Broadcasting Transmitters in Kampala Metropolitan; Uganda

Total Page:16

File Type:pdf, Size:1020Kb

Broadcasting Transmitters in Kampala Metropolitan; Uganda Asian Journal of Research and Reviews in Physics 3(4): 65-78, 2020; Article no.AJR2P.63843 ISSN: 2582-5992 Modeling the Distribution of Radiofrequency Intensities from the Digital Terrestrial Television (DTTV) Broadcasting Transmitters in Kampala Metropolitan; Uganda Peter Opio1*, Akisophel Kisolo1, Tumps W. Ireeta1 and Willy Okullo1 1Department of Physics, College of Natural Science, Makerere University, P.O.Box 7062, Kampala, Uganda. Authors’ contributions This work was carried out in collaboration among all authors. Author PO designed the study, performed the statistical analysis, wrote the protocol, managed the literature searches and wrote the first draft of the manuscript. Authors AK, TWI and WO managed the analyses of the study. All authors read and approved the final manuscript Article Information DOI: 10.9734/AJR2P/2020/v3i430130 Editor(s): (1) Prof. Shi-Hai Dong, Instituto Politécnico Nacional, Mexico. Reviewers: (1) Sigit Haryadi, Institut Teknologi Bandung, Indonesia. (2) Wahyu Pamungkas, Institut Teknologi Telkom Purwokerto, Indonesia. Complete Peer review History: http://www.sdiarticle4.com/review-history/63843 Received 06 October 2020 Original Research Article Accepted 11 December 2020 Published 26 December 2020 ABSTRACT This study presents the modeling of the distribution of RF intensities from the Digital Terrestrial Television (DTTV) broadcasting transmitter in Kampala metropolitan. To achieve this, the performance evaluation of the different path loss propagation models and envisaging the one most suitable for Kampala metropolitan was done by comparing the path loss model values with the measured field Reference Signal Received Power (RSRP) values. The RSRP of the DTTV broadcasting transmitter were measured at operating frequencies of 526 MHz, 638 MHz, 730 MHz and 766 MHz using the Aaronia Spectran HF-6065 V4 spectrum analyzer, Aaronia AG HyperLOG 4025 Antenna at 1.5 m and 2.5 m heights, Aaronia GPS Logger, real time Aaronia MCS spectrum-analysis-software and a T430s Lenovo Laptop. On comparing the measured path loss values with the various path loss prediction model values, results showed that Egli and Davidson models are the _____________________________________________________________________________________________________ *Corresponding author: E-mail: [email protected]; Opio et al.; AJR2P, 3(4): 65-78, 2020; Article no.AJR2P.63843 most accurate and reliable path loss prediction models for the distribution of DTTV RF intensities in Kampala metropolitan, since their Root Mean Square Error values were the least for both routes. Keywords: Radiofrequency intensities; path loss; empirical models; Reference Signal Received Power (RSRP); Root Mean Square Error (RMSE). 1. INTRODUCTION achieved, it out competes other methods in indicating a perfect fit of the data. With this In order to have a good estimate of Digital advantage, RMSE enabled in coming up with a Terrestrial Television (DTTV) network signal pathloss model that best describe the distribution coverage, the efficiency for total revolutionary of DTTV RF intensities in Kampala metropolitan; switchover from analog to digital television signal Uganda. transmission is dictated upon by signal pathloss and the use of the link budgeting [1-3]. This has The RMSE approach is calculated as; caused a lot of anxiety amongst the media and the general public wanting to know the exact (1) differences in quality of services between Analog Terrestrial Television (ATTV) and Digital Terrestrial Television (DTTV) broadcasting where is the measured RF intensity path loss technologies. Because of this, researchers, in dB , is the predicted RF intensity path loss scientists, and engineers have picked interest in in dB and is the number of measured data researching about the modeling of the points. distribution of RF intensities from DTTV broadcasting transmitters in order to know the The motivation for this work was to review, have DTTV signal pathloss in different environments. a clear assessment of the existing models, With this, many DTTV network planners in choose the best model to achieve accuracy and different countries having different geographical minimize errors in relation to the measured settings find it easier to work on TV signal RSRP so as to fit the distribution of RF intensity coverage planning, optimization and prediction from the DTTV broadcasting transmitter in by using empirical pathloss propagation models. Kampala Metropolitan; Uganda. Fundamentally, TV signals always attenuate with 2. PATH LOSS MODELS distance which is the basis of these models [4,5]. For any environment, accurate optimization of RF intensity path loss models have been pathloss is when the established pathloss classified as empirical and theoretical models. models are subjected to empirical prediction with The empirical path loss models are based on the respect to the field measured Reference Signal achieved measurements done in a given Received Power (RSRP). Better optimization of environment while as the theoretical models the model depends on the calculated value of the predict signal losses by mathematical analysis Root Mean Square Error (RMSE) and a better fit of the path geometry of the environment for any propagation model is when its RMSE between the receiving antenna and the value is closer to zero. The acceptable RMSE transmitting antenna and the tropospheric value should not exceed about 6-7 dB for urban refractivity [9]. and 10- 15 dB for the sub-urban and rural areas [6]. 