JCV) Seroprevalence Among Zambian Adults Presenting with “Meningoencephalitis” to the University Teaching Hospital, Lusaka, Zambia

Total Page:16

File Type:pdf, Size:1020Kb

JCV) Seroprevalence Among Zambian Adults Presenting with “Meningoencephalitis” to the University Teaching Hospital, Lusaka, Zambia Medical Journal of Zambia, Vol. 46 (4): 277 - 285 (2019) Original Article A Study of the John Cunningham Virus (JCV) Seroprevalence among Zambian Adults presenting with “Meningoencephalitis” to the University Teaching Hospital, Lusaka, Zambia 1A. Patel, 2S. Lakhi, 1, 3 O. Siddiqi, 4I. Koralnik 1 University of Zambia, School of medicine, Department of Internal Medicine, Lusaka, Zambia 2 University Teaching Hospital, Department of Internal Medicine, Lusaka, Zambia 3 Department of Neurology, Beth Israel Deaconess Medical Centre, Boston, USA 4 Department of Neurological Sciences, Rush University Medical Centre, Chicago, USA ABSTRACT Results: Final analysis for JCV seroprevalence was done in 96 patients and noted to be 46% (95% CI, Background: The John Cunningham virus (JCV) is 35.62 – 56.31). The JCV seroprevalence in the HIV an opportunistic virus which leads to the positive group was 40.82% and in the HIV negative development of progressive multifocal group was 51.06 % but there was no statistical leukoencephalopathy (PML), which is a lytic difference (p-value 0.31). None of the other factors infection of oligodendrocytes of the central nervous studied had any impact on the JCV seroprevalence system in immunosuppressed patients. Infection such as age, gender, clinical presentation, CD4 with the JCV occurs in childhood and the virus count and co-morbid TB meningitis (TBM) remains quiescent in the body, activating during diagnosis. There was a bimodal distribution of age immunosuppression. Exposure to the virus can be associated with JCV seropositivity; with one peak detected by testing for JC virus specific antibodies in occurring in the 18 to 20 years age group and the an ELISA test. Our aim was to determine the JCV second peak occurring in the 55 to 60 years age seroprevalence and factors associated with its group. 14 (3.2%) confirmed PML cases, based on positivity among Zambian adults presenting to the clinical features and JCV DNA CSF positive, were University Teaching Hospital (UTH) with suspected all JCV seropositive and HIV positive with meningoencephalitis and to assess the JCV ELISA advanced immunosuppression (CD4<200/mm3). test as a possible tool for PML risk stratification. Memory impairment was associated with a 6 fold Methodology: This was a cross sectional nested increased likelihood of having PML in advanced study in the TB meningitis in Zambia (TMZ) study HIV disease with JCV seropositive patients which which looked at improving ways of TB diagnosis in further, increased to over 20 fold after adjusting for patients with meningoencephalitis. It included age , gender and TBM diagnosis. After adjusting for adults 18 years and older who presented with other variables TBM was associated with an 87% suspected meningoencephalitis and had undergone a less likelihood of having PML (p-value 0.03). lumbar puncture as part of their evaluation. 50 HIV Female gender was associated with increased risk of positive and 50 HIV negative patients were selected having PML (p-value 0.02) and a younger age was from the parent study and underwent testing for JCV protective for PML (p-value 0.03). serology. PML cases were also recruited from the parent study based on clinical features, confirmed by Key words: John Cunningham Virus (JCV), JCV DNA PCR of CSF. Progressive Multifocal Leukoencephalopathy (PML), seropositive 277 Medical Journal of Zambia, Vol. 46 (4): 277 - 285 (2019) Conclusion: The prevalence of anti-JCV antibodies HIV+ Zambian adults (COINZ), JCV DNA was in patients with suspected CNS infection detected in 20/331 (6%) of CSF samples of HIV+ (meningoencephalitis) was 46%. Anti- JCV Zambians presenting with signs and symptoms antibody prevalence did not differ significantly by consistent with CNS infection. 