Acute Inflammatory Myelopathies

Total Page:16

File Type:pdf, Size:1020Kb

Acute Inflammatory Myelopathies UCSF UC San Francisco Previously Published Works Title Acute inflammatory myelopathies. Permalink https://escholarship.org/uc/item/3wk5v9h9 Journal Handbook of clinical neurology, 122 ISSN 0072-9752 Author Cree, Bruce AC Publication Date 2014 DOI 10.1016/b978-0-444-52001-2.00027-3 Peer reviewed eScholarship.org Powered by the California Digital Library University of California Handbook of Clinical Neurology, Vol. 122 (3rd series) Multiple Sclerosis and Related Disorders D.S. Goodin, Editor Copyright © 2014 Bruce Cree. Published by Elsevier B.V. All rights reserved Chapter 28 Acute inflammatory myelopathies BRUCE A.C. CREE* Department of Neurology, University of California, San Francisco, USA INTRODUCTION injury caused by the acute inflammation and the likeli- hood of recurrence differs depending on the etiology. Spinal cord inflammation can present with symptoms sim- Additional important diagnostic and prognostic features ilar to those of compressive myelopathies: bilateral weak- include whether the myelitis is partial or transverse, ness and sensory changes below the spinal cord level of febrile illness, the number of vertebral spinal cord injury, often accompanied by bowel and bladder impair- segments involved on MRI at the time of acute attack, ment and sparing cranial nerve and cerebral function. the rapidity from symptom onset to maximum deficit, Because of the widespread availability of magnetic reso- and the severity of involvement. nance imaging (MRI) and computed tomography (CT) imaging, compressive etiologies can be rapidly excluded, METHODOLOGIC CONSIDERATIONS leading to the consideration of non-compressive etiologies for myelopathy. The differential diagnosis of non- Large observational cohort studies or randomized con- compressive myelopathy is broad and includes infectious, trolled trials concerning myelitis have never been under- parainfectious, toxic, nutritional, vascular, and systemic taken. Consequently, nearly the entire neurologic as well as idiopathic inflammatory etiologies (Table 28.1). knowledge is based on case series and reports. As such, This review will focus on the idiopathic forms of spi- a review of the literature faces the methodologic chal- nal cord inflammation and their relationship to central lenge of not being able to systematically review all cases nervous system (CNS) demyelinating diseases, systemic and case series. Therefore, unintentional biases are inflammatory or autoimmune disease, and as manifesta- inherent in the selection and interpretation of case series. tions of paraneoplastic illness (Table 28.2). Although the Despite this limitation, certain observations, particularly pathoetiologies vary widely, the clinical presentations of when made by more than one group of investigators, these myelopathies are similar, therefore differentiating may be clinically useful for formulating a differential between these and other causes of non-compressive diagnosis and treatment plan. Potentially useful clinical myelopathy can be challenging. In addition to the clinical and laboratory studies will be reviewed with citation of presentation, imaging studies of the spinal cord and relevant case series. The primary literature consists brain, spinal fluid analysis, and serological studies can exclusively of case reports for certain etiologies of mye- help reveal a diagnosis in many cases. litis. Because keyword indexing is not consistent for case Although controlled treatment trials have not been reports, systematic review of all case reports for each undertaken, the treatment strategy for acute myelits pathoetiology is not practical. Therefore, only select case uses high-dose corticosteroids in nearly all circum- reports containing observations not