2.1 Free Space Path Loss Model Though there are other model optimization The free space propagation model is used to methods, like the composite function-based predict received signal strength when the approach, adjustment of the original pathloss transmitter and receiver have a clear, model coefficients [1,7,8], in this study, the unobstructed line-of-sight path between them RMSE approach was used alongside the field [10]. In free space, the power, , received by measured RSRP for the 20 km distance from the the detector antenna placed at a lateral distance, DTTV transmitter in the eastern and western , from the base of the transmitter antenna is sides of the transmitter. Since the RMSE is given by the Friis free space equation [10], always positive and a value of zero never equation 2. 66 Opio et al.; AJR2P, 3(4): 65-78, 2020; Article no.AJR2P.63843 (2) formula according to Okumura's model is given as [14]. Where, , is the transmitted power, , is the (6) transmitter antenna gain, , is the receiver th antenna gain and is the wavelength. is the median value (i.e. 50 percentile) of the path (propagation) loss, is the free The Friis free space equation shows that the space loss. is the value of the median received power falls off as the square of the attenuation relative to free space, is the base Transmitter-Receiver (T-R) separation distance. station antenna height gain factor, is the The path loss, which represents signal mobile antenna height gain factor, and is the attenuation as a positive quantity measured in gain or correction factor owing to the type of dB, is defined as the difference (in dB) between environment. the effective transmitted power and the received power, and may or may not include the effect of and are determined by observing antenna gains [11]. the Okumura curves. Since Kampala metropolitan is a quasi-open area; , is 20 The path loss for the free space model when dB for the 1.5 m receiving antenna height and 25 antenna gains are included is given as; dB for the 2.5 m receiving antenna height while as, is 6 dB, from the Okumura curves. (3) Both and can be got using the For known frequency of operation, this following formulas; relationship is given as; (7a) (7b) (4) (7c) (7d) 8 -1 where is the speed of light (3x10 ms ) The model is considered to be the simplest and most excellent in terms of accuracy in path loss (5) prediction for most wireless systems in cluttered environment. Where and are measured in decibels, is the distance in kilometers and is measured in 2.3 Hata Model MHz [12]. Valid from 150 MHz to 1500 MHz frequency 2.2 Okumura Model band, path distance up to 20 km, extended to 100 km; for a transmitting antenna height of 30- The models derivation was based on extensive 200 m and a receiving antenna height of 1 m-10 drive test measurements made in Japan for m parameter ranges, the model as provided by frequencies within 150 to 1920 MHz and further Yoshihisa Okumura [15] is an empirical extended to the 3000 MHz frequency. The model formulation of graphical path loss data. The Hata is basically for macrocells with cells diameters in model is, basically, a set of equations based on the range of 1 to 100 km for the base station measurements and extrapolations from the antenna height kept in the range between 30-100 curves derived by Okumura. Hata presented the m [13]. The Okumura model takes into account urban area propagation loss as a standard several propagation parameters such as the type formula, along with additional correction factors of environment and the terrain irregularity. for application in other situations such as Okumura came up with a set of curves which suburban and rural. gives the median attenuation relative to free space (Amu), in an urban area over a quasi- The model assumes a direct line-of-sight path smooth terrain with a base station effective from transmitter ( ) to receiver ( ) but the actual antenna height of 200 m and a mobile antenna path is obstructed by two hills. Hence, the height of 3 meters. The path loss prediction prediction would be too optimistic. 67 Opio et al.; AJR2P, 3(4): 65-78, 2020; Article no.AJR2P.63843 The standard Hata formula for median path loss in urban areas is given as; (8) Where, is the frequency, is the effective transmitter antenna height (in m) ranging from 30 m to , 200 m, is the effective receiver antenna height (in m) ranging from 1 m to 10 m, d is the transmitter- , receiver antenna separation distance (in km), is the correction factor for effective antenna height which is a function of the size of the coverage area and its given as; (9a) for small or medium sized cities and (9b) for large cities.