10 age, gender, HIV status or CD4 count. Memory impairment in JCV seropositive, advanced HIV Explanations for the paucity of reports of PML from disease patients with meningoencephalitis was the Africa include non-recognition of the condition, diagnostic challenges, death due to other infections most important variable associated with having which occur at higher CD4 counts such as TB, as PML. well as suggestions of decreased seroprevalence and INTRODUCTION neurovirulence of African JC virus types. 11, 12 The John Cunningham virus (JCV) is an In this study, we sought to determine the opportunistic virus, which causes progressive seroprevalence of JCV amongst the Zambian multifocal leukoencephalopathy (PML).1 PML is a population who present with features of a central n e r v o u s s y s t e m ( C N S ) i n f e c t i o n lytic infection of mainly oligodendrocytes of the (meningoencephalitis) and factors associated with central nervous system in immunosuppressed JCV seropositivity. We also assessed the possible 2 patients. The JCV is a ubiquitous human pathogen role of the JCV antibody test in stratifying PML risk and exposure is unavoidable. After asymptomatic in affected populations, as PML is a fatal disease primary infection with the JCV in childhood, the with a 9% survival rate at 1 year without any virus remains quiescent in the kidneys, bone intervention.2 Therefore, early identification is key. marrow, and lymphoid tissue and becomes activated 3, 4, 5 METHODOLOGY when the host becomes immunosuppressed. This was a cross sectional study nested in the TB Once infected, exposure to the virus can be detected by testing for JC virus specific antibodies and meningitis in Zambia (TMZ) study, which was antibody tests for the JCV are now successfully carried out at UTH over a period of 3 years (2015 – being carried out to determine the subsequent risks 2018). The TMZ study looked at improving ways of of developing PML in at risk populations.6 diagnosing TB meningitis in the Zambian population who presented with signs and symptoms One of the major unanswered questions of JC virus consistent with a CNS infection. It consisted of 550 epidemiology is whether it is less frequent in Africa patients, ages 18 and older, divided into HIV than in the West. While multiple studies have shown positive and HIV negative groups who had that about 55% of adult are JCV seropositive in presented with features of meningoencephalitis and Europe and the US nothing is known about JCV had received a lumbar puncture as part of their seroepidemiology in Africa.7 evaluation. With the advent of the HIV pandemic, and the Participants increasing use of immunosuppressive agents, the incidence of PML has risen sharply, but very few 100 patients were selected, divided into 50 HIV cases from Africa have been reported. Two cases of positive and 50 HIV negative patients from the 2 PML have been diagnosed by autopsy among HIV+ arms of the TMZ study, for determining JCV patients in Uganda and Gambia each. 8, 9 PML seroprevalence. prevalence in an autopsy series from Ivory Coast, conducted on 271 HIV positive patients who died 14 confirmed PML cases based on clinical, from any cause within the study period, was 1.5%. 9 laboratory and radiological criteria (American In the study of CNS opportunistic infections in Academy of Neurology criteria) were also selected from the TMZ study for the purpose of assessing 278 Medical Journal of Zambia, Vol. 46 (4): 277 - 285 (2019) PML risk in affected populations. 