Life Cycle, Feeding and Production of Isoptena Serricornis(Pictet, 1841

Total Page:16

File Type:pdf, Size:1020Kb

Life Cycle, Feeding and Production of Isoptena Serricornis(Pictet, 1841 Internat. Rev. Hydrobiol. 89 2004 2 165–174 DOI: 10.1002/iroh.200310726 TOMÁSˇ DERKA1*, JOSÉ MANUEL TIERNO DE FIGUEROA2 and IL’JA KRNO1 1Department of Ecology, Faculty of Natural Sciences, Comenius University, Mlynská dolina B-2, SK-84215 Bratislava, Slovakia; e-mail: [email protected], [email protected] 2Departamento de Biología Animal y Ecología, Facultad de Ciencias, Universidad de Granada, 18071 Granada, Spain; e-mail: [email protected] Life Cycle, Feeding and Production of Isoptena serricornis (PICTET, 1841) (Plecoptera, Chloroperlidae) key words: Plecoptera, feeding, life cycle, production, Slovakia Abstract Some aspects of the biology and ecology (life cycle, feeding and production) of a population of Isoptena serricornis in the Rudava River (Slovakia) are studied, reported and discussed. The life cycle is annual, with slow growth in autumn-winter and fast growth in late summer and spring. The growth decreased two weeks before the Fall Equinox and increased two weeks after the Spring Equinox. The flight period spans from the end of May to the beginning of July. The presence of large sand particles in the gut of all studied nymphs is of note, and indicates that I. serricornis acts as a deposit- collector species. Nymphal food is principally composed of detritus, unicellular organisms and, in nymphs of intermediate or large size, Chironomidae larvae. Adult food is composed fundamentally of different types of pollen grains. Males usually have lower food content than females. Annual produc- tion of this species (~694–750 mg · m–2) is very high in relation to other previously studied Chloro- perlidae. This is probably largely responsible for I. serricornis being one of the most abundant com- ponents of the macroinvertebrate community in its habitat in the Rudava River. A negative correlation between production and temperature was observed. 1. Introduction Isoptena is a monospecific genus (one of the four Chloroperlidae genera present in Europe) with I. serricornis (PICTET, 1841) occurring in Northern, Central and Eastern Europe (ZWICK, 1973). ILLIES (1953) included this taxon among the species penetrating from the east to the west during the post-Pleistocene period. It is a rare and endangered species in Central Europe (KRNO, 1998b; SOLDÁN et al. 1998) and is affected by stream pollution (RAUSERˇ , 1971). The biology of I. serricornis is little known. According to WINKLER (1957), KITTEL (1976, 1980) and LILLEHAMMER (1988), nymphs inhabit rivers and slowly flowing lowland streams with sandy beds, and adults emerge in May-July. It is supposed to be a borrowing animal, probably with a one-year life cycle in Northern Europe (LILLEHAMMER, 1988). This species was reported to be one of the most abundant in the lowland Polish Pilica River, where it lives buried in the sandy bottom (KITTEL, 1976). A study in a Slovakian river (the Rudava River) showed that I. serricornis was strongly associated with the sandy substrate when, along with some members of the Chironomidae, it was the most important component of the macroinvertebrate community (DERKA et al., 2001). KAISER (1977) observed the presence of sand particles in the gut of this species. Recently, a study of I. serricornis eggs pointed out * Corresponding author © 2004 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim 1434-2944/04/205-0165 166 T. DERKA et al. that the maximum quantity of eggs found per dissected female is less than 50, which shows low fecundity for this species (TIERNO DE FIGUEROA and DERKA, 2003). Studies on the life cycles of some Plecoptera species have been carried out at different latitudes by several authors. Thus, considerable variation in life cycle characteristics has been described. This variation reflects the species studied (SÁNCHEZ-ORTEGA and ALBA-TER- CEDOR, 1991), and also the ecological conditions (particularly the climatic ones). Given this, it is generally accepted that Chloroperlidae have a one-year life cycle pattern (univoltine cycle) or