: Jun. 9, 2004 (Continued) (65) Prior Publication Data FOREIGN PATENT DOCUMENTS US 2005/O118665 A1 Jun. 2, 2005 EP 596421 10, 1993 EP 0619321 12/1994 (51) Int. Cl. EP O664452 7, 1995 CI2O 1/50 (2006.01) EP O818467 1, 1998 (52) U.S.
    [Show full text]
  • The Enzymatic Phosphorylation of Nucleic Acids and Its Application To
    The Enzymatic Phosphorylation of Nucleic Acids and Its Application to End-Group Analysis Downloaded from http://rupress.org/jgp/article-pdf/49/6/81/1243914/81.pdf by guest on 02 October 2021 CHARLES C. RICHARDSON and BERNARD WEISS From the Department of Biological Chemistry, Harvard Medical School, Boston ABSTRACT Polynucleotide kinase catalyzes the transfer of a phosphate group from ATP to the 5'-hydroxyl termini of polynucleotides. Selective labeling of the 5'-hydroxyl termini of DNA with polynucleotide kinase has been used to study the number and the identity of the 5'-terminal residues of bacteriophage DNA's, and to examine the nature of the phosphodiester bond cleavages pro- duced by endonucleases and by sonic irradiation. The intact strands of T7 DNA bear 5'-phosphoryl end-groups; only deoxyadenylate and deoxythy- midylate are present as 5'-terminal residues. The intact strands of native X-DNA bear 5'-hydroxyl end-groups. M13 DNA, a circular molecule, cannot be phos- phorylated. End-group labeling of DNA provides a method for determination of molecular weight; calibration against other DNA preparations is not re- quired. The molecular weight of a single strand of T7 DNA, determined by end-group labeling, is 13.1 X 106; the molecular weight of a single strand of X-DNA is 6.0 X 106. These values are in agreement with molecular weight estimates by sedimentation analysis and electron microscopy. Sonic irradiation of DNA has been shown to favor the production of polynucleotides terminated by 5'-phosphomonoester groups. All four deoxyribonucleotides are present as 5'-terminal residues of sonicated DNA.
    [Show full text]