found in case series stances in an effort to reduce tissue injury caused by are reviewed and cited. inflammation. In cases refractory to corticosteroid treat- CLINICAL PRESENTATION AND ment, plasmapharesis is sometimes utilized to reduce the DEFINITIONS serum concentrations of autoantibodies presumed to damage the blood–spinal cord barrier or gray and Recognition of these clinical syndromes localizes the white-matter spinal cord structure. The prognosis for lesion and helps with ordering appropriate imaging stud- recovery depends largely on the extent of spinal cord ies that can verify the anatomic lesion and provide *Correspondence to: Bruce A.C. Cree, M.D., Ph.D., M.C.R., Associate Professor of Clinical Neurology, Clinical Research Director, UCSF Multiple Sclerosis Center, 675 Nelson Rising Lane, Suite 221, San Francisco, CA 94158, USA. Tel: þ1-415-514-2466, Fax: þ1-415-514-2470, E-mail: [email protected] 614 B.A.C. CREE Table 28.1 Differential diagnosis of non-inflammatory myelopathy Traumatic/compressive Toxic/metabolic Trauma Vitamin deficiency (B12,B1, E, folate) Disc herniation Nitrous oxide abuse Cervical spondylosis with stenosis Abetalipoproteinemia Epidural abscess or hematoma Medication-induced (amiodarone, Extramedullary and extradural tumors methotrexate, amphotericin, etc.) Cyst (synovial or arachnoid) Organophosphates Congenital spinal stenosis Konzo (cassava ingestion) Posterior longitudinal ligament ossification Lathyrism (legume ingestion) Epidural lipomatosis Heroin/hepatic myelopathy Arnold–Chiari malformation Fluorosis Rheumatoid arthritis or ankylosing Clioquinol spondylitis-associated subluxation Hashimoto’s encephalopathy Osteomyelitis Neoplastic Paget disease Lymphoma (primary CNS or metastatic) Diffuse idiopathic skeletal hyperostosis Leukemia Extramedullary hematopoiesis Glioma Hereditary/neurodegenerative Vascular Hereditary spastic paraplegia (HSP) Thromboembolic infarct Friedreich’s ataxia Arteriovenous fistula Leukodystrophies Fibrocartilaginous embolism Motor neurone disease (ALS, PLS) Hypoperfusion injury Mitochondrial Prothrombotic disorders (infection, Krabbe’s disease neoplasm, vasculitis, DIC, etc.) Other Arteriovenous malformation Syringomyelia Decompression sickness (Caisson disease) Radiation myelopathy Superficial siderosis HIV vacuolar myelopathy ALS, amyotrophic lateral sclerosis; CNS, central nervous system; DIC, disseminated intravascular coagulation; HIV, human immunodeficiency virus; PLS, primary lateral sclerosis. important clues as to pathoetiology. Although classic Lhermitte’s symptom. When transverse myelitis is bilat- examples of non-compressive myelopathies are given eral and complete, all spinal cord tracts are involved, for each spinal cord syndrome, in practice inflammation causing pyramidal, sensory, and autonomic dysfunction of different etiologies can present with any of these ana- below the level of the lesion. Examples of etiologies that tomic syndromes. can cause complete transverse myelitis include neuro- The term transverse myelitis is often used synony- myelitis optica (NMO), paraneoplastic myelopathies, mously with any form of spinal cord inflammation; how- and necrotizing infectious myelitis. ever, it more specifically refers to inflammation that Transverse myelitis may also be unilateral, meaning involves both the anterior and posterior portion of the the right or left side, as long as there is clinical involve- spinal cord, i.e., the inflammation is transverse from ment of both anterior and posterior cord function, i.e., the anterior to posterior in the horizontal plane. As such, motor weakness and sensory symptoms consistent with transverse myelitis typically presents with subacute bilat- dorsal column injury, often with contralateral spinotha- eral limb weakness and sensory changes accompanied by lamic injury. This pattern