13 Participants prevalence and prevalence by demographics and were selected from the inpatient and outpatient clinical characteristics. Our study sample was medical wards at UTH adult hospital. compared to the parent TMZ study using Chi square tests. Factors associated with JCV seroprevalence Procedure were analysed using multiple logistics regression Sampling of the participants was done by selecting using odds ratio as a measure of association. the first consecutive 50 HIV negative patients The multiple logistic regression model was also used recruited in the TMZ study which met the inclusion for PML risk stratification by comparing the criteria. The HIV positive group was then matched advanced HIV JCV seropositive patients with the based on gender and age. The PML patients were PML patients in the initial model and then selected based on convenience sampling as PML comparing only the borderline insignificant was noted to be relatively rare. variables in the final model (p-value £ 0.06). At the time of enrollment of the TMZ study, a Ethical approval detailed history and a full neurological examination was performed on all participants by the attending Ethics approval was obtained from the University Of neurologist. Patients who had already received a Zambia School Of Medicine Biomedical Research lumbar puncture as part of their routine evaluation Ethics Committee and the Director of UTH were asked if excess CSF be used as part of this (IRB00001131 of IORG0000774). Written study. The CSF from all HIV positive and HIV informed consent was obtained from each of the negative underwent qualitative testing to detect the participants or the next of kin. presence of JCV by using DNA PCR (Qiagen molecular kit). Those with a positive JCV DNA in RESULTS CSF were diagnosed as PML together with a Patient Characteristics compatible clinical and radiological picture. A blood sample was also collected from the 100 patients were selected from the parent TMZ consenting patients and a CD4 count done on all the study. The selection was matched for age and gender. participants. The remaining blood was stored and Table 1 shows the characteristics of our study sera aliquoted and kept frozen at -20 C. Frozen sera sample. 26 (26%) had a confirmed diagnosis of was sent to the German Cancer Research Centre TBM. (DKFZ) in Heidelberg, Germany and JCV serology was performed using commercial JCV ELISA TABLE 1: Characteristics of the Patients (Quest Diagnostics). The samples were analysed at a VARIABLE JCV STUDY dilution of 1:10000 and an antibody titre to the JCV N (%) capsid (VP1) >70 indicated JCV seropositivity.
Recommended publications
  • Unusual Case of Progressive Multifocal Leukoencephalopathy in a Patient with Sjögren Syndrome
    Henry Ford Health System Henry Ford Health System Scholarly Commons Pathology Articles Pathology 1-15-2021 Unusual Case of Progressive Multifocal Leukoencephalopathy in a Patient With Sjögren Syndrome Ifeoma Onwubiko Kanika Taneja Nilesh S. Gupta Abir Mukherjee Follow this and additional works at: https://scholarlycommons.henryford.com/pathology_articles CASE REPORT Unusual Case of Progressive Multifocal Leukoencephalopathy in a Patient With Sjögren Syndrome Ifeoma Ndidi Onwubiko, MD, MPH, Kanika Taneja, MD, Nilesh Gupta, MD, and Abir Mukherjee, MD 03/05/2021 on BhDMf5ePHKav1zEoum1tQfN4a+kJLhEZgbsIHo4XMi0hCywCX1AWnYQp/IlQrHD3i3D0OdRyi7TvSFl4Cf3VC1y0abggQZXdgGj2MwlZLeI= by http://journals.lww.com/amjforensicmedicine from Downloaded 84% neutrophils; glucose, 71 mmol/L; protein, 183 g/dL with neg- Abstract: Progressive multifocal leukoencephalopathy (PML) is a rare Downloaded ative cultures and no malignant cells on cytology). Hepatitis C anti- demyelinating disease caused by reactivation of John Cunningham virus af- body screen was negative. Immunoglobin G antibodies to Sjögren fecting typically subcortical and periventricular white matter of immunocom- syndrome–related antigen A and anti–Sjögren syndrome-related from promised hosts (human immunodeficiency virus infection, hematologic antigen B were positive. Thyroglobulin antibodies and antinuclear http://journals.lww.com/amjforensicmedicine malignancies). Cerebral hemispheric white matter is most commonly affected antibodies were elevated. Autoimmune serological tests for other by lytic
    [Show full text]
  • CONTENTS EDITORIAL Chronic Fatigue Syndrome
