Chintegrality.Pdf
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Dimension Theory and Systems of Parameters
Dimension theory and systems of parameters Krull's principal ideal theorem Our next objective is to study dimension theory in Noetherian rings. There was initially amazement that the results that follow hold in an arbitrary Noetherian ring. Theorem (Krull's principal ideal theorem). Let R be a Noetherian ring, x 2 R, and P a minimal prime of xR. Then the height of P ≤ 1. Before giving the proof, we want to state a consequence that appears much more general. The following result is also frequently referred to as Krull's principal ideal theorem, even though no principal ideals are present. But the heart of the proof is the case n = 1, which is the principal ideal theorem. This result is sometimes called Krull's height theorem. It follows by induction from the principal ideal theorem, although the induction is not quite straightforward, and the converse also needs a result on prime avoidance. Theorem (Krull's principal ideal theorem, strong version, alias Krull's height theorem). Let R be a Noetherian ring and P a minimal prime ideal of an ideal generated by n elements. Then the height of P is at most n. Conversely, if P has height n then it is a minimal prime of an ideal generated by n elements. That is, the height of a prime P is the same as the least number of generators of an ideal I ⊆ P of which P is a minimal prime. In particular, the height of every prime ideal P is at most the number of generators of P , and is therefore finite. -
3. Some Commutative Algebra Definition 3.1. Let R Be a Ring. We
3. Some commutative algebra Definition 3.1. Let R be a ring. We say that R is graded, if there is a direct sum decomposition, M R = Rn; n2N where each Rn is an additive subgroup of R, such that RdRe ⊂ Rd+e: The elements of Rd are called the homogeneous elements of order d. Let R be a graded ring. We say that an R-module M is graded if there is a direct sum decomposition M M = Mn; n2N compatible with the grading on R in the obvious way, RdMn ⊂ Md+n: A morphism of graded modules is an R-module map φ: M −! N of graded modules, which respects the grading, φ(Mn) ⊂ Nn: A graded submodule is a submodule for which the inclusion map is a graded morphism. A graded ideal I of R is an ideal, which when considered as a submodule is a graded submodule. Note that the kernel and cokernel of a morphism of graded modules is a graded module. Note also that an ideal is a graded ideal iff it is generated by homogeneous elements. Here is the key example. Example 3.2. Let R be the polynomial ring over a ring S. Define a direct sum decomposition of R by taking Rn to be the set of homogeneous polynomials of degree n. Given a graded ideal I in R, that is an ideal generated by homogeneous elements of R, the quotient is a graded ring. We will also need the notion of localisation, which is a straightfor- ward generalisation of the notion of the field of fractions. -
Positivstellensatz for Semi-Algebraic Sets in Real Closed Valued Fields
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 143, Number 10, October 2015, Pages 4479–4484 http://dx.doi.org/10.1090/proc/12595 Article electronically published on April 29, 2015 POSITIVSTELLENSATZ FOR SEMI-ALGEBRAIC SETS IN REAL CLOSED VALUED FIELDS NOA LAVI (Communicated by Mirna Dˇzamonja) Abstract. The purpose of this paper is to give a characterization for polyno- mials and rational functions which admit only non-negative values on definable sets in real closed valued fields. That is, generalizing the relative Positivstellen- satz for sets defined also by valuation terms. For this, we use model theoretic tools, together with existence of canonical valuations. 1. Introduction A “Nichtnegativstellensatz” in real algebraic geometry is a theorem which gives an algebraic characterization of those polynomials admitting only non-negative val- ues on a given set. The original Nichtnegativstellensatz is the solution by Artin in [1], Theorem 45, to Hilbert’s seventeenth problem: a polynomial taking only non-negative values can be written as a sum of squares of rational functions. Later on A. Robinson [8] generalized the theorem to any real closed field using the model completeness of real closed fields [9], a model theoretic property which means that any formula is equivalent to an existential formula in the language of rings. For proof see [6, Theorem 5.1, p. 49, and Theorem 5.7, p. 54]. In real algebra, valua- tions come very naturally into the picture. A real closed field K admits a canonical valuation which is non-trivial if and only if the field is non-archimedeam, that is, not embeddable into R. -