two-year cycle pattern (semivoltine cycle) (HYNES, 1976), but periods of fast and slow growth and egg development are different among the studied species (HYNES, 1976; STEWART and STARK, 1988). In Central Europe, and particularly in Slovakia, life cycles of some Plecoptera species, including some Chloroperlidae species, have been studied in detail (KRNO, 1982, 1984, 1996, 1998a); but previous to now there had not been an annual study on the life cycle of the genus Isoptena. Feeding in adult stoneflies is a poorly known aspect of their biology (TIERNO DE FIGUEROA and FOCHETTI, 2001). Although traditionally it was thought that adult Perloidea species (at least the European ones) did not ingest food, subsequent work demonstrated that some Chloroperlidae [Siphonoperla torrentium (PICTET, 1841)] can metabolize food ingested in the adult stage (RUPPRECHT, 1990) and gain weight through imaginal feeding (ZWICK, 1990). ZWICK (1973) and SURDICK (1985) indicated that some adult Chloroperlidae feed on the pollen of coniferous plants. TIERNO DE FIGUEROA and SÁNCHEZ-ORTEGA (1999) and TIERNO DE FIGUEROA et al. (1998) showed that adults of one species of the family Chloroperlidae (Chloroperla nevada ZWICK, 1967), and three species of the family Perlodidae changed the proportions of dietary components over the flight period. This change reflected the availability of various components. In contrast, it was found that adult feeding was unim- portant in Perlidae and large-sized Perlodidae (TIERNO DE FIGUEROA and SÁNCHEZ-ORTEGA, 1999; TIERNO DE FIGUEROA and FOCHETTI, 2001). In Plecoptera, as in other orders of amphibious insects, nymphal feeding has been studied more extensively than adult feeding (STEWART, 1994). Studies have concentrated on the eco- logical role nymphs play in structuring aquatic communities, e.g., in the processing and cycling of nutrients (MERRIT et al., 1984), as primary consumers (LAMBERTI and MOORE, 1984) or as secondary consumers (PECKARSKY, 1984). According to MERRIT et al. (1984), nymphs of Chloroperlidae can be classified as engulfers according to their feeding mecha- nism. However, STEWART and STARK (1988) pointed out that the food habits of an unstudied species can not be inferred or deduced from the placement of a genus or a higher taxon in a generalized grouping based on studies of congeners. Moreover, the nymphal diet of a par- ticular species can change with individual size during the developmental cycle (BERTHÉLEMY and LAHOUD, 1981; LILLEHAMMER, 1988). The feeding of European Chloroperlidae species in particular is almost unknown. Knowledge of the secondary production of aquatic insects is of considerable ecological importance (applied as well as theoretical) from population and community perspectives. In terms of population dynamics, it combines two parameters that are considered to be of major ecological significance (individual growth and population survivorship) in a single measurement (BENKE, 1984). Nevertheless, study of the contribution of Plecoptera assemblages to overall benthic community production in various biotopes is in its infancy (STEWART and STARK, 1988). In contrast to this general affirmation, studies on stonefly pro- duction in Central Europe have increased in the last twenty years (KRNO, 1982, 1996, 1997, 1998a, 2000). More research is needed, however, to complete this knowledge, especially in lowland rivers which have not yet been studied. Although there have been studies on the production of some European and North American Chloroperlidae species (see BENKE, 1984; STEWART and STARK, 1988), there is no such information published for the genus Isoptena despite its importance in the macroinvertebrate community of its habitat (KRNO et al., 1994; DERKA et al., 2001). © 2004 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim Life Cycle, Feeding and Production of Plecoptera 167 The aim of this study is to increase the overall knowledge of Isoptena serricornis biology through discussion of its life cycle, production, and nymphal and adult feeding. In addition to expanding the available information about a particular stonefly species, in this case a monospecific genus whose biology is almost unknown, it is hoped that this study will make an important contribution to the general knowledge of stonefly biology. 