Profits from the Past
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Mercury Exposure Among Artisanal Gold Miners in Madre De Dios, Peru: a Cross-Sectional Study
J. Med. Toxicol. DOI 10.1007/s13181-012-0252-0 CDC/ATSDR TOXICOLOGY REPORT Mercury Exposure Among Artisanal Gold Miners in Madre de Dios, Peru: A Cross-sectional Study Ellen E. Yard & Jane Horton & Joshua G. Schier & Kathleen Caldwell & Carlos Sanchez & Lauren Lewis & Carmen Gastaňaga # American College of Medical Toxicology (outside the USA) 2012 Abstract Results One third (34.0 %) of participants were gold miners. Introduction Exposure to mercury, a toxic metal, occurs All participants had detectable urine total mercury (GM, primarily from inhaling mercury vapors or consuming 5.5 μg/g creatinine; range, 0.7–151 μg/g creatinine) and methylmercury-contaminated fish. One third of all anthro- 91 % had detectable blood methylmercury (GM, 2.7 μg/L; pogenic mercury emissions worldwide are from artisanal range, 0.6–10 μg/L); 13 participants (13 %) reported having gold mining, which uses mercury to extract gold. Although kidney dysfunction or a neurological disorder. Urine total recent reports suggest that the Madre de Dios region in Peru mercury concentrations were higher among people who (with >30,000 artisanal miners) has extensive mercury con- heated gold–mercury amalgams compared with people tamination, residents had never been assessed for mercury who never heated amalgams (p<0.05); methylmercury con- exposure. Thus, our objective was to quantify mercury centrations were higher among fish consumers compared exposure among residents of an artisanal mining town in with nonfish consumers (p<0.05). Madre de Dios and to assess risk factors for exposure. Conclusion Our findings suggest that mercury exposure Methods We conducted a cross-sectional assessment of 103 may be widespread in Huaypetue. -
Assessment of the Possible Reuse of Extractive Waste Coming from Abandoned Mine Sites: Case Study in Gorno, Italy
sustainability Article Assessment of the Possible Reuse of Extractive Waste Coming from Abandoned Mine Sites: Case Study in Gorno, Italy Neha Mehta 1,2, Giovanna Antonella Dino 1,*, Iride Passarella 3, Franco Ajmone-Marsan 4, Piergiorgio Rossetti 1 and Domenico Antonio De Luca 1 1 Department of Earth Sciences, University of Turin, 10125 Torino, Italy; [email protected] (N.M.); [email protected] (P.R.); [email protected] (D.A.D.L.) 2 School of Mechanical and Aerospace Engineering, Queen’s University Belfast, Belfast, BT9 5AH, UK 3 Horizon s.r.l., 10095 Grugliasco (TO), Italy; [email protected] 4 Department of Agricultural, Forestry and Food Sciences, University of Turin, 10095 Grugliasco (TO), Italy; [email protected] * Correspondence: [email protected]; Tel.: +39-011-6705150 Received: 21 January 2020; Accepted: 17 March 2020; Published: 21 March 2020 Abstract: Supply of resources, a growing population, and environmental pollution are some of the main challenges facing the contemporary world. The rapid development of mining activities has produced huge amounts of waste. This waste, found in abandoned mine sites, provides the potential opportunity of extracting raw material. The current study, therefore, focuses on testing the validation of a shared methodology to recover extractive waste from abandoned mines, and applies this methodology to a case study in Gorno, northwest Italy. The methods focused on: (1) analyzing the impact of tailings and fine fraction of waste rock (<2 mm) on plants (Cress - Lepidium Sativum) to assess usability of both as soil additive, and (2) recovering raw materials from tailings and coarse fraction (>2 mm) of waste rock, by means of dressing methods like wet shaking table and froth flotation. -
Petrology of Ore Deposits