Recommended publications
  • Recommendation ITU-R P.1410-5 (02/2012)
    Recommendation ITU-R P.1410-5 (02/2012) Propagation data and prediction methods required for the design of terrestrial broadband radio access systems operating in a frequency range from 3 to 60 GHz P Series Radiowave propagation ii Rec. ITU-R P.1410-5 Foreword The role of the Radiocommunication Sector is to ensure the rational, equitable, efficient and economical use of the radio-frequency spectrum by all radiocommunication services, including satellite services, and carry out studies without limit of frequency range on the basis of which Recommendations are adopted. The regulatory and policy functions of the Radiocommunication Sector are performed by World and Regional Radiocommunication Conferences and Radiocommunication Assemblies supported by Study Groups. Policy on Intellectual Property Right (IPR) ITU-R policy on IPR is described in the Common Patent Policy for ITU-T/ITU-R/ISO/IEC referenced in Annex 1 of Resolution ITU-R 1. Forms to be used for the submission of patent statements and licensing declarations by patent holders are available from http://www.itu.int/ITU-R/go/patents/en where the Guidelines for Implementation of the Common Patent Policy for ITU-T/ITU-R/ISO/IEC and the ITU-R patent information database can also be found. Series of ITU-R Recommendations (Also available online at http://www.itu.int/publ/R-REC/en) Series Title BO Satellite delivery BR Recording for production, archival and play-out; film for television BS Broadcasting service (sound) BT Broadcasting service (television) F Fixed service M Mobile, radiodetermination, amateur and related satellite services P Radiowave propagation RA Radio astronomy RS Remote sensing systems S Fixed-satellite service SA Space applications and meteorology SF Frequency sharing and coordination between fixed-satellite and fixed service systems SM Spectrum management SNG Satellite news gathering TF Time signals and frequency standards emissions V Vocabulary and related subjects Note: This ITU-R Recommendation was approved in English under the procedure detailed in Resolution ITU-R 1.
    [Show full text]
  • Comparative Analysis of Path Loss Prediction Models for Urban Macrocellular Environments
    COMPARATIVE ANALYSIS OF PATH LOSS PREDICTION MODELS FOR URBAN MACROCELLULAR ENVIRONMENTS A. Obota, O. Simeonb, J. Afolayanc Department of Electrical/Electronics & Computer Engineering, University of Uyo, Akwa Ibom State, Nigeria. aEmail: [email protected] bEmail: [email protected] cEmail: [email protected] Abstract A comparative analysis of path loss prediction models for urban macrocellular environments is presented in this paper. Specifically, three path loss prediction models namely free space, Hata and Egli were used to predict path losses. The calculated path loss values were compared with practical measured data obtained from a Visafone base station located in Uyo, Nigeria. The comparative analysis reveals that the mean square error (MSE) for free space, Hata and Egli were 16.24dB, 2.37dB and 8.40dB respectively. The results showed that Hata's model is the most accurate and reliable path loss prediction model for macrocellular urban propagation environments, since its MSE value of 2.37dB is smaller than the acceptable minimum MSE value of 6dB for good signal propagation. Keywords: macrocellular areas, path loss prediction models, Hata model, mean square error 1. Introduction nals generally propagate by means of any or a combination of these three basic propaga- Nowadays, wireless communication technol- tion mechanisms; reflection, diffraction, and ogy is influencing every area of modern life, scattering [2, 3]. One of the most impor- and has encouraged useful researches in nearly tant features of the propagation environment all fields of human endeavour. Cellular ser- is path (propagation) loss. Path loss is de- vices are today being used by millions of peo- fined as the difference (in dB) between the ple worldwide.