2. Study Area The study was carried out in the Rudava River, a tributary of the Morava River in south- western Slovakia. The sampling site (GPS coordinates 48° 30′ 41.1′′ N; 17° 07′ 26.8′′) is situated at 180 meters above sea level, close to Studienka Village. The river catchment area is 280.32 km2, and the average discharge is 0,73 m3 ·s–1. The discharge fluctuated from 0,35 to 2.61 m3 ·s–1. The river width is approximately 7 m, mean depth is 34 cm and maximum depth is 75 cm. The bottom consists of sand (55%), detritus (25.5%), woody debris (14.5%), submersed root mats of riparian tress (3.9%), and hard mud (2.1%). The riparian vegetation consists mainly of the alder Alnus glutinosa (L.) (DERKA et al., 2001). I. serricornis inhabits the study site along with the other stonefly species such as Perlodes dispar (RAMBUR, 1842), Isoperla tripartita ILLIES, 1954, Taeniopteryx nebulosa (LINNAEUS, 1758), Nemoura flexuosa AUBERT, 1949, and Leuctra hippopus KEMPNY, 1899 (KRNO et al., 1994; DERKA et al., 2001). The studied river is not affected by pollution or human activities and is includ- ed among the areas protected by the Ramsar Convention. 3. Material and Methods Quantitative and qualitative samples of I. serricornis nymphs were taken at approximately three-week intervals from July 2001 to June 2002. Three to five quantitative samples were collected using Kubícˇek’s benthic sampler (area 0.1 m2, mesh size 0.5 mm). Qualitative samples were taken using a kick net (mesh size 0.5 mm). Adults were collected during their flying period by sweeping the riparian vegetation (May to June, 2002). Specimens were preserved in 70% alcohol in plastic dram bottles and, in the laboratory, were labelled and preserved in glass vials. Water temperature data were obtained from the Slovak Hydrometeorological Institute. To study the production and life cycle, all collected nymphs were measured (total length) with an ocular micrometer of a binocular microscope.
Recommended publications
  • Impacts of Flow Regulation and Artificial Floods in An
    i IMPACTS OF FLOW REGULATION AND ARTIFICIAL FLOODS IN AN UPLAND STREAM ECOSYSTEM Benjamin Robert Gillespie Submitted in accordance with the requirements for the degree of Doctor of Philosophy The University of Leeds School of Geography November 2014 ii The candidate confirms that the work submitted is his own, except where work which has formed part of jointly authored publications has been included. The contribution of the candidate and the other authors to this work has been explicitly indicated below. The candidate confirms that appropriate credit has been given within the thesis where reference has been made to the work of others. Chapter 3 Publication title: A critical analysis of regulated river ecosystem responses to environmental flows from reservoirs Authors: Gillespie, Ben; University of Leeds, School of Geography/ Water@Leeds DeSmet, Simon; University of Leeds, School of Geography/ Water@Leeds Kay, Paul; University of Leeds, School of Geography/ Water@Leeds Tillotson, Martin; University of Leeds, School of Geography/ Water@Leeds Brown, Lee; University of Leeds, School of Geography/ Water@Leeds Publication: Freshwater Biology [in press] Work attributable to Ben Gillespie: Data collection (shared approximately 3:1 (Gillespie:DeSmet)), data quality control and analysis; project management; manuscript production. Work attributable to other authors: Data collection (shared approximately 3:1 (Gillespie:DeSmet)), advice; suggestions of improvements; proof reading. Chapter 8 Publication title: Effects of impoundment on macroinvertebrate community assemblages in upland streams Authors: Gillespie, Ben; University of Leeds, School of Geography/ Water@Leeds Brown, Lee; University of Leeds, School of Geography/ Water@Leeds Kay, Paul; University of Leeds, School of Geography/ Water@Leeds Publication: River Research and Applications [in press] Work attributable to Ben Gillespie: Data collection, quality control and analysis; project management; manuscript production.
