Fire Assay Gold

Total Page:16

File Type:pdf, Size:1020Kb

Fire Assay Gold SGS MINERALS SERVICES – T3 SGS 218 09-2013 FIRE ASSAY GOLD ANALYTICAL SERVICES PRECIOUS METAL EXTRACTION INDUCTIVELY COUPLED PLASMA-ATOMIC Once the button is separated from the EMISSION SPECTROMETRY (ICP-AES) Fire assaying is the industry standard gangue, the precious metals are extracted • The aqueous sample is aspirated process for obtaining analytical gold from the collector through a process into the plasma and the gold and platinum group element (PGE) data called cupellation. Once the button has contained in the sample emits light from high grade ores. It is a modernized cooled, it is separated from the slag and at characteristic wavelengths. The process but in its simplest form, has been cupelled. intensities of the emitted light are in use for centuries. Fire assaying is used measured and compared by software in the determination of gold in all sample • When lead is used as a collector, the to those of standard gold-bearing types, including drill core, soil and chip lead oxidizes and is absorbed into the solutions. The software then samples. cupel leaving a precious metal bead. The bead is then dissolved in aqua calculates the gold concentration in regia for analysis. the sample. • When nickel is used as a collector, the button is crushed and dissolved INDUCTIVELY COUPLED PLASMA-MASS in hydrochloric acid and the residue SPECTROMETRY (ICP-MS) is filtered to remove extraneous • The gold contained in the aqueous material, leaving the precious metal sample is ionized. The intensity of the residue on the filter. signal at mass 186 is measured, as well as the signals of any potentially interfering isotopes. The intensity at 186µ is measured and compared by software to those of standard gold- bearing solutions to determine the concentration of gold in the sample. INSTRUMENTAL NEUTRON ACTIVATION ANALYSIS (INAA) • The residue is extracted from the filter paper and irradiated in the core ANALYSIS AND DETECTION of a nuclear reactor. Most elements become radioactive and emit gamma- Gold and PGE can be analyzed by several ray radiation of specific wavelengths. methods: THE PROCESS The wavelengths of gold are measured and compared against FUSION FLAME ATOMIC ABSORPTION (AA) gold standards to determine the concentration of gold in the sample. The pulverized sample is weighed • The sample is dissolved in aqua and mixed with a fluxing agent. The regia and then aspirated in an flux assists in melting, helps fuse the acetylene flame. A beam of light at sample at a reasonable temperature a wavelength matching that of gold and promotes separation of the gangue is passed through the flame. The material from the precious metals. In gold in the sample absorbs the light addition to the flux, lead or nickel is added proportionately depending on the as a collector. The sample is then heated concentration of the element in the in a furnace where it fuses and separates solution. The absorption is compared from the collector material ‘button’, which to standard solutions to determine contains the precious minerals. gold concentration in the sample. SGS MINERALS SERVICES – T3 SGS 218 2 SCREENED METALLICS LIMITS OF DETECTION CONTACT INFORMATION Gold by screened metallics fire assay • 30g = ½ assay tonnes Email us at [email protected] consists of screening 500g of the sample • 60g and 90g assays are available www.sgs.com/mining to 106 microns. The plus fraction is fire upon request assayed for gold and a duplicate assay is performed on the minus fraction. The size fraction weights, coarse and fine fraction gold content and total gold content are reported. GOLD BY LEAD COLLECTION FIRE ASSAY/INSTRUMENT FINISH TRACE LEVELS LIMITS FAA 313 Gold by Fire Assay, AAS, nominal weight 5ppb-10,000ppb 30g FAI313 Gold by Fire Assay, ICP-AES, nominal 1 ppb - 10,000 ppb weight 30g FAI515 Gold by Fire Assay, ICP-AES, nominal 1 ppb - 10,000 ppb weight 30g ORE GRADE FAA303 Gold by Fire Assay, AAS, nominal weight 0.01 ppm-100 ppm 30g FAG303 Gold by Fire Assay, gravimetric, nominal 3 g/t weight 30g FAG505 Gold by Fire Assay, gravimetric, nominal 3 g/t weight 50g FAG323 Gold and silver by fire assay, gravimetric, 3 g/t, 5 g/t weight 30g © SGS Group Management SA – 2013– All rights reserved - SGS is a registered trademark of SGS Group Management SA.