Associated Graded Rings Derived from Integrally Closed Ideals And
PUBLICATIONS MATHÉMATIQUES ET INFORMATIQUES DE RENNES MELVIN HOCHSTER Associated Graded Rings Derived from Integrally Closed Ideals and the Local Homological Conjectures Publications des séminaires de mathématiques et informatique de Rennes, 1980, fasci- cule S3 « Colloque d’algèbre », , p. 1-27 <http://www.numdam.org/item?id=PSMIR_1980___S3_1_0> © Département de mathématiques et informatique, université de Rennes, 1980, tous droits réservés. L’accès aux archives de la série « Publications mathématiques et informa- tiques de Rennes » implique l’accord avec les conditions générales d’utili- sation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d’une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright. Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/ ASSOCIATED GRADED RINGS DERIVED FROM INTEGRALLY CLOSED IDEALS AND THE LOCAL HOMOLOGICAL CONJECTURES 1 2 by Melvin Hochster 1. Introduction The second and third sections of this paper can be read independently. The second section explores the properties of certain "associated graded rings", graded by the nonnegative rational numbers, and constructed using filtrations of integrally closed ideals. The properties of these rings are then exploited to show that if x^x^.-^x^ is a system of paramters of a local ring R of dimension d, d •> 3 and this system satisfies a certain mild condition (to wit, that R can be mapped -
Varieties of Quasigroups Determined by Short Strictly Balanced Identities
Czechoslovak Mathematical Journal Jaroslav Ježek; Tomáš Kepka Varieties of quasigroups determined by short strictly balanced identities Czechoslovak Mathematical Journal, Vol. 29 (1979), No. 1, 84–96 Persistent URL: http://dml.cz/dmlcz/101580 Terms of use: © Institute of Mathematics AS CR, 1979 Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use. This document has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://dml.cz Czechoslovak Mathematical Journal, 29 (104) 1979, Praha VARIETIES OF QUASIGROUPS DETERMINED BY SHORT STRICTLY BALANCED IDENTITIES JAROSLAV JEZEK and TOMAS KEPKA, Praha (Received March 11, 1977) In this paper we find all varieties of quasigroups determined by a set of strictly balanced identities of length ^ 6 and study their properties. There are eleven such varieties: the variety of all quasigroups, the variety of commutative quasigroups, the variety of groups, the variety of abelian groups and, moreover, seven varieties which have not been studied in much detail until now. In Section 1 we describe these varieties. A survey of some significant properties of arbitrary varieties is given in Section 2; in Sections 3, 4 and 5 we assign these properties to the eleven varieties mentioned above and in Section 6 we give a table summarizing the results. 1. STRICTLY BALANCED QUASIGROUP IDENTITIES OF LENGTH £ 6 Quasigroups are considered as universal algebras with three binary operations •, /, \ (the class of all quasigroups is thus a variety). -
Dedekind Domains
Dedekind Domains Mathematics 601 In this note we prove several facts about Dedekind domains that we will use in the course of proving the Riemann-Roch theorem. The main theorem shows that if K=F is a finite extension and A is a Dedekind domain with quotient field F , then the integral closure of A in K is also a Dedekind domain. As we will see in the proof, we need various results from ring theory and field theory. We first recall some basic definitions and facts. A Dedekind domain is an integral domain B for which every nonzero ideal can be written uniquely as a product of prime ideals. Perhaps the main theorem about Dedekind domains is that a domain B is a Dedekind domain if and only if B is Noetherian, integrally closed, and dim(B) = 1. Without fully defining dimension, to say that a ring has dimension 1 says nothing more than nonzero prime ideals are maximal. Moreover, a Noetherian ring B is a Dedekind domain if and only if BM is a discrete valuation ring for every maximal ideal M of B. In particular, a Dedekind domain that is a local ring is a discrete valuation ring, and vice-versa. We start by mentioning two examples of Dedekind domains. Example 1. The ring of integers Z is a Dedekind domain. In fact, any principal ideal domain is a Dedekind domain since a principal ideal domain is Noetherian integrally closed, and nonzero prime ideals are maximal. Alternatively, it is easy to prove that in a principal ideal domain, every nonzero ideal factors uniquely into prime ideals. -