    Volume 11 Number 1 2003 CONTENTS EDITORIAL Chronic Fatigue Syndrome Guidelines 1 Kenny De Meirleir Neil McGregor Myalgic Encephalomyelitis/Chronic Fatigue Syndrome: Clinical Working Case Definition, Diagnostic and Treatment Protocols 7 Bruce M. Carruthers Anil Kumar Jain Kenny L. De Meirleir Daniel L. Peterson Nancy G. Klimas A. Martin Lerner Alison C. Bested Pierre Flor-Henry Pradip Joshi A. C. Peter Powles Jeffrey A. Sherkey Marjorie I. van de Sande Recent years have brought growing recognition of the need for clinical criteria for myalgic encephalomyelitis (ME), which is also called chronic fatigue syndrome (CFS). An Expert Subcommittee of Health Canada established the Terms of Refer- ence, and selected an Expert Medical Consensus Panel representing treating physi- cians, teaching faculty and researchers. A Consensus Workshop was held on March 30 to April 1, 2001 to culminate the review process and establish consen- sus for a clinical working case definition, diagnostic protocols and treatment pro- tocols. We present a systematic clinical working case definition that encourages a diagnosis based on characteristic patterns of symptom clusters, which reflect specific areas of pathogenesis. Diagnostic and treatment protocols, and a short overview of research are given to facilitate a comprehensive and integrated ap- proach to this illness. Throughout this paper, “myalgic encephalomyelitis” and “chronic fatigue syndrome” are used interchangeably and this illness is referred to as “ME/CFS.” KEYWORDS. Clinical case definition, myalgic encephalomyelitis, chronic fa- tigue syndrome, ME, CFS, diagnostic protocol, treatment protocol Monitoring a Hypothetical Channelopathy in Chronic Fatigue Syndrome: Preliminary Observations 117 Jo Nijs Christian Demanet Neil R. McGregor Pascale De Becker Michel Verhas Patrick Englebienne Kenny De Meirleir This study was aimed at monitoring of a previously suggested channelopathy in Chronic Fatigue Syndrome, and at searching for possible explanations by means of immune system characteristics.
    [Show full text]
  • Progressive Multifocal Leukoencephalopathy and the Spectrum of JC Virus-​Related Disease
    REVIEWS Progressive multifocal leukoencephalopathy and the spectrum of JC virus- related disease Irene Cortese 1 ✉ , Daniel S. Reich 2 and Avindra Nath3 Abstract | Progressive multifocal leukoencephalopathy (PML) is a devastating CNS infection caused by JC virus (JCV), a polyomavirus that commonly establishes persistent, asymptomatic infection in the general population. Emerging evidence that PML can be ameliorated with novel immunotherapeutic approaches calls for reassessment of PML pathophysiology and clinical course. PML results from JCV reactivation in the setting of impaired cellular immunity, and no antiviral therapies are available, so survival depends on reversal of the underlying immunosuppression. Antiretroviral therapies greatly reduce the risk of HIV-related PML, but many modern treatments for cancers, organ transplantation and chronic inflammatory disease cause immunosuppression that can be difficult to reverse. These treatments — most notably natalizumab for multiple sclerosis — have led to a surge of iatrogenic PML. The spectrum of presentations of JCV- related disease has evolved over time and may challenge current diagnostic criteria. Immunotherapeutic interventions, such as use of checkpoint inhibitors and adoptive T cell transfer, have shown promise but caution is needed in the management of immune reconstitution inflammatory syndrome, an exuberant immune response that can contribute to morbidity and death. Many people who survive PML are left with neurological sequelae and some with persistent, low-level viral replication in the CNS. As the number of people who survive PML increases, this lack of viral clearance could create challenges in the subsequent management of some underlying diseases. Progressive multifocal leukoencephalopathy (PML) is for multiple sclerosis. Taken together, HIV, lymphopro- a rare, debilitating and often fatal disease of the CNS liferative disease and multiple sclerosis account for the caused by JC virus (JCV).
