DEEP BOREHOLE DISPOSAL OF NUCLEAR WASTE 1Patrick V. Brady, Geoffrey A. Freeze, Kristopher L. Kuhlman, Ernest L. Hardin, David C. Sassani, and Robert J. MacKinnon 1Sandia National Laboratories, Albuquerque, New Mexico, USA 87185;
[email protected] February 27, 2016 Chapter X in Geological Repository Systems for Safe Disposal of Spent Nuclear Fuels and Radioactive Waste, 2nd Edition Ed. Joonhang Ahn and Michael Apted Abstract Radioactive waste disposal in deep boreholes may be more “ready” than disposal in mined geologic repositories since mankind has greater experience operating small deep holes – boreholes, than big shallow holes - mines. There are several thousand precedents for constructing > 2 km deep boreholes and several hundred precedents for disposing long-lived wastes in boreholes. Borehole disposal is likely to be faster, cheaper, and more flexible than mined disposal, while also offering greater long-term isolation. Isolation would rely on the great depth, water density gradients, and reducing conditions to prevent vertical movement of waste up the borehole. Keywords Boreholes, radioactive waste, disposal, geologic repositories. Introduction Mankind has a long history drilling boreholes. The Chinese drilled oil wells in Sichuan Province to ~ 240 m depth in 347 AD using percussion drilling with bits attached to bamboo poles. Oil was used to evaporate brine to produce salt. By 1835 Chinese boreholes exceeded 1000 m depth. In the meantime, the Chinese had worked out pipelines; of split bamboo, well casing; of wooden logs, downhole cables; of bamboo twine, variable speed drilling, and “fishing” techniques for retrieving objects from the bottom of the well (Kuhn 2004). The number of deep boreholes ballooned in the 20th century with the search for oil, gas, and geothermal energy.