Funding Application

Total Page:16

File Type:pdf, Size:1020Kb

Funding Application 1 of 9 Funding Application Competition Regional TAP Application Type Bicycle and Pedestrian Status submitted Submitted: September 20th, 2017 10:48 AM Project Information 1. Project Title Bremerton Transportation Center ADA Improvements 2. Transportation 2040 ID 2480, 5365 3. Sponsoring Agency Kitsap Transit 4. Cosponsors N/A 5. Does the sponsoring agency have "Certification Acceptance" status from WSDOT? Yes 6. If not, which agency will serve as your CA sponsor? Kitsap Transit Contact Information 1. Contact name Steffani Lillie 2. Contact phone 360-478-6931 3. Contact email Steff[email protected] Project Description 1. Project Scope The Bremerton Transportation Center (BTC) was designed in 1998 to meet the then current 1991 ADA Standards and following construction has been in service since 2001. In the subsequent years, the Harborside Convention Center was constructed along the northeast side along with a section of glass canopy walkway cover, an exit tunnel with associated agent’s office building and toll booths was built for the Washington State Ferries, and the waterfront fountain park and Navy museum were constructed along the southwest side. The BTC transit deck provides pedestrian access to the state ferries and terminal as well as to the Kitsap Transit foot ferry terminals. The main transit deck includes bus loading/unloading stops for the Kitsap Transit bus routes and for a small number of Mason Transit routes. The transit deck also has selected areas for ADA loading/unloading, Kitsap Transit Access service and for the Airporter shuttle. While the current conditions were built to the codes in affect at the time, newer codes adopted in the more recent years provide advanced requirements and considerations for those with disabilities. With the assistance of a licensed engineer, Kitsap Transit has identified areas of deficiencies for the main transit deck and options for proposed improvements to areas of deficiencies for the main transit deck and options for proposed improvements to 2 of 9 bring the transit deck up to the latest ADA standards or requirements. Usage of the B-Float passenger ferry dock, a section of the BTC, has increased due to the start of the Fast Ferry service in July 2017. The B-float passenger ferry dock constructed in 2000, consists of two levels and is a key transportation hub for the Kitsap Transit's ferry services. The ground level entrance requires use of the stairs or elevator ride to get the lower level. The lower level is the load/unloading area to the local foot ferries and the cross-sound Kitsap Transit Fast Ferry service. One aged elevator, 17 years old, is available for riders to use. While regularly maintained, and the elevator being in close proximity to salt water, the floor and other areas within the elevator are rusted and deteriorated. Frequent breakdowns and additional maintenance occurs as elevators age. The levels on the B-Float are separated by 17 stairs and there is not a ramp available on the dock to get from one level to another. It is recommended for safety, performance and efficiency the elevator be replaced and provide an alternative method to ascend and descend the stairs safely in the event of an emergency and the elevator is inaccessible. Kitsap Transit requests funding to improve the BTC transit deck, replace one ferry terminal elevator and purchase one emergency stair chair lift. PRIORITIES 1. Curb Ramp Modifications Proposed modifications involve demolition of the existing curb ramps and side flares, sawcutting and demolition for a wider ramp area, and form/pour new concrete ramp with side flares and a cast-in-place detectable warning surface at the bottom of the ramp. The ramp at the Route #15 area will need to be constructed differently due to that space not having enough room for a 4-foot by 4-foot landing at the top of the ramp. It will be modified to parallel curb standards with the curb ramp sloping parallel with the edge curb versus perpendicular as done with the other curb ramps. It should be noted that as the sidewalk area south of the new curb ramp does not lead to anything, it is no longer considered part of the pedestrian walkway. 2. Platform Edge Detectable Warning Modifications Proposed modifications involve attaching a 2-foot wide strip of surface mount ADA compliant detectable warning pads along the existing curb line along the transit platform edges. Scope of work requirements involve preparing the surface along the edges (wire brushing/grinding to remove dirt or contaminants), and attaching the pads with adhesive and concrete anchors as per the pad manufacturer's installation instructions. The Detectable Warning Mats are manufactured from a proprietary urethane compound which is the same material used for impact bumper systems on cars. This material is molded into incredibly durable single piece 24"x 48" mats with the truncated domes in the pattern now required by the Americans with Disabilities Act Law 4.29 to be easily detectable by foot or cane and are able to withstand heavy foot traffic, year after year on walking surfaces crossing or adjoining vehicular ways where no curb, wall or railing is present to alert visually impaired pedestrians that they are moving from a safe area to one of potential danger. The Detectable Warning Mat is available in black or yellow so as to allow a visual contrast with the adjoining pedestrian surfaces. The upper-most surface of each truncated dome has a molded omni- directional design for slip resistance. The urethane also provides a clear contrast in resilience and in sound when sensed by use of a cane. Detectable Warning Mats are required on: - paths adjoining the edge of a reflecting pool when not protected by railings, walls or curbs; - curb ramps such that they extend "the full width and depth of the curb ramp"; - platform edges in transit stations require a continuous 24" wide detectable warning surface; all other applications require a continuous application that is at least 36" wide. 3. Accessible Load/Unload Area Modifications Proposed modification involve creating a 20-foot long by 5-foot wide area dedicated for a vehicle/van to pull up and be able to load or unload a person in a wheelchair and that person be able to access the sidewalk and transit center from that area. Bumping that 5' x 20' area out from the curb is considered not practical as it would put the vehicle/van potentially out into the bus turn radius at that corner. Modifications proposed will sawcut and demo an existing portion of the sidewalk in order to recess the load/unload zone along with curb ramps at each end. Scope of work involves the sawcut and demo, form and pour for new curb wall, walkway surface, new curb ramps with cast-in-place detectable warning pads, striping the 5' x 20' area and adding new signs on sign poles for ADA Reserved and for directional signage at that area. 3 of 9 4. Widen Pedestrian Walkway/ Landscape Island Pedestrian Walkway Modifications Proposed modifications involve partial removal of landscaping and soils in vicinity of the demolition area, demolition of a selected section of the landscape wall, form/pour new wall section that increases the walkway width by approximately one foot, putting the soils and landscaping back into the revised shape, and final clean of the walkway that is now exposed. 