Recommended publications
  • Some Problems and Potentials of the Study of Cupellation
    Some problems and potentials of the study of cupellation remains: the case of post-medieval Montbéliard, France Marcos Martinon-Torres, Nicolas Thomas, Thilo Rehren, Aude Mongiatti To cite this version: Marcos Martinon-Torres, Nicolas Thomas, Thilo Rehren, Aude Mongiatti. Some problems and po- tentials of the study of cupellation remains: the case of post-medieval Montbéliard, France. Archeo- sciences, revue d’Archéométrie, G.M.P.C.A./Presses universitaires de Rennes, 2008, pp.59-70. halshs- 00599974 HAL Id: halshs-00599974 https://halshs.archives-ouvertes.fr/halshs-00599974 Submitted on 19 Jun 2011 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Some problems and potentials of the study of cupellation remains: the case of early modern Montbéliard, France Problèmes et perspectives à partir de l’étude des vestiges archéologiques issus de la coupellation : l’exemple du site de Montbéliard (France) Marcos Martinón-Torres*, Nicolas Thomas**, Thilo Rehren*, and Aude Mongiatti* Abstract: Bone-ash cupels are increasingly identified in medieval and later archaeological contexts related to the refining of noble metals in alchemy, assaying, jewellery or coin minting. These small finds may provide information on metal refining activities, the technical knowledge of different craftspeople, and the versatility of laboratory practices, which often differed from the standard protocols recorded in metallurgical treatises.
    [Show full text]
  • Petrology of Ore Deposits
    Petrology of Ore Deposits An Introduction to Economic Geology Introductory Definitions Ore: a metalliferous mineral, or aggregate mixed with gangue that can me mined for a profit Gangue: associated minerals in ore deposit that have little or no value. Protore: initial non-economic concentration of metalliferous minerals that may be economic if altered by weathering (Supergene enrichment) or hydrothermal alteration Economic Considerations Grade: the concentration of a metal in an ore body is usually expressed as a weight % or ppm. The process of determining the grade is termed “assaying” Cut-off grade: after all economic and political considerations are weighed this is the lowest permissible grade that will mined. This may change over time. Example Economic Trends Economy of Scale As ore deposits are mined the high-grade zones are developed first leaving low-grade ores for the future with hopefully better technology Since mining proceeds to progressively lower grades the scale of mining increases because the amount of tonnage processed increases to remove the same amount of metal Outputs of 40,000 metric tons per day are not uncommon Near-surface open pit mines are inherently cheaper than underground mines Other factors important to mining costs include transportation, labor, power, equipment and taxation costs Classification of Ore bodies Proved ore: ore body is so thoroughly studied and understood that we can be certain of its geometry, average grade, tonnage yield, etc. Probable ore: ore body is somewhat delineated by surface mapping and some drilling. The geologists is reasonably sure of geometry and average grade. Possible Ore: outside exploration zones the geologist may speculate that the body extends some distance outside the probable zone but this is not supported by direct mapping or drilling.
