Up to a Point, Lord Copper
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Middleware in Action 2007
Technology Assessment from Ken North Computing, LLC Middleware in Action Industrial Strength Data Access May 2007 Middleware in Action: Industrial Strength Data Access Table of Contents 1.0 Introduction ............................................................................................................. 2 Mature Technology .........................................................................................................3 Scalability, Interoperability, High Availability ...................................................................5 Components, XML and Services-Oriented Architecture..................................................6 Best-of-Breed Middleware...............................................................................................7 Pay Now or Pay Later .....................................................................................................7 2.0 Architectures for Distributed Computing.................................................................. 8 2.1 Leveraging Infrastructure ........................................................................................ 8 2.2 Multi-Tier, N-Tier Architecture ................................................................................. 9 2.3 Persistence, Client-Server Databases, Distributed Data ....................................... 10 Client-Server SQL Processing ......................................................................................10 Client Libraries .............................................................................................................. -
LINGI2172 Databases 2013-2014
Université Catholique de Louvain - DESCRIPTIF DE COURS 2013-2014 - LINGI2172 LINGI2172 Databases 2013-2014 6.0 crédits 30.0 h + 30.0 h 2q Enseignants: Lambeau Bernard ; Langue Français d'enseignement: Lieu du cours Louvain-la-Neuve Ressources en ligne: > http://icampus.uclouvain.be/claroline/course/index.php?cid=lingi2172 Préalables : Basic knowledge of database management, good abilities in programming. Thèmes abordés : * Data Base Management Systems (objectives, requirements, architecture). * The Relational data model (formal theory, first-order logic, constraints). * Conceptual models (entity-relationship, object role modeling). * Logical database design (normal forms & mp; normalization, ER-To-Relational) * Physical database design and storage (tables and keys, indexes, file structures). * Querying databases (Relational Algebra, Relational Calculus, Tutorial D, SQL) * ACID properties (Atomicity, Consistency, Isolation, Durability), Concurrency Control, Recovery techniques. * Programming database applications (JDBC, Database Cursors, Object-Relational Mapping, Relations as First-class Citizen). * Recent or more advanced trends in the database field (object-oriented databases, Big Data, NoSQL, NewSQL) Acquis Students completing this course successfully will be able to : * Explain the scenarios in which using a database is more convenient than programming with data files; d'apprentissage * Explain the characteristics of the database approach, where they come from and contrast them with current trends in the database field-- Identify and describe the main functions of a database management system; * Categorize conceptual, logical and physical data models based on the concepts they provide to describe the database structure; * Understand the main principles and mathematical theory of the relational approach to database management; * Design databases using a systematic approach, from a conceptual model through a logical level (i.e., a relational schema) into a physical model (i.e., tables and indexes); * Use SQL (DDL) to implement a relational database schema. -
Advanced Sql Programming Third Edition