    [Show full text]
  • Relapsing Polychondritis Presenting with Meningoencephalitis and Dementia: Correlation with Neuroimaging and Clinical Features
    30 Relapsing Polychondritis Presenting with Meningoencephalitis and Dementia: Correlation with Neuroimaging and Clinical Features Yung-Pin Hwang1, Richard Kuo2,4, Tien-Ling Chen3, Pei-Hao Chen1,4,5, Shih-Jung Cheng1 Abstract- Purpose: Relapsing polychondritis (RP) is a rare systemic autoimmune disease affecting cartilaginous and non-cartilaginous structures. Neurological involvement is rarer but results in profound disability. Early identification and treatment of underlying RP may promote neurological recovery. Case Report: We illustrated a 53-year-old man diagnosed with dementia. Neuroimaging and cerebrospinal fluid studies disclosed meningoencephalitis. “Prominent ear sign” was evident on diffusion-weight magnetic resonance imaging. After glucocortisone administration, the improvement of clinical manifestations was closely correlated subsequent neuroimaging findings. Conclusion: The importance of better understanding of this disease in terms of the prevention of further tissue damage in patients with RP cannot be overemphasized. Key Words: relapsing polychondritis, auricular chondritis, meningoncephalitis, dementia, prominent ear sign Acta Neurol Taiwan 2015;24:30-33 INTRODUCTION of RP are protean dependent on tissue involvement. Early identification of PR and prompt intervention might be Relapsing polychondritis (RP) is a rare multisystem beneficial for its prognosis. Nervous system involvement disorder affecting cartilaginous tissue including the hyaline can manifest as meningoencephalitis (4), dementia (5), stroke cartilage of joints and the fibrocartilage of extra-articular (6), and parkinsonism (7). Awareness of RP may prevent location, as well as proteoglycan-rich structures such the subsequent disability secondary to irreversible brain or (1) media of the arteritis and eye . Its pathogenesis appears nerve tissue damage. to be an immune-mediated reaction against collagen type We report a case with meningoencephalitis and (2) (3) II , collagens type IX and XI .
    [Show full text]
  • Meningitis/Encephalitis Pathogen Panel
    Meningitis/Encephalitis Pathogen Panel The list of pathogens which can potentially cause meningitis, encephalitis, and meningoencephalitis is broad. Early effective therapy for both bacterial and certain viral pathogens has been associated with improved outcomes. Patients whose history, exam, and/or imaging suggests one of these conditions should have a lumber puncture performed with appropriate diagnostic testing including a cell count with differential, protein, and glucose. Additional tests to consider include bacterial culture, cryptococcal antigen testing, fungal cultures, cultures for acid fast bacilli and/or the new Meningitis/Encephalitis Pathogen Panel. Nebraska Medicine has recently introduced a new FDA-approved test called the Meningitis/Encephalitis Pathogen Panel (MEPP). This test uses a nested multiplex PCR-approach to amplify DNA targets directly from cerebrospinal fluid (CSF) in patients with signs and symptoms of meningitis or encephalitis. It is able to detect a variety of common bacterial, viral, and fungal pathogens (Table 1). Table 1: Pathogens Detected by Meningitis/Encephalitis Pathogen Panel Bacteria Viruses Yeast Gram-negative Cytomegalovirus Cryptococcus Escherichia coli K1 Enterovirus neoformans/gattii Haemophilus influenzae Herpes simplex virus 1 Neisseria meningitidis Herpes simplex virus 2 Gram-positive Human herpesvirus 6 Listeria monocytogenes Human parechovirus Streptococcus agalactiae (Group B Strep) Varicella zoster virus (VZV) Streptococcus pneumoniae This test is sensitive and very specific (see Supplementary Table 1 for complete detail), and should only be performed in patients where CNS infection is being seriously considered. Previous studies have shown that using clinical and CSF criteria to determine when to perform PCR testing is unlikely to miss clinically significant results and is highly cost-effective.1-3 For example Wilen, et al.3 restricted herpes virus and enterovirus PCR testing to patients who were: age <2 years, immunosuppressed, or who had >10 WBCs/µl.