    [Show full text]
  • Principles of Extractive Metallurgy Lectures Note
    PRINCIPLES OF EXTRACTIVE METALLURGY B.TECH, 3RD SEMESTER LECTURES NOTE BY SAGAR NAYAK DR. KALI CHARAN SABAT DEPARTMENT OF METALLURGICAL AND MATERIALS ENGINEERING PARALA MAHARAJA ENGINEERING COLLEGE, BERHAMPUR DISCLAIMER This document does not claim any originality and cannot be used as a substitute for prescribed textbooks. The information presented here is merely a collection by the author for their respective teaching assignments as an additional tool for the teaching-learning process. Various sources as mentioned at the reference of the document as well as freely available material from internet were consulted for preparing this document. The ownership of the information lies with the respective author or institutions. Further, this document is not intended to be used for commercial purpose and the faculty is not accountable for any issues, legal or otherwise, arising out of use of this document. The committee faculty members make no representations or warranties with respect to the accuracy or completeness of the contents of this document and specifically disclaim any implied warranties of merchantability or fitness for a particular purpose. BPUT SYLLABUS PRINCIPLES OF EXTRACTIVE METALLURGY (3-1-0) MODULE I (14 HOURS) Unit processes in Pyro metallurgy: Calcination and roasting, sintering, smelting, converting, reduction, smelting-reduction, Metallothermic and hydrogen reduction; distillation and other physical and chemical refining methods: Fire refining, Zone refining, Liquation and Cupellation. Small problems related to pyro metallurgy. MODULE II (14 HOURS) Unit processes in Hydrometallurgy: Leaching practice: In situ leaching, Dump and heap leaching, Percolation leaching, Agitation leaching, Purification of leach liquor, Kinetics of Leaching; Bio- leaching: Recovery of metals from Leach liquor by Solvent Extraction, Ion exchange , Precipitation and Cementation process.
    [Show full text]
  • Profits from the Past
    Reprocessing and tailings reduction.qxp_proof 29/04/2020 09:50 Page 1 REPROCESSING AND TAILINGS REDUCTION In Colombia, AuVert's technology is being combined with CDE's experience in dewatering Profits from the past and tailings management to extract the remaining precious metals existing in the ground, while removing up to 93% of residual mercury which has to date prevented this land from being used by the local population reasons why mining companies may be cautious about using tailings as backfill material or relocating current day ‘waste’ to an inaccessible area of the mine, according to Gerritsen. “As technology improves, the opportunity to recover more of the metals/minerals increases,” he said. “There are elements where that may not be the case – coal ash, for example, cannot be reprocessed but can be used to produce cement. While tailings dam liabilities and falling water resources are There are certainly opportunities with gold, affecting the ability of miners to start new mines, or expand copper and even coal, for instance.” The strategies companies ultimately pursue for existing ones, these issues are strengthening the case for these ‘waste streams’ depend on the technology reprocessing and retreating ‘waste’ sites or streams. Dan available and the safety of the facilities, Gerritsen Gleeson explores an increasingly diverse market focused on remarked. revenue generation and risk reduction “For instance, it may not be economically viable to reprocess the material currently in a ith improved transparency around recycling and thickening, or SART, plant from BQE tailings storage facility and, therefore, the owner tailings dams and waste stockpiles now Water will only bolster cash reserves through the may decide to close it or put it into a non-active Wpart and parcel of being a responsible recovery of a high-grade saleable copper sulphide state,” he said.
    [Show full text]
  • A History of Tailings1
    A HISTORY OF MINERAL CONCENTRATION: A HISTORY OF TAILINGS1 by Timothy c. Richmond2 Abstract: The extraction of mineral values from the earth for beneficial use has been a human activity- since long before recorded history. Methodologies were little changed until the late 19th century. The nearly simultaneous developments of a method to produce steel of a uniform carbon content and the means to generate electrical power gave man the ability to process huge volumes of ores of ever decreasing purity. The tailings or waste products of mineral processing were traditionally discharged into adjacent streams, lakes, the sea or in piles on dry land. Their confinement apparently began in the early 20th century as a means for possible future mineral recovery, for the recycling of water in arid regions and/or in response to growing concerns for water pollution control. Additional Key Words: Mineral Beneficiation " ... for since Nature usually creates metals in an impure state, mixed with earth, stones, and solidified juices, it is necessary to separate most of these impurities from the ores as far as can be, and therefore I will now describe the methods by which the ores are sorted, broken with hammers, burnt, crushed with stamps, ground into powder, sifted, washed ..•. " Agricola, 1550 Introduction identifying mining wastes. It is frequently used mistakenly The term "tailings" is to identify all mineral wastes often misapplied when including the piles of waste rock located at the mouth of 1Presented at the 1.991. National mine shafts and adi ts, over- American. Society for Surface burden materials removed in Mining and Reclamation Meeting surface mining, wastes from in Durango, co, May 1.4-17, 1.991 concentrating activities and sometimes the wastes from 2Timothy c.