JOE CELKO’S SQL FOR SMARTIES: ADVANCED SQL PROGRAMMING THIRD EDITION The Morgan Kaufmann Series in Data Management Systems Series Editor: Jim Gray, Microsoft Research • Joe Celko’s SQL for Smarties: Advanced SQL Programming, Third Edition, Joe Celko • Moving Objects Databases, Ralf Güting and Markus Schneider • Foundations of Multidimensional and Metric Data Structures, Hanan Samet • Joe Celko’s SQL Programming Style, Joe Celko • Data Mining, Second Edition: Concepts and Techniques, Ian Witten and Eibe Frank • Fuzzy Modeling and Genetic Algorithms for Data Mining and Exploration, Earl Cox • Data Modeling Essentials, Third Edition, Graeme C. Simsion and Graham C. Witt • Location-Based Services, Jochen Schiller and Agnès Voisard • Database Modeling with Microsft® Visio for Enterprise Architects, Terry Halpin, Ken Evans, Patrick Hallock, Bill Maclean • Designing Data-Intensive Web Applications, Stephano Ceri, Piero Fraternali, Aldo Bongio, Marco Brambilla, Sara Comai, and Maristella Matera • Mining the Web: Discovering Knowledge from Hypertext Data, Soumen Chakrabarti • Advanced SQL: 1999—Understanding Object-Relational and Other Advanced Features, Jim Melton • Database Tuning: Principles, Experiments, and Troubleshooting Techniques, Dennis Shasha and Philippe Bonnet • SQL:1999—Understanding Relational Language Components, Jim Melton and Alan R. Simon • Information Visualization in Data Mining and Knowledge Discovery, Edited by Usama Fayyad, Georges G. Grinstein, and Andreas Wierse • Transactional Information Systems: Theory, Algorithms, -
A Framework for Ontology-Based Library Data Generation, Access and Exploitation
Universidad Politécnica de Madrid Departamento de Inteligencia Artificial DOCTORADO EN INTELIGENCIA ARTIFICIAL A framework for ontology-based library data generation, access and exploitation Doctoral Dissertation of: Daniel Vila-Suero Advisors: Prof. Asunción Gómez-Pérez Dr. Jorge Gracia 2 i To Adelina, Gustavo, Pablo and Amélie Madrid, July 2016 ii Abstract Historically, libraries have been responsible for storing, preserving, cata- loguing and making available to the public large collections of information re- sources. In order to classify and organize these collections, the library commu- nity has developed several standards for the production, storage and communica- tion of data describing different aspects of library knowledge assets. However, as we will argue in this thesis, most of the current practices and standards available are limited in their ability to integrate library data within the largest information network ever created: the World Wide Web (WWW). This thesis aims at providing theoretical foundations and technical solutions to tackle some of the challenges in bridging the gap between these two areas: library science and technologies, and the Web of Data. The investigation of these aspects has been tackled with a combination of theoretical, technological and empirical approaches. Moreover, the research presented in this thesis has been largely applied and deployed to sustain a large online data service of the National Library of Spain: datos.bne.es. Specifically, this thesis proposes and eval- uates several constructs, languages, models and methods with the objective of transforming and publishing library catalogue data using semantic technologies and ontologies. In this thesis, we introduce marimba-framework, an ontology- based library data framework, that encompasses these constructs, languages, mod- els and methods. -
Relational Database Management System
Relational database management system A relational database management system (RDBMS) is a database management system (DBMS) based on the relational model invented by Edgar F. Codd, of IBM's San Jose Research Laboratory fame. Most databases in widespread use today are based on his relational database model.[1] RDBMSs have been a common choice for the storage of information in databases used for financial records, manufacturing and logistical information, personnel data, and other applications since the 1980s. Relational databases have often replaced legacy hierarchical databases and network databases because, they were easier to implement and administer. Nonetheless, relational databases received continued, The general structure of a relational unsuccessful challenges by object database management systems in the 1980s and database. 1990s, (which were introduced in an attempt to address the so-called object- relational impedance mismatch between relational databases and object-oriented application programs), as well as by XML database management systems in the 1990s. However, due to the expanse of technologies, such as horizontal scaling of computer clusters, NoSQL databases have recently begun to peck away at the market share of RDBMSs.