8 Complete Fields and Valuation Rings
18.785 Number theory I Fall 2016 Lecture #8 10/04/2016 8 Complete fields and valuation rings In order to make further progress in our investigation of finite extensions L=K of the fraction field K of a Dedekind domain A, and in particular, to determine the primes p of K that ramify in L, we introduce a new tool that will allows us to \localize" fields. We have already seen how useful it can be to localize the ring A at a prime ideal p. This process transforms A into a discrete valuation ring Ap; the DVR Ap is a principal ideal domain and has exactly one nonzero prime ideal, which makes it much easier to study than A. By Proposition 2.7, the localizations of A at its prime ideals p collectively determine the ring A. Localizing A does not change its fraction field K. However, there is an operation we can perform on K that is analogous to localizing A: we can construct the completion of K with respect to one of its absolute values. When K is a global field, this process yields a local field (a term we will define in the next lecture), and we can recover essentially everything we might want to know about K by studying its completions. At first glance taking completions might seem to make things more complicated, but as with localization, it actually simplifies matters considerably. For those who have not seen this construction before, we briefly review some background material on completions, topological rings, and inverse limits. -
Noncommutative Unique Factorization Domainso
NONCOMMUTATIVE UNIQUE FACTORIZATION DOMAINSO BY P. M. COHN 1. Introduction. By a (commutative) unique factorization domain (UFD) one usually understands an integral domain R (with a unit-element) satisfying the following three conditions (cf. e.g. Zariski-Samuel [16]): Al. Every element of R which is neither zero nor a unit is a product of primes. A2. Any two prime factorizations of a given element have the same number of factors. A3. The primes occurring in any factorization of a are completely deter- mined by a, except for their order and for multiplication by units. If R* denotes the semigroup of nonzero elements of R and U is the group of units, then the classes of associated elements form a semigroup R* / U, and A1-3 are equivalent to B. The semigroup R*jU is free commutative. One may generalize the notion of UFD to noncommutative rings by taking either A-l3 or B as starting point. It is obvious how to do this in case B, although the class of rings obtained is rather narrow and does not even include all the commutative UFD's. This is indicated briefly in §7, where examples are also given of noncommutative rings satisfying the definition. However, our principal aim is to give a definition of a noncommutative UFD which includes the commutative case. Here it is better to start from A1-3; in order to find the precise form which such a definition should take we consider the simplest case, that of noncommutative principal ideal domains. For these rings one obtains a unique factorization theorem simply by reinterpreting the Jordan- Holder theorem for right .R-modules on one generator (cf. -
Commutative Algebra, Lecture Notes
COMMUTATIVE ALGEBRA, LECTURE NOTES P. SOSNA Contents 1. Very brief introduction 2 2. Rings and Ideals 2 3. Modules 10 3.1. Tensor product of modules 15 3.2. Flatness 18 3.3. Algebras 21 4. Localisation 22 4.1. Local properties 25 5. Chain conditions, Noetherian and Artin rings 29 5.1. Noetherian rings and modules 31 5.2. Artin rings 36 6. Primary decomposition 38 6.1. Primary decompositions in Noetherian rings 42 6.2. Application to Artin rings 43 6.3. Some geometry 44 6.4. Associated primes 45 7. Ring extensions 49 7.1. More geometry 56 8. Dimension theory 57 8.1. Regular rings 66 9. Homological methods 68 9.1. Recollections 68 9.2. Global dimension 71 9.3. Regular sequences, global dimension and regular rings 76 10. Differentials 83 10.1. Construction and some properties 83 10.2. Connection to regularity 88 11. Appendix: Exercises 91 References 100 1 2 P. SOSNA 1. Very brief introduction These are notes for a lecture (14 weeks, 2×90 minutes per week) held at the University of Hamburg in the winter semester 2014/2015. The goal is to introduce and study some basic concepts from commutative algebra which are indispensable in, for instance, algebraic geometry. There are many references for the subject, some of them are in the bibliography. In Sections 2-8 I mostly closely follow [2], sometimes rearranging the order in which the results are presented, sometimes omitting results and sometimes giving statements which are missing in [2]. In Section 9 I mostly rely on [9], while most of the material in Section 10 closely follows [4]. -