    [Show full text]
  • Effects of Copper on the Cupellation of Silver
    Scholars' Mine Bachelors Theses Student Theses and Dissertations 1908 Effects of copper on the cupellation of silver Charles A. Baker Miles Sedivy Follow this and additional works at: https://scholarsmine.mst.edu/bachelors_theses Part of the Mining Engineering Commons Department: Mining Engineering Recommended Citation Baker, Charles A. and Sedivy, Miles, "Effects of copper on the cupellation of silver" (1908). Bachelors Theses. 240. https://scholarsmine.mst.edu/bachelors_theses/240 This Thesis - Open Access is brought to you for free and open access by Scholars' Mine. It has been accepted for inclusion in Bachelors Theses by an authorized administrator of Scholars' Mine. This work is protected by U. S. Copyright Law. Unauthorized use including reproduction for redistribution requires the permission of the copyright holder. For more information, please contact [email protected]. bl.':~M J1IJ!(JWI.'.~1.. ""'~tlION T ,~~. ][VI'ECTS Ol~ COPP}1~H OU TIm CUPlilJJJAT Ion OF SI J~VER • Charles A. Baker Miles Sedivy. MSM til~ t~lCrlt. \lYj,M.cmloi\l (1) ::.:.. :.. : -~..-. : ...... "' .. " : .. ~ --- The ob~iect of this work is to rind--t-he effec't o~ coppa- in - .. = : : .... : - - .. tbe cupellation of silver. - .. Our Method of attack was: 1st. To find the effect of varying the amount of copper with constant lead and constant temperature. 2nd. Effect in cupel"' ation of varying the temperature and the lead in the presence of a constant amount of copper. 3rd. To detecnine the rate at which the copper is removed during cupellation. R.W.Lodge in his book on Assaying states,"If a lead button contains much copper,CuO will be formed with the PbO and this,when absorbed by the cupel,seems to take silver with it into the cupe1.· 2 ~ a....
    [Show full text]
  • Effects of Flux Materials on the Fire Assay of Oxide Gold Ores
    Effects of Flux Materials on the Fire Assay of Oxide Gold Ores Haluk Ozden Basaran1, Ahmet Turan1,2*, Onuralp Yucel1 1Istanbul Technical University; Chemical Metallurgical Faculty, Department of Metallurgical and Materials Engineering; Maslak, Istanbul, 34469, Turkey 2Yalova University, Yalova Community College, 77100, Yalova, Turkey Abstract: Fire assay is the most accurate and widely used method for the determination of gold, silver and the PGM contents of ores and other solid materials. The technique has three steps; first step is the smelting of charge mixtures which consist of ground ore samples, acidic and basic fluxes, lead oxide and a carbon source. Isolation of precious metals which are collected in metallic lead phase as a result of the reduction of PbO is the second step and it is called cupellation. Obtained precious metals are analyzed by using wet analysis methods such as AAS (Atomic absorption spectrometry) and ICP (Inductively coupled plasma spectrometry) at the last stage. The aim of this study is the investigation of the effects of the acidic flux materials for the fire assay of oxide gold ores. Acidic fluxes, sodium borax decahydrate (Borax, Na2B4O7·10H2O) and quartz (SiO2), were individually and together added to the charge mixtures which contain oxide gold ore samples, sodium carbonate (Na2CO3) and lead oxide with flour as a carbon source. Acidic flux additions were performed in different amounts. Smelting stage of the experiments was conducted at 1100 °C in fire clay crucibles for a reaction time of 60 minutes by using a chamber furnace. After the cupellation step in the chamber furnace, gold containing beads were obtained.