[2] Contents Market share History Historical usage of the term See also References Market share According to DB-Engines, in May 2017, the most widely used systems are Oracle, MySQL (open source), Microsoft SQL Server, PostgreSQL (open source), IBM DB2, Microsoft Access, and SQLite (open source).[3] According to research company Gartner, in 2011, the five leading commercial relational database vendors by revenue were Oracle (48.8%), IBM (20.2%), Microsoft (17.0%), SAP including Sybase (4.6%), and Teradata (3.7%).[4] History In 1974, IBM began developing System R, a research project to develop a prototype RDBMS.[5][6] However, the first commercially available RDBMS was Oracle, released in 1979 by Relational Software, now Oracle Corporation.[7] Other examples of an RDBMS include DB2, SAP Sybase ASE, and Informix. -
How to Handle Missing Information Without Using NULL
How To Handle Missing Information Without Using NULL Hugh Darwen [email protected] www.TheThirdManifesto.com First presentation: 09 May 2003, Warwick University Updated 27 September 2006 “Databases, Types, and The Relational Model: The Third Manifesto”, by C.J. Date and Hugh Darwen (3rd edition, Addison-Wesley, 2005), contains a categorical proscription against support for anything like SQL’s NULL, in its blueprint for relational database language design. The book, however, does not include any specific and complete recommendation as to how the problem of “missing information” might be addressed in the total absence of nulls. This presentation shows one way of doing it, assuming the support of a DBMS that conforms to The Third Manifesto (and therefore, we claim, to The Relational Model of Data). It is hoped that alternative solutions based on the same assumption will be proposed so that comparisons can be made. 1 Dedicated to Edgar F. Codd 1923-2003 Ted Codd, inventor of the Relational Model of Data, died on April 18th, 2003. A tribute by Chris Date can be found at http://www.TheThirdManifesto.com. 2 SQL’s “Nulls” Are A Disaster No time to explain today, but see: Relational Database Writings 1985-1989 by C.J.Date with a special contribution by H.D. ( as Andrew Warden) Relational Database Writings 1989-1991 by C.J.Date with Hugh Darwen Relational Database Writings 1991-1994 by C.J.Date Relational Database Writings 1994-1997 by C.J.Date Introduction to Database Systems (8th edition ) by C.J. Date Databases, Types, and The Relational Model: The Third Manifesto by C.J. -
OLAP Solutions Building Multidimensional Information Systems
Y L F M A E T Team-Fly® OLAP Solutions Building Multidimensional Information Systems Second Edition Erik Thomsen Wiley Computer Publishing John Wiley & Sons, Inc. NEW YORK • CHICHESTER • WEINHEIM • BRISBANE • SINGAPORE • TORONTO OLAP Solutions Building Multidimensional Information Systems Second Edition OLAP Solutions Building Multidimensional Information Systems Second Edition Erik Thomsen Wiley Computer Publishing John Wiley & Sons, Inc. NEW YORK • CHICHESTER • WEINHEIM • BRISBANE • SINGAPORE • TORONTO Publisher: Robert Ipsen Editor: Robert Elliott Developmental Editor: Emilie Herman Managing Editor: John Atkins New Media Editor: Brian Snapp Text Design & Composition: MacAllister Publishing Services, LLC Designations used by companies to distinguish their products are often claimed as trademarks. In all instances where John Wiley & Sons, Inc., is aware of a claim, the product names appear in initial capital or all capital letters. Readers, however, should contact the appropriate companies for more complete information regarding trademarks and registration. This book is printed on acid-free paper. Copyright © 2002 by Erik Thomsen. All rights reserved. Published by John Wiley & Sons, Inc. Published simultaneously in Canada. No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted under Sections 107 or 108 of the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or authorization through payment of the appropriate per-copy fee to the Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 750-4744. Requests to the Publisher for permission should be addressed to the Permissions Department, John Wiley & Sons, Inc., 605 Third Avenue, New York, NY 10158-0012, (212) 850-6011, fax (212) 850-6008, E-Mail: PERMREQ @ WILEY.COM. -
LINGI2172 Databases 2014-2015