is also known as the hemicord bowel and bladder dysfunction without impairment of or Brown-Se´quard syndrome (Brown-Se´quard, 1849). In cranial nerve and cerebral function. Additional clinical this setting, pyramidal weakness is accompanied by ipsi- features that help localize the area of injury include a spi- lateral dorsal column dysfunction and contralateral spi- nal sensory level, diminished or absent reflexes at the nothalamic loss. Bowel and bladder impairment often level of the lesion, hyperreflexia below the level of the still occurs but may be less obvious than with bilateral, lesion, presence of respiratory compromise, and a complete transverse myelitis. Although the classic ACUTE INFLAMMATORY MYELOPATHIES 615 Table 28.2 Differential diagnosis of acute transverse myelitis Demyelinating Viral – Herpesviruses (DNA) Multiple sclerosis Herpes simplex virus type-2 (HSV) Neuromyelitis optica Varicella-zoster virus (VZV) Idiopathic transverse myelitis Cytomegalovirus (CMV) Acute disseminated encephalomyelitis (ADEM) Human herpesvirus 6 and 7 (HHV) Postvaccinial Epstein–Barr virus (EBV) Associated with acute demyelinating polyneuropathy Viral – Paramyxoviruses (RNA) Systemic autoimmune disease Measles Systemic lupus erythmatosus (SLE) Mumps Primary Sj€ogren syndrome Viral – Orthomixovirus (RNA) Neurosarcoidosis Influenza A virus (including H1N1) Behc¸et’s disease Viral – Picornaviruses (RNA) Mixed connective tissue disease (MCTD) Coxsackieviruses A and B Systemic sclerosis Enterovirus-70 and -71 Vogt–Koyanagi–Harada Echovirus 30 Primary angiitis of the central nervous system Hepatitis B, C, E Atopic myelitis Poliovirus 1, 2, and 3 Paraneoplastic Viral – Flaviviruses (RNA) Anti-amphiphysin (breast carcinoma) West Nile virus Anti-CRMP-5 (small cell lung cancer) Japanese encephalitis virus Necrotizing myelopathy Tick-borne encephalitis virus Bacterial St. Louis encephalitis virus Mycoplasma pneumoniae Dengue virus Borrelia burgdorferi (Lyme disease) Orthoretroviruses
Recommended publications
  • Brain Death and the Cervical Spinal Cord: a Confounding Factor for the Clinical Examination
    Spinal Cord (2010) 48, 2–9 & 2010 International Spinal Cord Society All rights reserved 1362-4393/10 $32.00 www.nature.com/sc REVIEW Brain death and the cervical spinal cord: a confounding factor for the clinical examination AR Joffe, N Anton and J Blackwood Department of Pediatrics, Stollery Children’s Hospital, University of Alberta, Edmonton, Alberta, Canada Study design: This study is a systematic review. Objectives: Brain death (BD) is a clinical diagnosis, made by documenting absent brainstem functions, including unresponsive coma and apnea. Cervical spinal cord dysfunction would confound clinical diagnosis of BD. Our objective was to determine whether cervical spinal cord dysfunction is common in BD. Methods: A case of BD showing cervical cord compression on magnetic resonance imaging prompted a literature review from 1965 to 2008 for any reports of cervical spinal cord injury associated with brain herniation or BD. Results: A total of 12 cases of brain herniation in meningitis occurred shortly after a lumbar puncture with acute respiratory arrest and quadriplegia. In total, nine cases of acute brain herniation from various non-meningitis causes resulted in acute quadriplegia. The cases suggest that direct compression of the cervical spinal cord, or the anterior spinal arteries during cerebellar tonsillar herniation cause ischemic injury to the cord. No case series of brain herniation specifically mentioned spinal cord injury, but many survivors had severe disability including spastic limbs. Only two pathological series of BD examined the spinal cord; 56–100% of cases had upper cervical spinal cord damage, suggesting infarction from direct compression of the cord or its arterial blood supply.