    [Show full text]
  • Assessing the Vulnerability of Aquatic Macroinvertebrates to Climate Warming in a Mountainous Watershed: Supplementing Presence-Only Data with Species Traits
    water Article Assessing the Vulnerability of Aquatic Macroinvertebrates to Climate Warming in a Mountainous Watershed: Supplementing Presence-Only Data with Species Traits Anne-Laure Besacier Monbertrand 1, Pablo Timoner 2 , Kazi Rahman 2, Paolo Burlando 3, Simone Fatichi 3, Yves Gonseth 4, Frédéric Moser 2, Emmanuel Castella 1 and Anthony Lehmann 2,* 1 Aquatic Ecology Group, Department F.-A. Forel for Environmental and Aquatic Sciences, University of Geneva, Institute for Environmental Sciences, 66 Boulevard Carl-Vogt, CH-1205 Geneva, Switzerland; [email protected] (A.-L.B.M.); [email protected] (E.C.) 2 enviroSPACE Group, Department F.-A. Forel for Environmental and Aquatic Sciences, University of Geneva, Institute for Environmental Sciences, 66 Boulevard Carl-Vogt, CH-1205 Geneva, Switzerland; [email protected] (P.T.); [email protected] (K.R.); [email protected] (F.M.) 3 ETH Zürich, Institute of Environmental Engineering, HIL D 22.3, Stefano-Franscini-Platz 5, 8093 Zürich, Switzerland; [email protected] (P.B.); [email protected] (S.F.) 4 Swiss Biological records Center, Passage Max-Meuron 6, CH-2000 Neuchâtel, Switzerland; [email protected] * Correspondence: [email protected]; Tel.: +41-22-379-0021 Received: 17 November 2018; Accepted: 22 March 2019; Published: 27 March 2019 Abstract: Mountainous running water ecosystems are vulnerable to climate change with major changes coming from warming temperatures. Species distribution will be affected and some species are anticipated to be winners (increasing their range) or losers (at risk of extinction). Climate change vulnerability is seldom integrated when assessing threat status for lists of species at risk (Red Lists), even though this might appear an important addition in the current context.
    [Show full text]
  • Distribution and Density of Ephemeroptera and Plecoptera Of
    EPHEMEROPTERA AND PLECOPTERA OF A SMALL BROOK, CENTRAL EUROPE 327 Distribution and density of Introduction Ephemeroptera and Plecoptera of The relationships between Ephemeroptera and the Radíkovský brook (Czech Plecoptera distribution and environmental Republic) in relation to selected variables within large catchments areas in the Czech Republic have been intensively studied environmental variables (Helešic, 1995; Soldán et al., 1998; Zahrádková, 1999). However, despite relatively extensive knowledge on ecology of mayflies and stoneflies MARTINA JEZBEROVÁ and long-term trends in changes of their distribution, there are very fragmentary data on Institute of Entomology, Academy of Sciences of distribution and seasonal changes of respective the Czech Republic and Faculty of Biological taxocenes in small brooks and respective small Sciences, University of South Bohemia, basins. Although this knowledge is undoubtedly Branišovská 31, CZ - 370 05, České Budějovice, necessary to clear up the whole ecological system, Czech Republic. data are scattered within the literature. One of rare [email protected] examples of complex, detailed and all-season data approach is that by Vondrejs (1958) describing benthic communities within the future water reservoir in Central Bohemia. This author recognized the importance of very small water bodies to the environment in the area studied. The objective of this paper is to describe main factors affecting both density and distribution in a small water flow of the species belonging to Ephemeroptera
    [Show full text]
  • Diversity of Benthic Macroinvertebrates in Margaraça Forest Streams Portugal