Université Catholique de Louvain - COURSES DESCRIPTION FOR 2014-2015 - LINGI2172 LINGI2172 Databases 2014-2015 6.0 credits 30.0 h + 30.0 h 2q Teacher(s) : Lambeau Bernard ; Language : Français Place of the course Louvain-la-Neuve Inline resources: > http://icampus.uclouvain.be/claroline/course/index.php?cid=lingi2172 Main themes : -- Data Base Management Systems (objectives, requirements, architecture). -- The Relational data model (formal theory, first-order logic, constraints). -- Conceptual models (entity-relationship, object role modeling). -- Logical database design (normal forms & mp; normalization, ER-To-Relational) -- Physical database design and storage (tables and keys, indexes, file structures). -- Querying databases (Relational Algebra, Relational Calculus, Tutorial D, SQL) -- ACID properties (Atomicity, Consistency, Isolation, Durability), Concurrency Control, Recovery techniques. -- Programming database applications (JDBC, Database Cursors, Object-Relational Mapping, Relations as First-class Citizen). -- Recent or more advanced trends in the database field (object-oriented databases, Big Data, NoSQL, NewSQL) Aims : Given the learning outcomes of the "Master in Computer Science and Engineering" program, this course contributes to the development, acquisition and evaluation of the following learning outcomes: -- INFO1.1-3 -- INFO2.1-4 -- INFO4.1-4 -- INFO5.1-5 -- INFO6.1, INFO6.4 Given the learning outcomes of the "Master [120] in Computer Science" program, this course contributes to the development, acquisition and evaluation -
Joe Celko's SQL for Smarties
Joe Celko’s SQL for Smarties Fourth Edition The Morgan Kaufmann Series in Data Management Systems (Selected Titles) Joe Celko’s Data, Measurements and Location-Based Services Web Farming for the Data Warehouse Standards in SQL Jochen Schiller and Agnès Voisard Richard D. Hackathorn Joe Celko Managing Time in Relational Databases: Management of Heterogeneous and Information Modeling and Relational How to Design, Update and Query Autonomous Database Systems Databases, 2 nd Edition Temporal Data Edited by Ahmed Elmagarmid, Marek Terry Halpin, Tony Morgan Tom Johnston and Randall Weis Rusinkiewicz, Amit Sheth Joe Celko’s Thinking in Sets Database Modeling with Microsoft® Visio Object-Relational DBMSs: 2 nd Edition Joe Celko for Enterprise Architects Michael Stonebraker and Paul Brown, Business Metadata Terry Halpin, Ken Evans, Patrick Hallock, with Bill Inmon, Bonnie O’Neil, Lowell Fryman Bill Maclean Dorothy Moore Unleashing Web 2.0 Designing Data-Intensive Web Applications Universal Database Management: A Guide Gottfried Vossen, Stephan Hagemann Stephano Ceri, Piero Fraternali, Aldo to Object/Relational Technology Bongio, Marco Brambilla, Sara Comai, Cynthia Maro Saracco Enterprise Knowledge Management Maristella Matera rd David Loshin Readings in Database Systems, 3 Edition Mining the Web: Discovering Knowledge Edited by Michael Stonebraker, Joseph M. nd Business Process Change, 2 Edition from Hypertext Data Hellerstein Paul Harmon Soumen Chakrabarti Understanding SQL’s Stored Procedures: nd IT Manager’s Handbook, 2 Edition Advanced SQL: 1999—Understanding Object- A Complete Guide to SQL/PSM Bill Holtsnider & Brian Jaffe Relational and Other Advanced Features Jim Melton Joe Celko’s Puzzles and Answers, Jim Melton Principles of Multimedia Database Systems nd 2 Edition Database Tuning: Principles, Experiments, V. -
Database Management Systems Ebooks for All Edition (
Database Management Systems eBooks For All Edition (www.ebooks-for-all.com) PDF generated using the open source mwlib toolkit. See http://code.pediapress.com/ for more information. PDF generated at: Sun, 20 Oct 2013 01:48:50 UTC Contents Articles Database 1 Database model 16 Database normalization 23 Database storage structures 31 Distributed database 33 Federated database system 36 Referential integrity 40 Relational algebra 41 Relational calculus 53 Relational database 53 Relational database management system 57 Relational model 59 Object-relational database 69 Transaction processing 72 Concepts 76 ACID 76 Create, read, update and delete 79 Null (SQL) 80 Candidate key 96 Foreign key 98 Unique key 102 Superkey 105 Surrogate key 107 Armstrong's axioms 111 Objects 113 Relation (database) 113 Table (database) 115 Column (database) 116 Row (database) 117 View (SQL) 118 Database transaction 