    [Show full text]
  • Inflammation of the Central Nervous System- Encephalitis, Myelitis, and Meningitis
    Inflammation of the Central Nervous System- Encephalitis, Myelitis, and Meningitis Stacy Dillard, DVM, Diplomate ACVIM (Neurology) Inflammation of the central nervous system is a very common condition seen in veterinary neurology. The area in which the inflammation predominates indicates which of the clinical syndromes we use to name the disease. Inflammation involving the brain is called encephalitis, of the spinal cord is called myelitis and of the meninges is called meningitis. It is common to have more than one area of the central nervous system affected and therefore combinations of the names are often used such as meningoencephalomyelitis or meningoencephalitis. Encephalitis is the most common area of the central nervous system to be affected and will be used as the general term in this article. Etiology There are two main classes of encephalitis: infectious and idiopathic. Infectious etiologies include viruses, fungi, bacteria, protozoa, tick borne diseases and even algae. True infectious encephalitis is much less common in the dog than in other species including humans; however diagnosis is critical for proper targeted therapy. Idiopathic encephalitis means that an infectious etiology has not been found and encompasses a wide range of syndromes appreciated in the canine patient. Many idiopathic encephalitidies are thought to be immune-mediated and respond well to immune-suppression. Other idiopathic encephalitis, such as necrotizing encephalitis found in young toy breed dogs, do not appear to respond as well to immuno- suppression and therefore may represent another form of the disease. Idiopathic encephalitis is much more common in the dog than infectious encephalitis; however, definitive diagnosis is critical as treatment is markedly different between the two categories of disease.
    [Show full text]
  • Zika Virus Meningoencephalitis and Myelitis and Associated Magnetic Resonance Imaging Findings
    Am. J. Trop. Med. Hyg., 97(2), 2017, pp. 340–343 doi:10.4269/ajtmh.16-0921 Copyright © 2017 by The American Society of Tropical Medicine and Hygiene Case Report: Zika Virus Meningoencephalitis and Myelitis and Associated Magnetic Resonance Imaging Findings Faruq Pradhan,1* Joseph D. Burns,2 Ahmed Agameya,1 Avignat Patel,3 Mohammad Alfaqih,4 Juan E. Small,4 and Winnie Ooi5 1Department of Internal Medicine, Lahey Hospital and Medical Center, Burlington, Massachusetts; 2Department of Neurology, Lahey Hospital and Medical Center, Burlington, Massachusetts; 3Department of Pulmonary and Critical Care Medicine, Lahey Hospital and Medical Center, Burlington, Massachusetts; 4Department of Radiology, Lahey Hospital and Medical Center, Burlington, Massachusetts; 5Department of Infectious Diseases, Lahey Hospital and Medical Centre, Travel and Tropical Medicine Clinic, Burlington, Massachusetts Abstract. Zika virus (ZIKV) has a wide clinical spectrum of associated neurologic disease including microcephaly and Guillain–Barre syndrome but, despite its known neurotropism, ZIKV meningoencephalitis and myelitis have been rare complications. We describe a case of ZIKV meningoencephalitis and probable myelitis and its associated magnetic resonance imaging findings that rapidly resolved during recovery in a previously healthy adult. INTRODUCTION stretch reflexes were 3+ diffusely with clonus at the ankles, and plantar reflexes were extensor bilaterally. Pregnancy The geographical distribution of Zika virus (ZIKV) has testing was negative. Doxycycline was added to her regimen. fi steadily broadened since the virus was rst detected in Ampicillin and dexamethasone were discontinued. Uganda in 1947 and now includes parts of the United States A repeat lumbar puncture was performed on day 2. CSF fl where Aedes aegypti exists.