    DIVERSITY OF BENTHIC MACROINVERTEBRATES IN MARGARACA FOREST STREAMS (PORTUGAL). Manuela Abelho Departamento de Zoologia, Universldadc de Coimbra, 3000 Coimbra, Portugal Palabras Clave: biodiversidad, comunidades de macroinvertebrados acu6ticos, grupos funcionalcs Keywords: biodiversity, stream macroinvertebrate communities, functional fceding groups. ABSTRACT Structure and diversity of the benthic macroinvertcbrate fauna were st~tdiedin two deciduous forest streams in Central Portugal. In the three sampling occasions. 120 tax-cl were collected from the two streams. Number of tci,xci per sampling occasion ranged from 53 to 60. Macroinvertebrate densities ranged from 1465 to 2365. Insects were the most abundant taxonomic group (280 ?h) in all samples. Detritivorous invertebrates were numerically dominant in both streams, representing 62 to 85 5% of the total macroinvertebratc community. INTRODUCTION terrestrial insects have aquatic larval instars, their development depends on the surrounding vegetalion in two ways; while thcy Margaraqa Forcst is a Natural Rcservc (Protected Area of live underwater and after their emergencc as terrestrial adults. Serra do A~or,D.L. 67/82. 3rd March). It is a very old forest Thus. it is possible that thc aquatic communities arc also posi- tlotninated by chestnuts (Cnstnrlecl scitiva Miller) and oaks tively influenced by the high plant species diversity of the forest. (Qilerciis robilr. L.). Less abundant elements are Portuguese Several low order streams abundantly irrigate Margara~a laurel cherries (Pr~lr~ilsl~lsitar~ica L. ssp Ii~sirtir~icn),laurels Forest; nevertheless, no effort has been so far done to provide (Lcl~irlls11oOili.s L.). hollies (Hex cicjil~folilllnL.). arbutus information about the aquatic invcrtcbratcs of these streams. (Ar.h~lt~l~~~I~~LIO L.), hazels (Coq~1ll.sa~~llnr~u L.), cherries The airn of this work was to generate baseline data on the (Prllnlrs civiilrlz L.) and lnorellos (PTLLIILISCC~CISLIS L.).
    [Show full text]
  • Arthropod-Pathogenic Entomophthorales from Switzerland
    ZOBODAT - www.zobodat.at Zoologisch-Botanische Datenbank/Zoological-Botanical Database Digitale Literatur/Digital Literature Zeitschrift/Journal: Sydowia Jahr/Year: 2007 Band/Volume: 59 Autor(en)/Author(s): Keller Siegfried Artikel/Article: Arthropod-pathogenic Entomophthorales from Switzerland. III. First additions. 75-113 ©Verlag Ferdinand Berger & Söhne Ges.m.b.H., Horn, Austria, download unter www.biologiezentrum.at Arthropod-pathogenic Entomophthorales from Switzerland. III. First additions Siegfried Keller Federal Research Station Agroscope Reckenholz-TaÈnikon ART, Reckenholzstrasse 191, CH-8046 Zurich, Switzerland Keller S. (2007) Arthropod-pathogenic Entomophthorales from Switzerland. III. First additions. ± Sydowia 59 (1): 75±113. Twenty-nine species of arthropod-pathogenic Entomophthorales new to Switzerland are described. Nine are described as new species, namely Batkoa hydrophila from Plecoptera, Conidiobolus caecilius from Psocoptera, Entomophaga antochae from Limoniidae (Diptera), E. thuricensis from Cicadellidae (Homo- ptera), Erynia fluvialis from midges (Diptera), E. tumefacta from Muscidae (Dip- tera), Eryniopsis rhagonidis from Rhagionidae (Diptera), Pandora longissima from Limoniidae (Diptera) and Strongwellsea pratensis from Muscidae (Diptera). Pan- dora americana, P. sciarae, Zoophthora aphrophorae and Z. rhagonycharum are new combinations. Eleven species are first records since the original description. The list of species recorded from Switzerland amounts to 90 species representing 38% of the world-wide known species of arthropod-pathogenic Entomophthorales. Part I of this monograph (Keller 1987) treated the genera Con- idiobolus, Entomophaga [including the species later transferred on to the new genus Batkoa Humber (1989)], and Entomophthora. Part II (Keller 1991) treated the genera Erynia sensu lato (now subdivided into the genera Erynia, Furia and Pandora), Eryniopsis, Neozygites, Zoophthora and Tarichium. So far 51 species including 8new ones have been listed.