The Structure Theory of Complete Local Rings
The structure theory of complete local rings Introduction In the study of commutative Noetherian rings, localization at a prime followed by com- pletion at the resulting maximal ideal is a way of life. Many problems, even some that seem \global," can be attacked by first reducing to the local case and then to the complete case. Complete local rings turn out to have extremely good behavior in many respects. A key ingredient in this type of reduction is that when R is local, Rb is local and faithfully flat over R. We shall study the structure of complete local rings. A complete local ring that contains a field always contains a field that maps onto its residue class field: thus, if (R; m; K) contains a field, it contains a field K0 such that the composite map K0 ⊆ R R=m = K is an isomorphism. Then R = K0 ⊕K0 m, and we may identify K with K0. Such a field K0 is called a coefficient field for R. The choice of a coefficient field K0 is not unique in general, although in positive prime characteristic p it is unique if K is perfect, which is a bit surprising. The existence of a coefficient field is a rather hard theorem. Once it is known, one can show that every complete local ring that contains a field is a homomorphic image of a formal power series ring over a field. It is also a module-finite extension of a formal power series ring over a field. This situation is analogous to what is true for finitely generated algebras over a field, where one can make the same statements using polynomial rings instead of formal power series rings. -
7. Euclidean Domains Let R Be an Integral Domain. We Want to Find Natural Conditions on R Such That R Is a PID. Looking at the C
7. Euclidean Domains Let R be an integral domain. We want to find natural conditions on R such that R is a PID. Looking at the case of the integers, it is clear that the key property is the division algorithm. Definition 7.1. Let R be an integral domain. We say that R is Eu- clidean, if there is a function d: R − f0g −! N [ f0g; which satisfies, for every pair of non-zero elements a and b of R, (1) d(a) ≤ d(ab): (2) There are elements q and r of R such that b = aq + r; where either r = 0 or d(r) < d(a). Example 7.2. The ring Z is a Euclidean domain. The function d is the absolute value. Definition 7.3. Let R be a ring and let f 2 R[x] be a polynomial with coefficients in R. The degree of f is the largest n such that the coefficient of xn is non-zero. Lemma 7.4. Let R be an integral domain and let f and g be two elements of R[x]. Then the degree of fg is the sum of the degrees of f and g. In particular R[x] is an integral domain. Proof. Suppose that f has degree m and g has degree n. If a is the leading coefficient of f and b is the leading coefficient of g then f = axm + ::: and f = bxn + :::; where ::: indicate lower degree terms then fg = (ab)xm+n + :::: As R is an integral domain, ab 6= 0, so that the degree of fg is m + n. -
SOME ALGEBRAIC DEFINITIONS and CONSTRUCTIONS Definition
SOME ALGEBRAIC DEFINITIONS AND CONSTRUCTIONS Definition 1. A monoid is a set M with an element e and an associative multipli- cation M M M for which e is a two-sided identity element: em = m = me for all m M×. A−→group is a monoid in which each element m has an inverse element m−1, so∈ that mm−1 = e = m−1m. A homomorphism f : M N of monoids is a function f such that f(mn) = −→ f(m)f(n) and f(eM )= eN . A “homomorphism” of any kind of algebraic structure is a function that preserves all of the structure that goes into the definition. When M is commutative, mn = nm for all m,n M, we often write the product as +, the identity element as 0, and the inverse of∈m as m. As a convention, it is convenient to say that a commutative monoid is “Abelian”− when we choose to think of its product as “addition”, but to use the word “commutative” when we choose to think of its product as “multiplication”; in the latter case, we write the identity element as 1. Definition 2. The Grothendieck construction on an Abelian monoid is an Abelian group G(M) together with a homomorphism of Abelian monoids i : M G(M) such that, for any Abelian group A and homomorphism of Abelian monoids−→ f : M A, there exists a unique homomorphism of Abelian groups f˜ : G(M) A −→ −→ such that f˜ i = f. ◦ We construct G(M) explicitly by taking equivalence classes of ordered pairs (m,n) of elements of M, thought of as “m n”, under the equivalence relation generated by (m,n) (m′,n′) if m + n′ = −n + m′.