    [Show full text]
  • On Adaptive Neuro-Fuzzy Model for Path Loss Prediction in the Vhf Band
    ITU Journal: ICT Discoveries, Special Issue No. 1, 2 Feb. 2018 ON ADAPTIVE NEURO-FUZZY MODEL FOR PATH LOSS PREDICTION IN THE VHF BAND Nazmat T. Surajudeen-Bakinde1, Nasir Faruk2, Muhammed Salman1, Segun Popoola3, Abdulkarim Oloyede2, Lukman A. Olawoyin2 1Department of Electrical and Electronics Engineering, University of Ilorin, Nigeria 2Department of Telecommunication Science, University of Ilorin, Ilorin, Nigeria 3Department of Electrical and Information Engineering, Covenant University, Ota, Nigeria Email: [email protected]; [email protected]; faruk.n, deenmat, oloyede.aa, olawoyin.la{@unilorin.edu.ng} Abstract – Path loss prediction models are essential in the planning of wireless systems, particularly in built-up environments. However, the efficacies of the empirical models depend on the local ambient characteristics of the propagation environments. This paper introduces artificial intelligence in path loss prediction in the VHF band by proposing an adaptive neuro-fuzzy (NF) model. The model uses five-layer optimized NF network based on back propagation gradient descent algorithm and least square errors estimate. Electromagnetic field strengths from the transmitter of the NTA Ilorin, which operates at a frequency of 203.25 MHz, were measured along four routes. The prediction results of the proposed model were compared to those obtained via the widely used empirical models. The performances of the models were evaluated using the Root Mean Square Error (RMSE), Spread Corrected RMSE (SC-RMSE), Mean Error (ME), and Standard Deviation Error (SDE), relative to the measured data. Across all the routes covered in this study, the proposed NF model produced the lowest RMSE and ME, while the SDE and the SC-RMSE were dependent on the terrain and clutter covers of the routes.
    [Show full text]
  • Development of a Radiowave Propagation Model for Hilly Areas
    International Journal of Electronics Communication and Computer Engineering Volume 4, Issue 2, ISSN (Online): 2249–071X, ISSN (Print): 2278–4209 Development of a Radiowave Propagation Model for Hilly Areas Famoriji J. Oluwole, Olasoji Y. Olajide Abstract – Achieving optimal performance is a paramount III. THE COST-231 HATA MODEL FOR URBAN concern in wireless networks. One of the strategies is to use wireless empirical models to predict wireless link quality ENVIRONMENT factors such as path loss and the received power in any given transmission domain with irregular terrain. Measurement The COST-231 Hata wireless propagation model was results of signal strength in UHF band obtained in Idanre devised as an extension to the Hata-Okumura model and Town of Ondo State Nigeria were validated against the Hata model as reported by Abhayawardhana et al.,[3]. theoretical estimations. Okumura-Hata model, COST231- The COST-231Hata model is designed to be used in the Hata model and Egli model applicable for path loss frequency band from 500 MHz to 2000 MHz. It also prediction in area with high hill were examined. These models predictions were compared with predictions from contains corrections for urban, suburban and rural (flat) measurements taken in Idanre to determine the path loss environments. [3] also noted that ”although this models’ prediction error for each model. Consequently, modified frequency range is outside that of the measurements, its COST231-Hata model was developed for path loss prediction simplicity and the availability of correction factors has in the hilly areas. The model developed has 6.02% error seen it widely used for path loss prediction at this which made it applicable for hilly areas (Idanre).