    [Show full text]
  • Case Reports Acute Disseminated Encephalomyelitis Following Streptococcus Pneumoniae Meningoencephalitis
    HK J Paediatr (new series) 2013;18:37-41 Case Reports Acute Disseminated Encephalomyelitis Following Streptococcus Pneumoniae Meningoencephalitis YL YU, HF LI, ZZ XIA, F GAO Abstract Acute disseminated encephalomyelitis (ADEM) is an autoimmune demyelinating disease of the central nervous system. We report a 4-year-old girl who suffered from acute meningoencephalitis caused by Streptococcus pneumoniae (S. pneumoniae). After 8 days of treatment by sensitive antibiotics, the cerebrospinal fluid (CSF) cell count, blood count and the serum level of C-reactive protein recovered quickly, while the level of CSF protein was still high, with continuous coma and fever. Magnetic resonance imaging indicated multifocal changes in the brain parenchyma, mainly in white matter, with bithalamic involvement. The CSF IgG index increased, oligoclonal bands were positive. After high-dose intravenous methylprednisolone and intravenous immunoglobulin were given, the patient came around, with normal CSF results and body temperature. Within a few months the patient recovered completely and there were no relapses during nearly 3 years of follow-up. To our knowledge, this may be the first report of ADEM following S. pneumoniae meningoencephalitis in children. Key words Acute disseminated encephalomyelitis (ADEM); Streptococcus pneumoniae Introduction meningoencephalitis reported.4-6 S. pneumoniae is the main pathogens of bacterial pneumonia and meningitis in Acute disseminated encephalomyelitis (ADEM) is an children. To our knowledge, there was no report of ADEM autoimmune disease characterised by an inflammatory following S. pneumoniae infection confirmed in children. reaction and demyelination in the central nervous system We report on a patient diagnosed as ADEM following (CNS) that usually develops following acute viral S.
    [Show full text]
  • Clinical Presentation of Meningitis in Adults
    Clinical Presentation of Meningitis in Adults Prof. Dr. Serhat Ünal FACP, FEFIM Hacettepe University, Faculty of Medicine Department of© Infectious by author Diseases , ANKARA Meningitis Update ESCMIDESCMID PostgraduateOnline Lecture Educational Library Course September 2013, İzmir Why Is Clinical Examination Important? "If, in a fever, the neck be turned awry on a sudden, so that the sick can hardly swallow, and yet no tumour appear, it is mortal.- © by author ESCMID“Aphorism Online XXXV Lecture of Hippocrates Library” Meningitis • Meningitis is a clinical syndrome characterized by inflammation of the meninges • Infectious Meningitis – caused by a variety of infectious agents • bacteria, viruses, fungi, and parasites. • Clinical signs and symptoms at presentation may predict prognosis • Only 25% of adults© by have author a classic presentation and are not a diagnostic dilemma. • ESCMIDMany patients Online have a Lecture less obvious Library presentation Mace SE, Emerg Med Clin N Am 2008;38:281 Spanos A et al JAMA 1998;262:2700 Clinicians Suspecting Meningitis • While taking the patient's history • Examine for – General symptoms of infection • such as fever, chills, and myalgias – Symptoms suggesting central nervous system infection © by author • photophobia, headache, nausea and vomiting, focal neurologic symptoms, or changes in mental status ESCMID Online Lecture Library Clinical Presantation of Meningitis (Dept. Of Emergency) The suspicion of ABM is critically dependent on the early recognition of the meningitis syndrome. • 156 patients with meningitis -Taiwan – I nitial ED diagnosis was correct in only 58% of the cases. • The 3 most common© by alternative author diagnoses – Nonmeningeal infection ESCMID– Metabolic encephalopathy Online Lecture Library – Nonspecific conditions Chern CH, Ann Emerg Med.
    [Show full text]
  • Mumps Meningoencephai'tis a Clinical Review of 119 Cases with One Death HENRY B
    Mumps Meningoencephai'tis A Clinical Review of 119 Cases with One Death HENRY B. BRUYN, M.D., HAROLD M. SEXTON. M.D., and HENRY D. BRAINERD, M.D., San Francisco MUMPS IS A generalized, systemic, virus infection in * Mumps is one of the most common viruses to which the salivary glands are commonly affected and affect the central nervous system and should be given primary consideration in the differential in which inflammation of the central nervous system diagnosis of aseptic meningitis. Many cases of occurs with such frequency that it can hardly be mumps infection do not involve the salivary considered a complication. In fact, the virus of glands. mumps could be said to be one of the most common The course of mumps meningoencephalitis is viral agents to affect the central nervous system. De- usually benign, with fever and signs of menin- geal irritation lasting less than five days. The spite the extensive literature attesting these facts, findings in the cerebrospinal fluid are usually there still exists the widespread impression that distinctive, with leukocyte content greater than mumps meningoencephalitis is a rare complication. 200 per milliliter, of which 80 per cent or more Hamilton10 in 1790 presented one of the first for- are lymphocytes. Sequelae, even of a minor na- ture, are rare. mal reports of "A Distemper, By the Common Peo- Death is extremely rare in recorded literature. ple in England Vulgarly Called the Mumps." In this A fatal case of mumps meningoencephalitis is very carefully written report he described the usual described herein. course of this disease and stressed the frequency of central nervous system involvement.