    [Show full text]
  • Retroperitoneal Approach for the Treatment of Diaphragmatic Crus Syndrome: Technical Note
    TECHNICAL NOTE J Neurosurg Spine 33:114–119, 2020 Retroperitoneal approach for the treatment of diaphragmatic crus syndrome: technical note Zach Pennington, BS,1 Bowen Jiang, MD,1 Erick M. Westbroek, MD,1 Ethan Cottrill, MS,1 Benjamin Greenberg, MD,2 Philippe Gailloud, MD,3 Jean-Paul Wolinsky, MD,4 Ying Wei Lum, MD,5 and Nicholas Theodore, MD1 1Department of Neurosurgery, Johns Hopkins School of Medicine, Baltimore, Maryland; 2Department of Neurology, University of Texas Southwestern Medical Center, Dallas, Texas; 3Division of Interventional Neuroradiology, Johns Hopkins School of Medicine, Baltimore, Maryland; 4Department of Neurosurgery, Northwestern University, Chicago, Illinois; and 5Department of Vascular Surgery and Endovascular Therapy, Johns Hopkins School of Medicine, Baltimore, Maryland OBJECTIVE Myelopathy selectively involving the lower extremities can occur secondary to spondylotic changes, tumor, vascular malformations, or thoracolumbar cord ischemia. Vascular causes of myelopathy are rarely described. An un- common etiology within this category is diaphragmatic crus syndrome, in which compression of an intersegmental artery supplying the cord leads to myelopathy. The authors present the operative technique for treating this syndrome, describ- ing their experience with 3 patients treated for acute-onset lower-extremity myelopathy secondary to hypoperfusion of the anterior spinal artery. METHODS All patients had compression of a lumbar intersegmental artery supplying the cord; the compression was caused by the diaphragmatic crus. Compression of the intersegmental artery was probably producing the patients’ symp- toms by decreasing blood flow through the artery of Adamkiewicz, causing lumbosacral ischemia. RESULTS All patients underwent surgery to transect the offending diaphragmatic crus. Each patient experienced sub- stantial symptom improvement, and 2 patients made a full neurological recovery before discharge.
    [Show full text]
  • Positive Cases in Suspected Cauda Equina Syndrome
    Edinburgh Research Explorer The clinical features and outcome of scan-negative and scan- positive cases in suspected cauda equina syndrome Citation for published version: Hoeritzauer, I, Pronin, S, Carson, A, Statham, P, Demetriades, AK & Stone, J 2018, 'The clinical features and outcome of scan-negative and scan-positive cases in suspected cauda equina syndrome: a retrospective study of 276 patients', Journal of Neurology, vol. 265, no. 12. https://doi.org/10.1007/s00415- 018-9078-2 Digital Object Identifier (DOI): 10.1007/s00415-018-9078-2 Link: Link to publication record in Edinburgh Research Explorer Document Version: Publisher's PDF, also known as Version of record Published In: Journal of Neurology Publisher Rights Statement: This is an open access article distributed under the terms of the Creative Commons CC BY license, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. General rights Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights. Take down policy The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact [email protected] providing details, and we will remove access to the work immediately and investigate your claim. Download date: 04. Oct. 2021 Journal of Neurology (2018) 265:2916–2926 https://doi.org/10.1007/s00415-018-9078-2 ORIGINAL COMMUNICATION The clinical features and outcome of scan-negative and scan-positive cases in suspected cauda equina syndrome: a retrospective study of 276 patients Ingrid Hoeritzauer1,2,5 · Savva Pronin1,5 · Alan Carson1,2,3 · Patrick Statham2,4,5 · Andreas K.