    [Show full text]
  • Tr 138 901 V14.3.0 (2018-01)
    ETSI TR 138 901 V14.3.0 (2018-01) TECHNICAL REPORT 5G; Study on channel model for frequencies from 0.5 to 100 GHz (3GPP TR 38.901 version 14.3.0 Release 14) 3GPP TR 38.901 version 14.3.0 Release 14 1 ETSI TR 138 901 V14.3.0 (2018-01) Reference RTR/TSGR-0138901ve30 Keywords 5G ETSI 650 Route des Lucioles F-06921 Sophia Antipolis Cedex - FRANCE Tel.: +33 4 92 94 42 00 Fax: +33 4 93 65 47 16 Siret N° 348 623 562 00017 - NAF 742 C Association à but non lucratif enregistrée à la Sous-Préfecture de Grasse (06) N° 7803/88 Important notice The present document can be downloaded from: http://www.etsi.org/standards-search The present document may be made available in electronic versions and/or in print. The content of any electronic and/or print versions of the present document shall not be modified without the prior written authorization of ETSI. In case of any existing or perceived difference in contents between such versions and/or in print, the only prevailing document is the print of the Portable Document Format (PDF) version kept on a specific network drive within ETSI Secretariat. Users of the present document should be aware that the document may be subject to revision or change of status. Information on the current status of this and other ETSI documents is available at https://portal.etsi.org/TB/ETSIDeliverableStatus.aspx If you find errors in the present document, please send your comment to one of the following services: https://portal.etsi.org/People/CommiteeSupportStaff.aspx Copyright Notification No part may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm except as authorized by written permission of ETSI.
    [Show full text]
  • A Path-Specific Propagation Prediction Method for Point-To-Area Terrestrial Services in the VHF and UHF Bands
    VHF作参2-1 Recommendation ITU-R P.1812-4 (07/2015) A path-specific propagation prediction method for point-to-area terrestrial services in the VHF and UHF bands P Series Radiowave propagation ii Rec. ITU-R P.1812-4 Foreword The role of the Radiocommunication Sector is to ensure the rational, equitable, efficient and economical use of the radio- frequency spectrum by all radiocommunication services, including satellite services, and carry out studies without limit of frequency range on the basis of which Recommendations are adopted. The regulatory and policy functions of the Radiocommunication Sector are performed by World and Regional Radiocommunication Conferences and Radiocommunication Assemblies supported by Study Groups. Policy on Intellectual Property Right (IPR) ITU-R policy on IPR is described in the Common Patent Policy for ITU-T/ITU-R/ISO/IEC referenced in Annex 1 of Resolution ITU-R 1. Forms to be used for the submission of patent statements and licensing declarations by patent holders are available from http://www.itu.int/ITU-R/go/patents/en where the Guidelines for Implementation of the Common Patent Policy for ITU-T/ITU-R/ISO/IEC and the ITU-R patent information database can also be found. Series of ITU-R Recommendations (Also available online at http://www.itu.int/publ/R-REC/en) Series Title BO Satellite delivery BR Recording for production, archival and play-out; film for television BS Broadcasting service (sound) BT Broadcasting service (television) F Fixed service M Mobile, radiodetermination, amateur and related satellite services P Radiowave propagation RA Radio astronomy RS Remote sensing systems S Fixed-satellite service SA Space applications and meteorology SF Frequency sharing and coordination between fixed-satellite and fixed service systems SM Spectrum management SNG Satellite news gathering TF Time signals and frequency standards emissions V Vocabulary and related subjects Note: This ITU-R Recommendation was approved in English under the procedure detailed in Resolution ITU-R 1.
    [Show full text]
  • Compilation of Measurement Data Relating to Building Entry Loss
    Report ITU-R P.2346-1 (06/2016) Compilation of measurement data relating to building entry loss P Series Radiowave propagation ii Rep. ITU-R P.2346-1 Foreword The role of the Radiocommunication Sector is to ensure the rational, equitable, efficient and economical use of the radio-frequency spectrum by all radiocommunication services, including satellite services, and carry out studies without limit of frequency range on the basis of which Recommendations are adopted. The regulatory and policy functions of the Radiocommunication Sector are performed by World and Regional Radiocommunication Conferences and Radiocommunication Assemblies supported by Study Groups. Policy on Intellectual Property Right (IPR) ITU-R policy on IPR is described in the Common Patent Policy for ITU-T/ITU-R/ISO/IEC referenced in Annex 1 of Resolution ITU-R 1. Forms to be used for the submission of patent statements and licensing declarations by patent holders are available from http://www.itu.int/ITU-R/go/patents/en where the Guidelines for Implementation of the Common Patent Policy for ITU-T/ITU-R/ISO/IEC and the ITU-R patent information database can also be found. Series of ITU-R Reports (Also available online at http://www.itu.int/publ/R-REP/en) Series Title BO Satellite delivery BR Recording for production, archival and play-out; film for television BS Broadcasting service (sound) BT Broadcasting service (television) F Fixed service M Mobile, radiodetermination, amateur and related satellite services P Radiowave propagation RA Radio astronomy RS Remote sensing systems S Fixed-satellite service SA Space applications and meteorology SF Frequency sharing and coordination between fixed-satellite and fixed service systems SM Spectrum management Note: This ITU-R Report was approved in English by the Study Group under the procedure detailed in Resolution ITU-R 1.