    [Show full text]
  • Desktop Biodiversity Report
    Desktop Biodiversity Report Land at Balcombe Parish ESD/14/747 Prepared for Katherine Daniel (Balcombe Parish Council) 13th February 2014 This report is not to be passed on to third parties without prior permission of the Sussex Biodiversity Record Centre. Please be aware that printing maps from this report requires an appropriate OS licence. Sussex Biodiversity Record Centre report regarding land at Balcombe Parish 13/02/2014 Prepared for Katherine Daniel Balcombe Parish Council ESD/14/74 The following information is included in this report: Maps Sussex Protected Species Register Sussex Bat Inventory Sussex Bird Inventory UK BAP Species Inventory Sussex Rare Species Inventory Sussex Invasive Alien Species Full Species List Environmental Survey Directory SNCI M12 - Sedgy & Scott's Gills; M22 - Balcombe Lake & associated woodlands; M35 - Balcombe Marsh; M39 - Balcombe Estate Rocks; M40 - Ardingly Reservior & Loder Valley Nature Reserve; M42 - Rowhill & Station Pastures. SSSI Worth Forest. Other Designations/Ownership Area of Outstanding Natural Beauty; Environmental Stewardship Agreement; Local Nature Reserve; National Trust Property. Habitats Ancient tree; Ancient woodland; Ghyll woodland; Lowland calcareous grassland; Lowland fen; Lowland heathland; Traditional orchard. Important information regarding this report It must not be assumed that this report contains the definitive species information for the site concerned. The species data held by the Sussex Biodiversity Record Centre (SxBRC) is collated from the biological recording community in Sussex. However, there are many areas of Sussex where the records held are limited, either spatially or taxonomically. A desktop biodiversity report from SxBRC will give the user a clear indication of what biological recording has taken place within the area of their enquiry.
    [Show full text]
  • Nabs 2004 Final
    CURRENT AND SELECTED BIBLIOGRAPHIES ON BENTHIC BIOLOGY 2004 Published August, 2005 North American Benthological Society 2 FOREWORD “Current and Selected Bibliographies on Benthic Biology” is published annu- ally for the members of the North American Benthological Society, and summarizes titles of articles published during the previous year. Pertinent titles prior to that year are also included if they have not been cited in previous reviews. I wish to thank each of the members of the NABS Literature Review Committee for providing bibliographic information for the 2004 NABS BIBLIOGRAPHY. I would also like to thank Elizabeth Wohlgemuth, INHS Librarian, and library assis- tants Anna FitzSimmons, Jessica Beverly, and Elizabeth Day, for their assistance in putting the 2004 bibliography together. Membership in the North American Benthological Society may be obtained by contacting Ms. Lucinda B. Johnson, Natural Resources Research Institute, Uni- versity of Minnesota, 5013 Miller Trunk Highway, Duluth, MN 55811. Phone: 218/720-4251. email:[email protected]. Dr. Donald W. Webb, Editor NABS Bibliography Illinois Natural History Survey Center for Biodiversity 607 East Peabody Drive Champaign, IL 61820 217/333-6846 e-mail: [email protected] 3 CONTENTS PERIPHYTON: Christine L. Weilhoefer, Environmental Science and Resources, Portland State University, Portland, O97207.................................5 ANNELIDA (Oligochaeta, etc.): Mark J. Wetzel, Center for Biodiversity, Illinois Natural History Survey, 607 East Peabody Drive, Champaign, IL 61820.................................................................................................................6 ANNELIDA (Hirudinea): Donald J. Klemm, Ecosystems Research Branch (MS-642), Ecological Exposure Research Division, National Exposure Re- search Laboratory, Office of Research & Development, U.S. Environmental Protection Agency, 26 W. Martin Luther King Dr., Cincinnati, OH 45268- 0001 and William E.