    [Show full text]
  • Central Pain in the Face and Head
    P1: KWW/KKL P2: KWW/HCN QC: KWW/FLX T1: KWW GRBT050-128 Olesen- 2057G GRBT050-Olesen-v6.cls August 17, 2005 2:10 ••Chapter 128 ◗ Central Pain in the Face and Head J¨orgen Boivie and Kenneth L. Casey CENTRAL PAIN IN THE FACE AND HEAD Anesthesia dolorosa denotes pain in a region with de- creased sensibility after lesions in the CNS or peripheral International Headache Society (IHS) code and diag- nervous system (PNS). The term deafferentation pain is nosis: used for similar conditions, but it is more commonly used in patients with lesions of spinal nerves. 13.18.1 Central causes of facial pain 13.18.1 Anesthesia dolorosa (+ code to specify cause) 13.18.2 Central poststroke pain EPIDEMIOLOGY 13.18.3 Facial pain attributed to multiple sclerosis 13.18.4 Persistent idiopathic facial pain The prevalence of central pain varies depending on the un- 13.18.5 Burning mouth syndrome derlying disorder (Tables 128-1 and 128-2) (7,29). In the ab- 13.19 Other centrally mediated facial pain (+ code to sence of large scale epidemiologic studies, only estimates specify etiology) of central pain prevalence can be quoted. In the only prospective epidemiologic study of central Note that diagnosis with IHS codes 13.18.1, 13.18.4, and pain, 191 patients with central poststroke pain (CPSP) 13.18.5 may have peripheral causes. were followed for 12 months after stroke onset (1). Sixteen World Health Organization (WHO) code and diagnosis: (8.4%) developed central pain, an unexpectedly high inci- G 44.810 or G44.847.
    [Show full text]
  • Cardiovascular Collapse Following Succinylcholine in a Paraplegic Patient
    ParajJleg£a (I973), II, 199-204 CARDIOVASCULAR COLLAPSE FOLLOWING SUCCINYLCHOLINE IN A PARAPLEGIC PATIENT By J. C. SNOW,! M.D., B. J. KRIPKE, M.D. , G. P. SESSIONS, M.D. and A. J. FINCK, M.D. University Hospital, Boston, DeKalb General Hospital, Decatur, Georgia, and Boston University School of Medicine, Boston, Massachusetts 02118 INTRODUCTION SEVERAL reports have been presented that have discussed cardiovascular collapse following the intravenous infusion of succinylcholine in patients with burns, massive trauma,tetanus, spinal cord injury, brain injury,upper or lower motor neuron disease,and uraemia with increased serum potassium. The purpose of this article is to report a spinal cord injured patient who developed cardiac arrest following administration of succinylcholine, possibly due to succinylcholine-induced hyperkalaemia. The anaesthesia management during the course of subsequent surgical procedure proved to be uneventful. CASE REPORT On 7 December 1971, a 20-year-old white man was admitted to the hospital after he fell 50 feet from a scaffold to the ground. He was reported to have been in good health until this accident. His legs and outstretched hands absorbed the major impact. No loss of consciousness was reported at any time. Neurologic examination revealed absent function of muscle groups in the distribution distal to L4, including the sacral segments. There were contractions of both quadriceps muscles in the adductors of the legs. The legs were held in flexion with no evidence of function in his hip abductors, extensors, knee flexors or anything below his knee. He had intact sensation over the entire thigh and medial calf. He had no apparent abdominal or cremasteric reflexes, no knee or ankle jerks, no Babinski responses, and no sacral sparing.
    [Show full text]
  • Cervical Myelopathy • Pragmatic Review
    DIAGNOSIS AND INDICATIONS FOR SURGERY Cervical Spondylitic Myelopathy Timothy A. Garvey, MD Twin Cities Spine Center Minneapolis, MN Cervical Myelopathy • Pragmatic review • Differential diagnosis • History and physical exam • Reality check – clinical cases last few months • Every-day clinical decisions Cervical Myelopathy • Degenerative • Cervical spondylosis, stenosis, OPLL • Trauma • SCI, fracture • Tumor • Neoplasms • Autoimmune • MS, ALS, SLE, etc. • Congenital • Syrinx, Chiari, Down’s Cervical Myelopathy • Infection • Viral: HIV, polio, herpes • Bacterial: Syphilis, epidural abscess • Arthritis • RA, SLE. Sjogren • Vascular • Trauma, AVM, Anklosing spondylitis • Metabolic • Vitamin, liver, gastric bypass, Hepatitis C • Toxins • Methalene blue, anesthetics • Misc. • Radiation, baro trauma, electrical injury Myelopathy • Generic spinal cord dysfunction • Classification systems • Nurick, Ranawat, JOA • Nice review • CSRS 2005, Chapter 15 – Lapsiwala & Trost Cervical Myelopathy • Symptoms • Gait disturbance Ataxia • Weakness, hand