Petrology of Ore Deposits An Introduction to Economic Geology Introductory Definitions Ore: a metalliferous mineral, or aggregate mixed with gangue that can me mined for a profit Gangue: associated minerals in ore deposit that have little or no value. Protore: initial non-economic concentration of metalliferous minerals that may be economic if altered by weathering (Supergene enrichment) or hydrothermal alteration Economic Considerations Grade: the concentration of a metal in an ore body is usually expressed as a weight % or ppm. The process of determining the grade is termed “assaying” Cut-off grade: after all economic and political considerations are weighed this is the lowest permissible grade that will mined. This may change over time. Example Economic Trends Economy of Scale As ore deposits are mined the high-grade zones are developed first leaving low-grade ores for the future with hopefully better technology Since mining proceeds to progressively lower grades the scale of mining increases because the amount of tonnage processed increases to remove the same amount of metal Outputs of 40,000 metric tons per day are not uncommon Near-surface open pit mines are inherently cheaper than underground mines Other factors important to mining costs include transportation, labor, power, equipment and taxation costs Classification of Ore bodies Proved ore: ore body is so thoroughly studied and understood that we can be certain of its geometry, average grade, tonnage yield, etc. Probable ore: ore body is somewhat delineated by surface mapping and some drilling. The geologists is reasonably sure of geometry and average grade. Possible Ore: outside exploration zones the geologist may speculate that the body extends some distance outside the probable zone but this is not supported by direct mapping or drilling. -
Participating in Food Waste Transitions: Exploring Surplus Food Redistribution in Singapore Through the Ecologies of Participation Framework
Journal of Environmental Policy & Planning ISSN: (Print) (Online) Journal homepage: https://www.tandfonline.com/loi/cjoe20 Participating in food waste transitions: exploring surplus food redistribution in Singapore through the ecologies of participation framework Monika Rut , Anna R. Davies & Huiying Ng To cite this article: Monika Rut , Anna R. Davies & Huiying Ng (2020): Participating in food waste transitions: exploring surplus food redistribution in Singapore through the ecologies of participation framework, Journal of Environmental Policy & Planning, DOI: 10.1080/1523908X.2020.1792859 To link to this article: https://doi.org/10.1080/1523908X.2020.1792859 © 2020 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group Published online: 16 Jul 2020. Submit your article to this journal Article views: 79 View related articles View Crossmark data Full Terms & Conditions of access and use can be found at https://www.tandfonline.com/action/journalInformation?journalCode=cjoe20 JOURNAL OF ENVIRONMENTAL POLICY & PLANNING https://doi.org/10.1080/1523908X.2020.1792859 Participating in food waste transitions: exploring surplus food redistribution in Singapore through the ecologies of participation framework Monika Rut a, Anna R. Davies a and Huiying Ng b aDepartment of Geography, Museum Building, Trinity College, Dublin, Ireland; bIndependent Scholar, Singapore ABSTRACT KEYWORDS Food waste is a global societal meta-challenge requiring a sustainability transition Food waste; transitions; involving everyone, including publics. However, to date, much transitions research has participation; ecologies of been silent on the role of public participation and overly narrow in its geographical participation; Singapore reach. In response, this paper examines whether the ecologies of participation (EOP) approach provides a conceptual framing for understanding the role of publics within food waste transitions in Singapore. -
Principles of Extractive Metallurgy Lectures Note
PRINCIPLES OF EXTRACTIVE METALLURGY B.TECH, 3RD SEMESTER LECTURES NOTE BY SAGAR NAYAK DR. KALI CHARAN SABAT DEPARTMENT OF METALLURGICAL AND MATERIALS ENGINEERING PARALA MAHARAJA ENGINEERING COLLEGE, BERHAMPUR DISCLAIMER This document does not claim any originality and cannot be used as a substitute for prescribed textbooks. The information presented here is merely a collection by the author for their respective teaching assignments as an additional tool for the teaching-learning process. Various sources as mentioned at the reference of the document as well as freely available material from internet were consulted for preparing this document. The ownership of the information lies with the respective author or institutions. Further, this document is not intended to be used for commercial purpose and the faculty is not accountable for any issues, legal or otherwise, arising out of use of this document. The committee faculty members make no representations or warranties with respect to the accuracy or completeness of the contents of this document and specifically disclaim any implied warranties