Regular Rings, Finite Projective Resolutions, and Grothendieck Groups
Regular Rings, Finite Projective Resolutions, and Grothendieck Groups 2 Recall that a local ring (R; m; K) is regular if its embedding dimension, dimK (m=m ), which may also be described as the least number of generators of the maximal ideal m, is equal to its Krull dimension. This means that a minimal set of generators of m is also a system of parameters. Such a system of parameters is called regular. Another equivalent condition is the the associated graded ring of R with respect to m be a polynomial ring, in which case the number of variables is the same as dim(R). (The associated graded ring will be generated minimally by m=m2, and has the same Krull dimension as R. It follows at once that if it is polynomial, then R is regular. But if R is regular, there cannot be any 2 algebraic relations over K on a basis for m=m , or the Krull dimension of grmR will be smaller than that of R. It is easy to see that a regular local ring is a domain: in fact, whenever grmR is a domain, R is a domain (if a 2 mh − mh+1 and b 2 mk − mk+1 are nonzero, then ab cannot be 0, or even in mh+k+1, or else the product of the images of a in mh=mh+1 and mk in k k+1 m =m will be 0 in grmR. We shall see eventually that regular local rings are UFDs and, in particular, are normal. The following fact about regular local rings comes up frequently.
[Show full text]