function • Sensory – numbness and tingling • Bladder - urgency Cervical Myelopathy • Signs • Reflexes – hyper-reflexia, clonus • Pathologic – Hoffman’s, Babinski • Motor – weakness • Sensory – variable • Ataxia – unsteady gait • Provocative – Lhrmitte’s Pathophysiology/CSM • Cord compression with distortion • Ischemia – anterior spinal flow • Axoplasmic flow diminution • Demyelinization of the white matter in both ascending and descending traits L.F. • 48 year-old female w/work injury • “cc” – left leg dysfunction – Mild urinary frequency – More weakness than pain • PE – Mild weakness, multiple groups – No UMN L.F. 08/06 L4-5 L2-3 L.F. 09/07 L.F. 1/07 L.F. 7/07 Asymptomatic MRI • 100 patients • Disc Protrusion – 20% of 45 – 54 year olds – 57% of > 64 year olds • Cord Impingement – 16% < 64 – 26% > 64 • Cord Compression – 7 of 100 Asymptomatic Degenerative Disk Disease and Spondylosis of the Cervical Spine: MR Imaging.
    [Show full text]
  • Caspr2 Antibodies in Patients with Thymomas
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector MALIGNANCIES OF THE THYMUS Caspr2 Antibodies in Patients with Thymomas Angela Vincent, FRCPath,* and Sarosh R. Irani, MA* neuromuscular junction. Neuromyotonia (NMT) is due to Abstract: Myasthenia gravis is the best known autoimmune disease motor nerve hyperexcitability that leads to muscle fascicula- associated with thymomas, but other conditions can be found in tions and cramps. A proportion of patients have antibodies patients with thymic tumors, including some that affect the central that appear to be directed against brain tissue-derived volt- nervous system (CNS). We have become particularly interested in age-gated potassium channels (VGKCs) that control the ax- patients who have acquired neuromyotonia, the rare Morvan disease, onal membrane potential.4,5 VGKC antibody titers are rela- or limbic encephalitis. Neuromyotonia mainly involves the periph- tively low in NMT. eral nerves, Morvan disease affects both the peripheral nervous Morvan disease is a rare condition first described in system and CNS, and limbic encephalitis is specific to the CNS. 1876 but until recently hardly mentioned outside the French Many of these patients have voltage-gated potassium channel auto- literature.6 The patients exhibit NMT plus autonomic distur- antibodies. All three conditions can be associated with thymomas bance (such as excessive sweating, constipation, and cardiac and may respond to surgical removal of the underlying tumor
    [Show full text]
  • Syringomyelia in Cervical Spondylosis: a Rare Sequel H
    THIEME Editorial 1 Editorial Syringomyelia in Cervical Spondylosis: A Rare Sequel H. S. Bhatoe1 1 Department of Neurosciences, Max Super Specialty Hospital, Patparganj, New Delhi, India Indian J Neurosurg 2016;5:1–2. Neurological involvement in cervical spondylosis usually the buckled hypertrophic ligament flavum compresses the implies radiculopathy or myelopathy. Cervical spondylotic cord. Ischemia due to compromise of microcirculation and myelopathy is the commonest cause of myelopathy in the venous congestion, leading to focal demyelination.3 geriatric age group,1 and often an accompaniment in adult Syringomyelia is an extremely rare sequel of chronic cervical patients manifesting central cord syndrome and spinal cord cord compression due to spondylotic process, and manifests as injury without radiographic abnormality. Myelopathy is the accelerated myelopathy (►Fig. 1). Pathogenesis of result of three factors that often overlap: mechanical factors, syringomyelia is uncertain. Al-Mefty et al4 postulated dynamic-repeated microtrauma, and ischemia of spinal cord occurrence of myelomalacia due to chronic compression of microcirculation.2 Age-related mechanical changes include the cord, followed by phagocytosis, leading to a formation of hypertrophy of the ligamentum flavum, formation of the cavity that extends further. However, Kimura et al5 osteophytic bars, degenerative disc prolapse, all of them disagreed with this hypothesis, and postulated that following contributing to a narrowing of the spinal canal. Degenerative compression of the cord, there is slosh effect cranially and kyphosis and subluxation often aggravates the existing caudally, leading to an extension of the syrinx. It is thus likely compressiononthespinalcord.Flexion–extension that focal cord cavitation due to compression and ischemia movements of the spinal cord places additional, dynamic occurs due to periventricular fluid egress into the cord, the stretch on the cord that is compressed.