    [Show full text]
  • Comparative Analysis of Basic Models and Artificial Neural Network
    Progress In Electromagnetics Research M, Vol. 61, 133–146, 2017 Comparative Analysis of Basic Models and Artificial Neural Network Based Model for Path Loss Prediction Julia O. Eichie1, *,OnyediD.Oyedum1, Moses O. Ajewole2, and Abiodun M. Aibinu3 Abstract—Propagation path loss models are useful for the prediction of received signal strength at a given distance from the transmitter; estimation of radio coverage areas of Base Transceiver Stations (BTS); frequency assignments; interference analysis; handover optimisation; and power level adjustments. Due to the differences in: environmental structures; local terrain profiles; and weather conditions, path loss prediction model for a given environment using any of the existing basic empirical models such as the Okumura-Hata’s model has been shown to differ from the optimal empirical model appropriate for such an environment. In this paper, propagation parameters, such as distance between transmitting and receiving antennas, transmitting power and terrain elevation, using sea level as reference point, were used as inputs to Artificial Neural Network (ANN) for the development of an ANN based path loss model. Data were acquired in a drive test through selected rural and suburban routes in Minna and environs as dataset required for training ANN model. Multilayer perceptron (MLP) network parameters were varied during the performance evaluation process, and the weight and bias values of the best performed MLP network were extracted for the development of the ANN based path loss models for two different routes, namely rural and suburban routes. The performance of the developed ANN based path loss model was compared with some of the existing techniques and modified techniques.
    [Show full text]
  • Investigation of Path-Loss Models for 5.8 Ghz Radio Signals In
    Investigation of Path-Loss Models for 5.8 GHz Radio Signals in Christopher Newport University’s Luter Hall David Cox Adviser: Dr. Jonathan Backens Christopher Newport University 2 Abstract: This report accounts for a path loss study for a single tone-modulated signal at a carrier frequency of 5.8 GHz. The location for this study is set within the walls of Luter Hall at Christopher Newport University. In this environment, power attenuation during propagation is measured and compared to various path loss models. Software defined radios, running GNURadio, are used to both generated and receive the RF signals. The project is composed of two experiments. The first experiment tests path loss through free space and in line of sight. The results of the experiment were compared to theoretical calculations derived from the Friis Transmission Equation. The second experiment tests path loss through a standard partition wall found between two labs in Luter Hall. The Partition Dependent model and measurements from Harris Semiconductors were used to create comparative data. The two data sets were then compared. Error analysis was run between the measured path loss and the path loss models. All collected data was averaged. It is the average path loss that was compared to the path loss models. After comparison, the models were determined to be either valid predictors of path loss or not applicable. The ultimate goal of experiment is to produce the best model possible. Valid models will be adjusted to increase their accuracy. If a model is deemed not applicable, then a new, unique model will be devised and proposed.
    [Show full text]
  • Path Loss Models for Two Small Airport Indoor Environments at 31 Ghz Alexander L
    University of South Carolina Scholar Commons Theses and Dissertations Spring 2019 Path Loss Models for Two Small Airport Indoor Environments at 31 GHz Alexander L. Grant Follow this and additional works at: https://scholarcommons.sc.edu/etd Part of the Electrical and Computer Engineering Commons Recommended Citation Grant, A. L.(2019). Path Loss Models for Two Small Airport Indoor Environments at 31 GHz. (Master's thesis). Retrieved from https://scholarcommons.sc.edu/etd/5258 This Open Access Thesis is brought to you by Scholar Commons. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of Scholar Commons. For more information, please contact [email protected]. Path Loss Models for Two Small Airport Indoor Environments at 31 GHz by Alexander L. Grant Bachelor of Science The Citadel, 2017 Submitted in Partial Fulfillment of the Requirements For the Degree of Master of Science in Electrical Engineering College of Engineering and Computing University of South Carolina 2019 Accepted by: David W. Matolak, Director of Thesis Mohammod Ali, Reader Cheryl L. Addy, Vice Provost and Dean of the Graduate School © Copyright by Alexander L. Grant, 2019 All Rights Reserved ii DEDICATION To my parents, younger brother and all those who have helped me along the way. iii ACKNOWLEDGEMENTS It has been a wonderful journey here while perusing my Master’s degree. This effort has been a challenge, requiring constant motivation and proactivity. However, there were many individuals on my side supporting me. First, I would like to thank Dr. Matolak for his guidance and willingness to give me the opportunity to do research here.