    [Show full text]
  • Xstrata Technology Update Edition 13 – April 2012 Building Plants That Work
    xstrata technology update Edition 13 – April 2012 Building plants that work You have to get a lot of things it takes another operator to get them right to build a plant that works. right. Someone who has lived through the problems, had to do the maintenance, operated during a midnight power Of course the big picture must be right – doing the right project, in the right place, failure, cleaned up the spill. Someone at the right time. who has “closed the loop” on previous designs; lived with previous decisions After that, the devil is in the detail. You and improved them, over and over. need a sound design, good execution, good commissioning, and ongoing This is why Xstrata Technology provides support after commissioning. You need a technology “package”. Just as a car to operate and maintain your plant in is more than an engine, technology is the long run, long after the construction more than a single piece of equipment. company has left. That’s when all the Technology is a system. All the elements “little” details become important – how of the system have to work with each easy is it to operate, how good is the other and with the people in the plant. maintenance access, what happens in We want our cars designed by people a power failure, where are the spillage who love cars and driving. So should points and how do we clean them our plants be designed by people with up? Are the instruments reliable and experience and passion to make each is the process control strategy robust one work better than the last.
    [Show full text]
  • Identification and Description of Mineral Processing Sectors And
    V. SUMMARY OF FINDINGS As shown in Exhibit 5-1, EPA determined that 48 commodity sectors generated a total of 527 waste streams that could be classified as either extraction/beneficiation or mineral processing wastes. After careful review, EPA determined that 41 com modity sectors generated a total of 354 waste streams that could be designated as mineral processing wastes. Exhibit 5-2 presents the 354 mineral processing wastes by commodity sector. Of these 354 waste streams, EPA has sufficient information (based on either analytical test data or engineering judgment) to determine that 148 waste streams are potentially RCRA hazardous wastes because they may exhibit one or more of the RCRA hazardous characteristics: toxicity, ignitability, corro sivity, or reactivity. Exhibit 5-3 presents the 148 RCRA hazardous mineral processing wastes that will be subject to the Land Disposal Restrictions. Exhibit 5-4 identifies the mineral processing commodity sectors that generate RCRA hazardous mineral processing wastes that are likely to be subject to the Land D isposal Restrictions. Exhibit 5-4 also summarizes the total number of hazardous waste streams by sector and the estimated total volume of hazardous wastes generated annually. At this time, however, EPA has insufficient information to determine whether the following nine sectors also generate wastes that could be classified as mineral processing wastes: Bromine, Gemstones, Iodine, Lithium, Lithium Carbonate, Soda Ash, Sodium Sulfate, and Strontium.
    [Show full text]
  • Basic Characteristics of Coal Gangue in a Small-Scale Mining Site and Risk Assessment of Radioactive Elements for the Surrounding Soils
    minerals Article Basic Characteristics of Coal Gangue in a Small-Scale Mining Site and Risk Assessment of Radioactive Elements for the Surrounding Soils Dun Wu 1,2, Yuanyuan Wang 3, Meichen Wang 2,4, Chao Wei 2, Guangqing Hu 1,2,*, Xiaoli He 5,* and Wei Fu 6 1 School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026, China; [email protected] 2 Exploration Research Institute, Anhui Provincial Bureau of Coal Geology, Hefei 230088, China; [email protected] (M.W.); [email protected] (C.W.) 3 Anhui Province Engineering Laboratory for Mine Ecological Remediation, School of Resources and Environmental Engineering, Anhui University, Hefei 230601, China; [email protected] 4 School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, China 5 Biology Engineering Institute, Hefei Vocational and Technology College, Hefei 238000, China 6 CCTEG Shengyang Reserach Institute, Shengyang 110000, China; [email protected] * Correspondence: [email protected] (G.H.); [email protected] (X.H.) Abstract: The accumulation/improper treatment of coal gangue will not only lead to waste of land, but also cause environmental pollution. Especially the impact of radioactive elements on the surrounding ecological environment is widely concerned by many scholars. In this study, the concentration of radioactive elements (uranium (U) and thorium (Th)) of small-scale coal gangue Citation: Wu, D.; Wang, Y.; Wang, mining site and surrounding soil in the northern region of Xieqiao coal mine were tested, the material M.; Wei, C.; Hu, G.; He, X.; Fu, W. composition of coal gangue was analyzed via XRF and XRD, the modes of occurrence of U and Basic Characteristics of Coal Gangue Th elements were investigated, and their potential ecological risks and ecological effectiveness in a Small-Scale Mining Site and Risk were evaluated.