    [Show full text]
  • Unusual Case of Progressive Multifocal Leukoencephalopathy in a Patient with Sjögren Syndrome
    Henry Ford Health System Henry Ford Health System Scholarly Commons Pathology Articles Pathology 1-15-2021 Unusual Case of Progressive Multifocal Leukoencephalopathy in a Patient With Sjögren Syndrome Ifeoma Onwubiko Kanika Taneja Nilesh S. Gupta Abir Mukherjee Follow this and additional works at: https://scholarlycommons.henryford.com/pathology_articles CASE REPORT Unusual Case of Progressive Multifocal Leukoencephalopathy in a Patient With Sjögren Syndrome Ifeoma Ndidi Onwubiko, MD, MPH, Kanika Taneja, MD, Nilesh Gupta, MD, and Abir Mukherjee, MD 03/05/2021 on BhDMf5ePHKav1zEoum1tQfN4a+kJLhEZgbsIHo4XMi0hCywCX1AWnYQp/IlQrHD3i3D0OdRyi7TvSFl4Cf3VC1y0abggQZXdgGj2MwlZLeI= by http://journals.lww.com/amjforensicmedicine from Downloaded 84% neutrophils; glucose, 71 mmol/L; protein, 183 g/dL with neg- Abstract: Progressive multifocal leukoencephalopathy (PML) is a rare Downloaded ative cultures and no malignant cells on cytology). Hepatitis C anti- demyelinating disease caused by reactivation of John Cunningham virus af- body screen was negative. Immunoglobin G antibodies to Sjögren fecting typically subcortical and periventricular white matter of immunocom- syndrome–related antigen A and anti–Sjögren syndrome-related from promised hosts (human immunodeficiency virus infection, hematologic antigen B were positive. Thyroglobulin antibodies and antinuclear http://journals.lww.com/amjforensicmedicine malignancies). Cerebral hemispheric white matter is most commonly affected antibodies were elevated. Autoimmune serological tests for other by lytic
    [Show full text]
  • Research Experiences Research Is an Important Part of the Training of Child Neurology Residents at Children’S Mercy Hospital
    Research Experiences Research is an important part of the training of Child Neurology residents at Children’s Mercy Hospital. Training in research starts with the research mentor that each resident is encouraged to engage at the beginning of their child neurology training. The residents are also invited to complete a course on biostatistics and each resident is expected to complete a 1 year course in Quality Improvement and Clinical Safety. As part of the QI course each resident will initiate a QI project which can be presented at CMH Research Day. Each resident is also given the opportunity to present at the yearly Missouri Valley Child Neurology Colloquium. This is a joint meeting with The University of Washington and Saint Louis University Child Neurology programs. Finally, each resident is expected to graduate with at least one first author publication. Over the last 4 years our residents have given over 100 talks (with approximately 20% of these original research or case presentations) and have published 13 papers in peer reviewed journals (including original research and review papers). Faculty Program Director Jean-Baptiste (J.B.) Le Pichon, MD, PhD: Dr. Le Pichon was born in New York City but grew up in France. He completed his undergraduate education at Gannon University, Erie Pennsylvania followed by an MD/PhD program at Baylor College of Medicine, Houston Texas. Dr. Le Pichon completed his PhD in neuroscience. Following medical school, he completed two years of Pediatrics at Driscoll Children’s Hospital in Corpus Christi and then completed a Child Neurology Residency at Texas Children’s Hospital.