of merchantability or fitness for a particular purpose. BPUT SYLLABUS PRINCIPLES OF EXTRACTIVE METALLURGY (3-1-0) MODULE I (14 HOURS) Unit processes in Pyro metallurgy: Calcination and roasting, sintering, smelting, converting, reduction, smelting-reduction, Metallothermic and hydrogen reduction; distillation and other physical and chemical refining methods: Fire refining, Zone refining, Liquation and Cupellation. Small problems related to pyro metallurgy. MODULE II (14 HOURS) Unit processes in Hydrometallurgy: Leaching practice: In situ leaching, Dump and heap leaching, Percolation leaching, Agitation leaching, Purification of leach liquor, Kinetics of Leaching; Bio- leaching: Recovery of metals from Leach liquor by Solvent Extraction, Ion exchange , Precipitation and Cementation process. -
Procter & Gamble “Zero Manufacturing Waste to Landfill”
Procter & Gamble “Zero Manufacturing Waste to Landfill” Background One of P&G’s 2020 goals for Operations is that <0.5% of Manufacturing Waste is disposed (to either landfill or incineration without energy recovery) versus a 2010 baseline and our corporate long term vision is to have zero consumer or manufacturing waste go to landfills. This goal and vision will drive an increase in the diversion of P&G waste materials away from disposal to reuse, recycling and recovery solutions and it will drive more sites to achieve zero manufacturing waste to landfill status. All P&G sites will adopt the definition of zero manufacturing waste to landfill below and will follow the subsequent guidelines on measurement, reporting and communications to ensure a consistent approach to zero manufacturing waste to landfill across the company. Definition of Zero Manufacturing Waste to Landfill “Zero manufacturing waste to Landfill means zero manufacturing waste is disposed directly to landfill or to Incineration without energy recovery by the site, except where local legal requirements specify that regulated wastes must be disposed in a landfill” Beneficial Reuse Beneficial Reuse simply includes P&G waste sent for Reuse, Recycling or Incineration with Energy Recovery. Incineration without Energy Recovery and Landfill will count as Disposal. Incineration From an environmental perspective Incineration without Energy Recovery is considered to have few benefits over landfill and much less benefit than Incineration with Energy Recovery. This position is reflected in the globally accepted Waste Hierarchy. Therefore sending waste to incineration without energy recovery will not count as diverting the material from landfill. -
Mining's Toxic Legacy
Mining’s Toxic Legacy An Initiative to Address Mining Toxins in the Sierra Nevada Acknowledgements _____________________________ ______________________________________________________________________________________________________________ The Sierra Fund would like to thank Dr. Carrie Monohan, contributing author of this report, and Kyle Leach, lead technical advisor. Thanks as well to Dr. William M. Murphy, Dr. Dave Brown, and Professor Becky Damazo, RN, of California State University, Chico for their research into the human and environmental impacts of mining toxins, and to the graduate students who assisted them: Lowren C. McAmis and Melinda Montano, Gina Grayson, James Guichard, and Yvette Irons. Thanks to Malaika Bishop and Roberto Garcia for their hard work to engage community partners in this effort, and Terry Lowe and Anna Reynolds Trabucco for their editorial expertise. For production of this report we recognize Elizabeth “Izzy” Martin of The Sierra Fund for conceiving of and coordinating the overall Initiative and writing substantial portions of the document, Kerry Morse for editing, and Emily Rivenes for design and formatting. Many others were vital to the development of the report, especially the members of our Gold Ribbon Panel and our Government Science and Policy Advisors. We also thank the Rose Foundation for Communities and the Environment and The Abandoned Mine Alliance who provided funding to pay for a portion of the expenses in printing this report. Special thanks to Rebecca Solnit, whose article “Winged Mercury and -
A History of Tailings1