    [Show full text]
  • Signal Propagation and Path Loss Models
    Lecture 2 - EE 359: Wireless Communications - Winter 2020 Signal Propagation and Path Loss Models Lecture Outline • Overview of Signal Propagation • Free Space Path Loss Model • Two-Ray Model • Generalized Ray Tracing Model • Single-Slope Path Loss Exponent Model • mmWave Propagation Models • Empirical Models (not covered in lecture, HW, or exams) • Standards-based Models for WiFi and Cellular (not covered in lecture, HW, or exams) 1. Signal Propagation Characteristics: Path loss: power falloff relative to distance • Shadowing: random fluctuations due to obstructions • Flat and frequency selective fading: caused by multipath • 2. Transmitted and received signals: Transmitted Signal: s(t) = Re u(t)ej(2πfct) = s (t) cos(2πf t) s (t) sin(2πf t), where f • { } I c − Q c c is the carrier frequency and u(t) = sI (t) + jsQ(t) is the equivalent lowpass signal of s(t) with bandwidth B , power P , in-phase component s (t) = Re u(t) and quadrature component u u I { } s (t)=Im u(t) . The phase of u(t) includes any carrier phase offset. Q { } Received signal: r(t) = Re v(t)ej(2πfct) ; v(t) = u(t) c(t) for c(t) the equivalent lowpass • { } ∗ channel impulse response for h(t). Doppler frequency shift f =(v/λ) cos(θ) may also be introduced in the received signal. We • D will ignore for now as it has little impact on path loss (big impact on fading). 3. Free space path loss model: Typically used for unobstructed LOS signal path. • Received signal is • u(t)√G G λej2πd/λ r(t) = t r ej(2πfct <{ 4πd } Receiver power is • 2 √G G λ P λ 2 P = P t r r = G G .
    [Show full text]
  • Prediction of Path Loss Estimate for a Frequency Modulation (Fm) Station Using Basic Transmission Loss Model
    DOI: http://dx.doi.org/10.4314/gjer.v12i1.8 GLOBAL JOURNAL OF ENGINEERING RESEARCH VOL 12, 2013: 69-75 69 COPYRIGHT© BACHUDO SCIENCE CO. LTD PRINTED IN NIGERIA. ISSN 1596-292x www.globaljournalseries.com; [email protected] PREDICTION OF PATH LOSS ESTIMATE FOR A FREQUENCY MODULATION (FM) STATION USING BASIC TRANSMISSION LOSS MODEL N. Y. GOSHWE, J. ORINYA AND G. A. IGWUE (Received 23, May 2013; Revision Accepted 16, July 2013) ABSTRACT This paper presents the path loss model that seeks to predict the signal strength degradation of Radio Nigeria, FM station, Makurdi which is normally a major component in the analysis and design of link budget of a telecommunication system. For the purpose of this work, Benue state was divided into four (4) routes for ease of data gathering, namely northern, southern, eastern and western parts and a Potomac FIM-41 field strength meter was used to measure the signal strength of the FM signal at selected locations. The values obtained are compared with those computed from Basic Transmission Loss Model for consistency. The result shows that values obtained from the model are slightly higher than the measured and it returned ninety-five percent (95%) confidence interval for the two samples using degree of freedom of 22. A null hypothesis was applied and the measure of the level of significant difference between the model and measured values is 10.3%. The results present no significant difference between the model and measured data. It can therefore be concluded that the model is valid and can be used to estimate path losses of FM signals in Benue State of Nigeria.
    [Show full text]