    [Show full text]
  • Acute Inflammatory Myelopathies
    UCSF UC San Francisco Previously Published Works Title Acute inflammatory myelopathies. Permalink https://escholarship.org/uc/item/3wk5v9h9 Journal Handbook of clinical neurology, 122 ISSN 0072-9752 Author Cree, Bruce AC Publication Date 2014 DOI 10.1016/b978-0-444-52001-2.00027-3 Peer reviewed eScholarship.org Powered by the California Digital Library University of California Handbook of Clinical Neurology, Vol. 122 (3rd series) Multiple Sclerosis and Related Disorders D.S. Goodin, Editor Copyright © 2014 Bruce Cree. Published by Elsevier B.V. All rights reserved Chapter 28 Acute inflammatory myelopathies BRUCE A.C. CREE* Department of Neurology, University of California, San Francisco, USA INTRODUCTION injury caused by the acute inflammation and the likeli- hood of recurrence differs depending on the etiology. Spinal cord inflammation can present with symptoms sim- Additional important diagnostic and prognostic features ilar to those of compressive myelopathies: bilateral weak- include whether the myelitis is partial or transverse, ness and sensory changes below the spinal cord level of febrile illness, the number of vertebral spinal cord injury, often accompanied by bowel and bladder impair- segments involved on MRI at the time of acute attack, ment and sparing cranial nerve and cerebral function. the rapidity from symptom onset to maximum deficit, Because of the widespread availability of magnetic reso- and the severity of involvement. nance imaging (MRI) and computed tomography (CT) imaging, compressive etiologies can be rapidly excluded, METHODOLOGIC CONSIDERATIONS leading to the consideration of non-compressive etiologies for myelopathy. The differential diagnosis of non- Large observational cohort studies or randomized con- compressive myelopathy is broad and includes infectious, trolled trials concerning myelitis have never been under- parainfectious, toxic, nutritional, vascular, and systemic taken.
    [Show full text]
  • Meningitis and Meningoencephalitis (Pdf)
    Perth Children’s Hospital Children’s Antimicrobial Management (ChAMP) GUIDELINE Meningitis and Meningoencephalitis Scope (Staff): Clinical Staff – Medical, Nursing, Pharmacy Scope (Area): Perth Children’s Hospital (PCH) This document should be read in conjunction with this DISCLAIMER Empirical regimens are intended for initial therapy (up to 48 hours only), therapy should be modified as soon as additional information (source of infection, Gram stain results, culture and susceptibility testing) is available. DRUGS/DOSES on CLINICAL i t Known or Low risk High risk a SCENARIO r Standard Protocol Suspected Penicillin Penicillin Usual Usual a b b du MRSA allergy allergy IV cefotaxime AND See IV benzylpenicillin Discuss with ID or Microbiology Service below AND IV aciclovir (doses as per neonatal Meningitis / guidelines) meningoencephalitis < 1 month of age Discuss all cases with ID/microbiology (community acquired) Send CSF for cell count, protein, glucose, culture and viral PCR (HSV, enterovirus, parechovirus) In addition consider blood culture, EDTA blood for HSV PCR, enterovirus/parechovirus swabs (throat, and rectal) and HSV swabs (throat, rectal, eye, umbilical) For further information refer to ASID perinatal guidelines Page 1 of 6 Meningitis and Meningoencephalitis DRUGS/DOSES on CLINICAL i t Known or Low risk High risk a SCENARIO r Standard Protocol Suspected Penicillin Penicillin Usual Usual a b b du MRSA allergy allergy Give IV dexamethasone before or with the first dose of antibiotics as per local guidelines Consider the need
    [Show full text]