A HISTORY OF MINERAL CONCENTRATION: A HISTORY OF TAILINGS1 by Timothy c. Richmond2 Abstract: The extraction of mineral values from the earth for beneficial use has been a human activity- since long before recorded history. Methodologies were little changed until the late 19th century. The nearly simultaneous developments of a method to produce steel of a uniform carbon content and the means to generate electrical power gave man the ability to process huge volumes of ores of ever decreasing purity. The tailings or waste products of mineral processing were traditionally discharged into adjacent streams, lakes, the sea or in piles on dry land. Their confinement apparently began in the early 20th century as a means for possible future mineral recovery, for the recycling of water in arid regions and/or in response to growing concerns for water pollution control. Additional Key Words: Mineral Beneficiation " ... for since Nature usually creates metals in an impure state, mixed with earth, stones, and solidified juices, it is necessary to separate most of these impurities from the ores as far as can be, and therefore I will now describe the methods by which the ores are sorted, broken with hammers, burnt, crushed with stamps, ground into powder, sifted, washed ..•. " Agricola, 1550 Introduction identifying mining wastes. It is frequently used mistakenly The term "tailings" is to identify all mineral wastes often misapplied when including the piles of waste rock located at the mouth of 1Presented at the 1.991. National mine shafts and adi ts, over- American. Society for Surface burden materials removed in Mining and Reclamation Meeting surface mining, wastes from in Durango, co, May 1.4-17, 1.991 concentrating activities and sometimes the wastes from 2Timothy c. -
Uranium Isanaturallyoccurring,Verydense,Metallic Definition Andcharacteristics Deposits Definition, Mineralogyand Proportion Ofu-235Tobetween 3And5percent
Uranium March 2010 Definition, mineralogy and Symbol U nt deposits Atomic number 92 opme vel Definition and characteristics Atomic weight 238.03 de l Uranium is a naturally occurring, very dense, metallic 3 ra Density at 298 K 19 050 kg/m UK element with an average abundance in the Earth’s crust ne mi of about 3 ppm (parts per million). It forms large, highly Melting point 1132 °C e bl charged ions and does not easily fit into the crystal struc- Boiling point 3927 °C na ai ture of common silicate minerals such as feldspar or mica. st Accordingly, as an incompatible element, it is amongst the Mineral Hardness 6 Moh’s scale su r last elements to crystallise from cooling magmas and one -8 f o Electrical resistivity 28 x 10 Ohm m re of the first to enter the liquid on melting. nt Table 1 Selected properties of uranium. Ce Minerals Under oxidizing conditions uranium exists in a highly soluble form, U6+ (an ion with a positive charge of 6), and is therefore very mobile. However, under reducing conditions Other physical properties are summarised in Table 1. it converts to an insoluble form, U4+, and is precipitated. It is these characteristics that often result in concentrations Mineralogy of uranium that are sufficient for economic extraction. Uranium is known to occur in over 200 different minerals, but most of these do not occur in deposits of sufficient Uranium is naturally radioactive. It spontaneously decays grade to warrant economic extraction. The most common through a long series of alpha and beta particle emissions, uranium-bearing minerals found in workable deposits are ultimately forming the stable element lead. -
Cyanide Remediation: Current and Past Technologies C.A
CYANIDE REMEDIATION: CURRENT AND PAST TECHNOLOGIES C.A. Young§ and T.S. Jordan, Department of Metallurgical Engineering, Montana Tech, Butte, MT 59701 ABSTRACT Cyanide (CN-) is a toxic species that is found predominantly in industrial effluents generated by metallurgical operations. Cyanide's strong affinity for metals makes it favorable as an agent for metal finishing and treatment and as a lixivant for metal leaching, particularly gold. These technologies are environmentally sound but require safeguards to prevent accidental spills from contaminating soils as well as surface and ground waters. Various methods of cyanide remediation by separation and oxidation are therefore reviewed. Reaction mechanisms are given throughout. The methods are compared in regard to their effectiveness in treating various cyanide species: free cyanide, thiocyanate, weak-acid dissociables and strong-acid dissociables. KEY WORDS cyanide, metal-cyanide complex, thiocyanate, oxidation, separation INTRODUCTION