    [Show full text]
  • Neurosyphilis Presenting with Myelitis-Case Series and Literature Review
    Neurosyphilis presenting with myelitis-Case series and literature review Yali Wu Capital Medical University Aliated Beijing Ditan Hospital https://orcid.org/0000-0002-9737-6439 Wenqing Wu ( [email protected] ) https://orcid.org/0000-0001-7428-5529 Case report Keywords: Syphilis, Neurosyphilis, Spinal cord, Magnetic resonance imaging Posted Date: April 5th, 2019 DOI: https://doi.org/10.21203/rs.2.1849/v1 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Version of Record: A version of this preprint was published at Journal of Infection and Chemotherapy on February 1st, 2020. See the published version at https://doi.org/10.1016/j.jiac.2019.09.007. Page 1/9 Abstract Background Neurosyphilis is a great imitator because of its various clinical symptoms. Syphilitic myelitis is extremely rare manifestation of neurosyphilis and often misdiagnosed. However, a small amount of literature in the past described its clinical manifestations and imaging features, and there was no relevant data on the prognosis, especially the long-term prognosis. In this paper, 4 syphilis myelitis patients admitted to our hospital between July 2012 and July 2017 were retrospectively reviewed. In the 4 patients, 2 were females, and 2 were males. We present our experiences with syphilitic myelitis, discuss the characteristics, treatment and prognosis. Case presentation The diagnosis criteria were applied: (1) diagnosis of myelitis established by two experienced neurologist based on symptoms and longitudinally extensive transverse myelitis (LETM) at the cervical and thoracic levels mimicked neuromyelitis optic (NMO) on magnetic resonance imaging (MRI) ; (2) Neurosyphilis (NS) was diagnosed by positive treponema pallidum particle assay (TPPA) and toluidine red untreated serum test (TRUST) in the serum and CSF; (3) negative human immunodeciency virus (HIV).
    [Show full text]
  • Degenerative Cervical Myelopathy: Clinical Presentation, Assessment, and Natural History
    Journal of Clinical Medicine Review Degenerative Cervical Myelopathy: Clinical Presentation, Assessment, and Natural History Melissa Lannon and Edward Kachur * Division of Neurosurgery, McMaster University, Hamilton, ON L8S 4L8, Canada; [email protected] * Correspondence: [email protected] Abstract: Degenerative cervical myelopathy (DCM) is a leading cause of spinal cord injury and a major contributor to morbidity resulting from narrowing of the spinal canal due to osteoarthritic changes. This narrowing produces chronic spinal cord compression and neurologic disability with a variety of symptoms ranging from mild numbness in the upper extremities to quadriparesis and incontinence. Clinicians from all specialties should be familiar with the early signs and symptoms of this prevalent condition to prevent gradual neurologic compromise through surgical consultation, where appropriate. The purpose of this review is to familiarize medical practitioners with the pathophysiology, common presentations, diagnosis, and management (conservative and surgical) for DCM to develop informed discussions with patients and recognize those in need of early surgical referral to prevent severe neurologic deterioration. Keywords: degenerative cervical myelopathy; cervical spondylotic myelopathy; cervical decompres- sion Citation: Lannon, M.; Kachur, E. Degenerative Cervical Myelopathy: Clinical Presentation, Assessment, 1. Introduction and Natural History. J. Clin. Med. Degenerative cervical myelopathy (DCM) is now the leading cause of spinal cord in- 2021, 10, 3626. https://doi.org/ jury [1,2], resulting in major disability and reduced quality of life. While precise prevalence 10.3390/jcm10163626 is not well described, a 2017 Canadian study estimated a prevalence of 1120 per million [3]. DCM results from narrowing of the spinal canal due to osteoarthritic changes. This Academic Editors: Allan R.
    [Show full text]