120 Transaction log 123 Database trigger 124 Database index 130 Stored procedure 135 Cursor (databases) 138 Partition (database) 143 Components 145 Concurrency control 145 Data dictionary 152 Java Database Connectivity 154 XQuery API for Java 157 ODBC 163 Query language 169 Query optimization 170 Query plan 173 Functions 175 Database administration and automation 175 Replication (computing) 177 Database Products 183 Comparison of object database management systems 183 Comparison of object-relational database management systems 185 List of relational database management systems 187 Comparison of relational database management systems 190 Document-oriented database 213 Graph database 217 NoSQL 226 NewSQL 232 References Article Sources and Contributors 234 Image Sources, Licenses and Contributors 240 Article Licenses License 241 Database 1 Database A database is an organized collection of data. -
Appendix A: References and Bibliography Appendix A: References and Bibliography
SQL: A Comparative Survey Appendix A: References and Bibliography Appendix A: References and Bibliography Apart from [9], a closely related work that I recommend, these are all referenced in the body of the book. [1] Frederick P. Brooks Jr.: The Mythical Man-Month (20th anniversary edition). Reading, Mass.: Addison-Wesley (1995) [2] Stephen Cannan and Gerard Otten: SQL—The Standard Handbook. Maidenhead, UK: McGraw- Hill International (UK) Limited (1993). This book covers SQL:1992. Stephen Cannan was an active participant in ISO/IEC JTC 1/SC 32/WG 3, the working group responsible for the development of the standard and he later became the convenor (ISO’s term for chairperson) of that working group. [3] E.F. Codd. “A Relational Model of Data for Large Shared Data Banks”, CACM 13, no. 6 (June 1970). Republished in “Milestones of Research”, CACM 25, No. 1 (January 1982). [4] E.F. Codd: “A Data Base Sublanguage Founded on the Relational Calculus”, Proc. 1971 ACM SIGFIDET Workshop on Data Description, Access and Control, San Diego, Calif. (November 1971). [5] E.F. Codd: The Relational Model for Database Management—Version 2. Reading, Mass.: Addison-Wesley (1990). [6] E.F. Codd: “Extending the Database Relational Model to Capture More Meaning”, ACM TODS 4, No. 4 (December 1979). [7] Hugh Darwen: An Introduction to Relational Database Theory. A free download available, like the present book, at http://bookboon.com/en/textbooks/it-programming [8] Hugh Darwen: Business System 12. (PDF, slides and notes), available at www.northumbria.ac.uk/sd/academic/ceis/enterprise/third_manifesto/ [9] C.J. -
Strikt Relationele Database Is Een Nobel Doel
Database SQL misschien het best haalbare in een feilbare wereld Strikt relationele database is een nobel doel Peter Verkooijen SQL zondigt tegen de regels van het relationele vanaf dag één besloten dubbele rijen toe te staan”, zegt Rick van model. Moeten we ons neerleggen bij de der Lans. “Dat is volgens mij de eerste grote discussie geweest. dominantie van SQL of zijn alternatieven Later is daar de discussie over de NULL-waarden bijgekomen. denkbaar? Alphora’s Dataphor is het enige Maar daar zijn de grondleggers van het relationele model het ook systeem dat de zegen van relationeel opper- nooit over eens geweest.” priester Chris Date heeft gekregen. De NULL-waarde introduceert een variant van drie waarden logica in het relationele model. “Dat is het fundamentele Dataphor ontstond uit puur pragmatische redenen. “We zijn probleem”, volgens Bryn Rhodes. “NULL is toegevoegd als vlag oorspronkelijk met database-applicaties begonnen”, zegt Bryn voor ontbrekende data, maar verstoort het logische systeem. Je Rhodes, hoofd ontwikkelaar van Alphora. “We liepen steeds tegen kunt NULL niet relateren met NULL. Problemen in SQL gaan dezelfde problemen aan waarvoor we steeds dezelfde code moes- verder dan alleen die NULL-waarden. Wij proberen met Dataphor ten schrijven. De beste manier om die problemen generiek op te zoveel mogelijk tekortkomingen te repareren als we kunnen.” lossen was het relationele model zo dicht mogelijk te benaderen.” Dataphor is het enige database-product waar Chris Date zich Alphora mengt zich met Dataphor in een oude, maar hardnekkige achter kan scharen. Dataphor of D4 is gebaseerd op Tutorial D uit discussie. SQL houdt zich niet strikt aan het relationele model.