    [Show full text]
  • Identifying Materials, Recipes and Choices: Some Suggestions for the Study of Archaeological Cupels
    IDENTIFYING MATERIALS, RECIPES AND CHOICES: SOME SUGGESTIONS FOR THE STUDY OF ARCHAEOLOGICAL CUPELS Marcos Martinón-Torres – UCL Institute of Archaeology, London, United Kingdom Thilo Rehren – UCL Institute of Archaeology, London, United Kingdom Nicolas Thomas – INRAP and Université Paris I, Panthéon-Sorbonne, France Aude Mongiatti– UCL Institute of Archaeology, London, United Kingdom ABSTRACT Used cupels are increasingly identified in archaeological assemblages related to coin minting, alchemy, assaying and goldsmithing across the world. However, notwithstanding some valuable studies, the informative potential of cupellation remains is not always being exploited in full. Here we present a review of past and ongoing research on cupels, involving analytical studies, experiments and historical enquiry, and suggest some strategies for more productive future work. The archaeological case studies discussed are medieval and later assemblages from France (Pymont and Montbéliard) and Austria (Oberstockstall and Kapfenberg), which have been analysed using optical microscopy, SEM-EDS, ED-XRF, WD-EPMA and ICP-AES. Using suitable analytical and data processing methodologies, it is possible to obtain an insight into the metallurgical processes carried out in cupels, and the knowledge and skill of the craftspeople involved. Furthermore, we can also discern the specific raw materials used for manufacturing the cupels themselves, including varying mixtures of bone and wood ash. The variety of cupel-making recipes raises questions as to the versatility of craftspeople and the material properties and performance of different cupels. Can we assess the efficiency of different cupels? Are these variations the results of different technological traditions, saving needs or peculiar perceptions of matter? KEYWORDS Lead, silver, cupellation, fire assay, technological choice, bone ash, wood ash INTRODUCTION Cupellation is a high-temperature oxidising reaction aimed at refining noble metals.
    [Show full text]
  • Early Rejection of Gangue – How Much Energy Will It Cost to Save Energy?
    Early rejection of gangue – How much energy will it cost to save energy? Grant Ballantyne 1,2 , Marko Hilden 1,2 and Malcolm Powell 1,2 1The University of Queensland, JKMRC-SMI 2Co-Operative Research Centre for Optimising Resource Extraction (CRC ORE) Contact: [email protected] ABSTRACT Comminution accounts for approximately 30 to 40% of the energy consumed on an average mine site (DOE, 2007) and somewhere from 4 to 9% of Australia’s total energy consumption (Tromans, 2008). Additionally, if one includes the energy embodied in steel grinding consumables, this may increase comminution energy by more than 50% (Musa and Morrison, 2009). Energy savings of up to 50% are theoretically possible by employing novel circuit designs and using smart separation techniques, which reject coarse liberated gangue. A range of different strategies such as selective mining, screening, ore sorting, coarse flotation and dielectrophoresis can be used to reject the coarse liberated gangue at different particle sizes. These technological advances have the potential to increase the throughput in the comminution circuit, while decreasing the energy consumed per tonne or ounce of metal produced. This paper investigates the energy consumed through sorting, and the optimum position of these technologies in the flow sheet, in terms of energy, cost and risk. The findings form the basis of a methodology that can identify the potential upgrades/changes required to obtain a positive return from these sorting and coarse separation techniques. Reference as: Ballantyne, G.R., Hilden, M., Powell, M.S., 2012. Early rejection of gangue – How much energy will it cost to save energy?, In Comminution '12, ed.
    [Show full text]