ent on the transport of these heavy metals through their tissues, cyanide is very toxic. Waste waters from industrial operations The mean lethal dose to the human adult is transport many chemicals that have ad- between 50 and 200 mg [2]. U.S. EPA verse effects on the environment. Various standards for drinking and aquatic-biota chemicals leach heavy metals which would waters regarding total cyanide are 200 and otherwise remain immobile. The chemicals 50 ppb, respectively, where total cyanide and heavy metals may be toxic and thus refers to free and metal-complexed cya- cause aquatic and land biota to sicken or nides [3]. According to RCRA, all cyanide species are considered to be acute haz- die. Most waste-water processing tech- ardous materials and have therefore been nologies that are currently available or are designated as P-Class hazardous wastes being developed emphasize the removal of when being disposed of. -
Adapting to Climate Change: a Guide for the Mining Industry
Adapting to Climate Change: A Guide for the Mining Industry Julia Nelson, Manager, Advisory Services Ryan Schuchard, Manager, Climate and Energy This guide is part of a BSR This primer on climate change adaptation summarizes how companies in the industry series. For additional mining industry are reporting on climate change risks and opportunities, and highlights current and emerging best practices and guidance for E&U companies climate adaptation briefs, please visit www.bsr.org/adaptation. on how to develop a proactive approach to climate change adaptation. In this brief, mining refers to companies involved in the extraction of a broad range of metals and minerals, including precious metals, base metals, industrial Contents and Methodology minerals, coal, and uranium. This brief covers: Introduction Reporting on Risks and Opportunities: A synopsis Due to the wide geographic distribution of mining operations, climate change, including temperature and precipitation shifts as well as more frequent and based on reporting of climate severe extreme weather events, will have complex impacts on the sector. risk in 2009 by 41 mining Climactic conditions will affect the stability and effectiveness of infrastructure and companies to the Carbon equipment, environmental protection and site closure practices, and the Disclosure Project (CDP). availability of transportation routes. Climate change may also impact the stability and cost of water and energy supplies. Current Practices: An outline of actions related to climate Some examples: Warming temperatures will increase water scarcity in some change adaptation based on locations, inhibiting water-dependent operations, complicating site rehabilitation reporting from the CDP, and bringing companies into direct conflict with communities for water resources. -
Xstrata Technology Update Edition 13 – April 2012 Building Plants That Work
xstrata technology update Edition 13 – April 2012 Building plants that work You have to get a lot of things it takes another operator to get them right to build a plant that works. right. Someone who has lived through the problems, had to do the maintenance, operated during a midnight power Of course the big picture must be right – doing the right project, in the right place, failure, cleaned up the spill. Someone at the right time. who has “closed the loop” on previous designs; lived with previous decisions After that, the devil is in the detail. You and improved them, over and over. need a sound design, good execution, good commissioning, and ongoing This is why Xstrata Technology provides support after commissioning. You need a technology “package”. Just as a car to operate and maintain your plant in is more than an engine, technology is the long run, long after the construction more than a single piece of equipment. company has left. That’s when all the Technology is a system. All the elements “little” details become important – how of the system have to work with each easy is it to operate, how good is the other and with the people in the plant. maintenance access, what happens in We want our cars designed by people a power failure, where are the spillage who love cars and driving. So should points and how do we clean them our plants be designed by people with up? Are the instruments reliable and experience and passion to make each is the process control strategy robust one work better than the last.