    [Show full text]
  • Annual Newsletter and Bibliography of the International Society of Plecopterologists
    PERLA Annual Newsletter and Bibliography of The International Society of Plecopterologists Capnia valhalla Nelson & Baumann (Capniidae), ♂. California: San Diego Co. Palomar Mountain, Fry Creek. Photograph by C. R. Nelson PERLA NO. 30, 2012 Department of Bioagricultural Sciences and Pest Management Colorado State University Fort Collins, Colorado 80523 USA PERLA Annual Newsletter and Bibliography of the International Society of Plecopterologists Available on Request to the Managing Editor MANAGING EDITOR: Boris C. Kondratieff Department of Bioagricultural Sciences And Pest Management Colorado State University Fort Collins, Colorado 80523 USA E-mail: [email protected] EDITORIAL BOARD: Richard W. Baumann Department of Biology and Monte L. Bean Life Science Museum Brigham Young University Provo, Utah 84602 USA E-mail: [email protected] J. Manuel Tierno de Figueroa Dpto. de Biología Animal Facultad de Ciencias Universidad de Granada 18071 Granada, SPAIN E-mail: [email protected] Kenneth W. Stewart Department of Biological Sciences University of North Texas Denton, Texas 76203, USA E-mail: [email protected] Shigekazu Uchida Aichi Institute of Technology 1247 Yagusa Toyota 470-0392, JAPAN E-mail: [email protected] Peter Zwick Schwarzer Stock 9 D-36110 Schlitz, GERMANY E-mail: [email protected] 2 TABLE OF CONTENTS Subscription policy………………………………………………………..…………….4 2012 XIIIth International Conference on Ephemeroptera, XVIIth International Symposium on Plecoptera in JAPAN…………………………………………………………………………………...5 How to host
    [Show full text]
  • Insect Egg Size and Shape Evolve with Ecology but Not Developmental Rate Samuel H
    ARTICLE https://doi.org/10.1038/s41586-019-1302-4 Insect egg size and shape evolve with ecology but not developmental rate Samuel H. Church1,4*, Seth Donoughe1,3,4, Bruno A. S. de Medeiros1 & Cassandra G. Extavour1,2* Over the course of evolution, organism size has diversified markedly. Changes in size are thought to have occurred because of developmental, morphological and/or ecological pressures. To perform phylogenetic tests of the potential effects of these pressures, here we generated a dataset of more than ten thousand descriptions of insect eggs, and combined these with genetic and life-history datasets. We show that, across eight orders of magnitude of variation in egg volume, the relationship between size and shape itself evolves, such that previously predicted global patterns of scaling do not adequately explain the diversity in egg shapes. We show that egg size is not correlated with developmental rate and that, for many insects, egg size is not correlated with adult body size. Instead, we find that the evolution of parasitoidism and aquatic oviposition help to explain the diversification in the size and shape of insect eggs. Our study suggests that where eggs are laid, rather than universal allometric constants, underlies the evolution of insect egg size and shape. Size is a fundamental factor in many biological processes. The size of an 526 families and every currently described extant hexapod order24 organism may affect interactions both with other organisms and with (Fig. 1a and Supplementary Fig. 1). We combined this dataset with the environment1,2, it scales with features of morphology and physi- backbone hexapod phylogenies25,26 that we enriched to include taxa ology3, and larger animals often have higher fitness4.
    [Show full text]
  • Survey of Brachyptera Putata (Newman) (Plecoptera, Taeniopterygidae) – a Stonefly Endemic to Scotland
    Scottish Natural Heritage Research Report No. 1094 Survey of Brachyptera putata (Newman) (Plecoptera, Taeniopterygidae) – a stonefly endemic to Scotland RESEARCH REPORT Research Report No. 1094 Survey of Brachyptera putata (Newman) (Plecoptera, Taeniopterygidae) – a stonefly endemic to Scotland For further information on this report please contact: Iain Sime Scottish Natural Heritage Great Glen House Leachkin Road INVERNESS IV3 8NW Telephone: 01463 725232 E-mail: [email protected] This report should be quoted as: Macadam, C.R. 2019. Survey of Brachyptera putata (Newman) (Plecoptera, Taeniopterygidae) – a stonefly endemic to Scotland. Scottish Natural Heritage Research Report No. 1094. This report, or any part of it, should not be reproduced without the permission of Scottish Natural Heritage. This permission will not be withheld unreasonably. The views expressed by the author(s) of this report should not be taken as the views and policies of Scottish Natural Heritage. © Scottish Natural Heritage 2019. RESEARCH REPORT Summary Survey of Brachyptera putata (Newman) (Plecoptera, Taeniopterygidae) – a stonefly endemic to Scotland Research Report No. 1094 Project No: 016928 Contractor: Buglife – The Invertebrate Conservation Trust Year of publication: 2019 Keywords Northern February red stonefly; Brachyptera putata; stonefly; Cairngorms; Plecoptera; rivers Background The Northern February red stonefly (Brachyptera putata) is globally restricted to watercourses in the Scottish Highlands. Outside of Scotland, this species has only ever been found in two areas – the River Usk in Wales and the Wye near Hereford, where it is now thought to be extinct. As an endemic species, the UK population is of international significance. Surveys in the last 15 years have confirmed that the Northern February red is present in the Dee from Linn of Dee downstream, a number of Dee tributaries and along the River Spey.
    [Show full text]
  • Annual Newsletter and Bibliography of the International Society of Plecopterologists
    PERLA Annual Newsletter and Bibliography of The International Society of Plecopterologists Brachyptera seticornis (Klapálek), Slovenia Photograph by Bill P. Stark PERLA NO. 27, 2009 Department of Bioagricultural Sciences and Pest Management Colorado State University Fort Collins, Colorado 80523 USA PERLA Annual Newsletter and Bibliography of the International Society of Plecopterologists Available on Request to the Managing Editor MANAGING EDITOR: Boris C. Kondratieff Department of Bioagricultural Sciences And Pest Management Colorado State University Fort Collins, Colorado 80523 USA Fax: 970-491-3862 E-mail: [email protected] EDITORIAL BOARD: Richard W. Baumann Department of Biology and Monte L. Bean Life Science Museum Brigham Young University Provo, Utah 84602, USA Peter P. Harper Département de Sciences biologiques Université de Montréal C.P. 6128, Succ. "Centre-Ville" Montréal, Québec, H3C 3J7, CANADA Kenneth W. Stewart Department of Biological Sciences University of North Texas Denton, Texas 76203, USA Shigekazu Uchida Aichi Institute of Technology 1247 Yagusa Toyota 470-0392, JAPAN Peter Zwick Schwarzer Stock 9 D-36110 Schlitz, GERMANY 2 TABLE OF CONTENTS Subscription policy……………………………………………………………………….4 Overview of The XII International Conference on Ephemeroptera and the XVI International Symposium on Plecoptera……………………………..…………….…..5 2008 Lifetime Achievement Awards…………………………………………………….20 Announcements Proceedings of XI International Conference on Ephemeroptera, XV International Symposium on Plecoptera………………………………….…..30
    [Show full text]
  • A Key to the West Palaearctic Genera of Stoneflies (Plecoptera) in the Larval Stage
    Forschungsinstitut Senckenberg Forschungsstation für Mittelgebirge A key to the West Palaearctic genera of stoneflies (Plecoptera) in the larval stage 1 PETER ZWICK Introduction Plecoptera constitute a numerically and ecologically significant component in freshwater eco- systems, mainly in running waters of all sizes, all over the world. The fauna of the vast Holarctic Region is relatively uniform, and its stonefly families are essentially endemic to it, only some extend into the Oriental Region. The East Palaearctic and the Nearctic subregions are particularly similar, sharing the families Pteronarcyidae, Styloperlidae, and Peltoperlidae, and a number of genera and even single species that all lack from the West Palaearctic subre- gion. The wingless Scopuridae are endemic to Japan and Korea. Europe and the immediately adjacent parts of Asia and Palaearctic North Africa together are relatively distinct from the other subregions, not only by the absence of the beformentioned taxa but also by shared en- demic genera. Adult stonefly taxonomy is well advanced, the terrestrial imagines can reliably be identified, although in certain regions of the world and in some genera limitations remain. However, larvae are generally less well known than adults. Given the fact that many adults can be iden- tified to species only by genital characters, a lastingly lesser taxonomic resolution must be anticipated in larvae, even after further study. In North America, excellent comprehensive literature on larval Plecoptera exists (STEWART & STARK 2002). The genera of the Russian Far East and Siberia have been treated synoptically, although in a less detailed way (ZHILTZOVA & TESLENKO 1997). There is a preliminary key to the genera of the incompletely studied Chinese fauna (HARPER 1994).
    [Show full text]