5. Elevator Replacement/Modification and Emergency Stair Lift Proposed B-Float hydraulic elevator replacement/modification involves removal and disposal of the current elevator car, doors, electric motor, cables and pulleys. A new heavy-duty modern and efficient thyssenkrupp Elevator HPower system, or equivalent elevator, will be installed including one TAC32H Controller, power unit, door operator and Hoistway door equipment, fixtures and wiring package; which will fit within the current bricked infrastructure. The replacement/modifications will bring the elevator up to ADA code. Providing a new modern, efficient and safe elevator reduces maintenance and down time. Providing a second option, an emergency stair chair lift, Evac+Chair 700H IBEX, or equivalent, ascend/descend tran-seat as a back-up is vital for in the event of an emergency or the elevator is inaccessible. Kitsap Transit continually evaluates its service to identify ADA accessibility improvements. These priority improvements recommended are considered to be those that would have the largest benefit to accessibility and safety. 2. Project Justification, Need, or Purpose As noted in the project scope above, the desired outcome is to bring the Bremerton Transportation Center transit deck and B-Float passenger ferry berth up to ADA code by modification and replacement and purchase of the following: 1. Curb Ramp Modifications 2. Platform Edge Detectable Warning Modifications 3. Accessible Load/Unload Area Modifications 4. Landscape Island Pedestrian Walkway Modifications 5. Elevator Replacement and purchase an emergency stair lift chair KT’s objective for this project is to increase safety and ADA accessibility while promoting the benefits and convenience of public transportation. This objective mirrors KT's mission to provide safe, reliable and efficient transportation choices that enhance the quality of life in Kitsap County. This project creates better access to jobs, higher education, housing and opportunities for people of all ages and incomes. Some of the project benefits include reduced household driving and lowered regional congestion, reduced air pollution, greenhouse gas emissions while increasing safety and efficiency of service. The Puget Sound Regional Council (PSRC) T2040 plan states Washington state law, RCW 81.66.010, in regards to individuals with requiring special transportation needs as “those people, including their attendants, who because of physical or mental disability, income status, or age, are unable to transport themselves or purchase transportation,” (p.9).
Recommended publications
  • Improving Elevator Performance by Monitoring Elevator Cab Volume by James O’Laughlin
    EW ECO-ISSUES: Continuing Education Improving Elevator Performance by Monitoring Elevator Cab Volume by James O’Laughlin Learning Objectives After reading this article, you should: N Understand why some elevator applications have the problem of full elevator cabs stopping unnecessarily to service hall calls. N Be able to describe several methods that help minimize the problem of full elevator cabs stopping unnecessarily to serv- ice hall calls. N Recognize why camera technol- ogy provides a better solution for monitoring consumed elevator- cab volume. N Know the application require- ments for monitoring consumed CEDES ESPROS/VOL camera installation (photo elevator-cab volume using courtesy of New York Elevator) infrared camera technology. sponding to hall calls. Increasing the N Obtain knowledge regarding the number of elevators is one possibil- installation and operation of the ity, but is generally cost prohibitive. CEDES ESPROS/VOL Camera Destination-dispatch systems can sensor. also help to alleviate this issue. How- ever, destination-dispatch systems Optimal elevator system perform- are best implemented in new instal- ance has always been a concern for lations, and also may be cost prohib- facilities and building management. itive for modernization applications. People expect that the elevator will More cost-effective solutions include Value: 1 contact hour arrive shortly after they press the hall using load-weighing systems or call button. When the elevator ar- camera-based monitoring to deter- This article is part of ELEVATOR WORLD’s mine a threshold that corresponds to rives, people are disappointed when Continuing Education program. Elevator-industry it is full, and they have to press the the consumed volume inside the ele- personnel required to obtain continuing-education hall call button and wait for the next vator cab.
    [Show full text]
  • Dynamic Changes in Rail Shipping Mechanisms for Grain
    Agribusiness and Applied Economics Report No. 798 June 2020 Dynamic Changes in Rail Shipping Mechanisms for Grain Dr. William W Wilson Department of Agribusiness & Applied Economics Agricultural Experiment Station North Dakota State University Fargo, ND 58108-6050 ACKNOWLEDGEMENTS NDSU does not discriminate in its programs and activities on the basis of age, color, gender expression/identity, genetic information, marital status, national origin, participation in lawful off-campus activity, physical or mental disability, pregnancy, public assistance status, race, religion, sex, sexual orientation, spousal relationship to current employee, or veteran status, as applicable. Direct inquiries to Vice Provost for Title IX/ADA Coordinator, Old Main 201, NDSU Main Campus, 7901-231-7708, ndsu.eoaa.ndsu.edu. This publication will be made available in alternative formats for people with disabilities upon request, 701-231-7881. NDSU is an equal opportunity institution. Copyright ©2020 by William W. Wilson. All rights reserved. Readers may make verbatim copies of this document for non-commercial purposes by any means, provided this copyright notice appears on all such copies. ABSTRACT Grain shipping involves many sources of risk and uncertainty. In response to these dynamic challenges faced by shippers, railroad carriers offer various types of forward contracting and allocation instruments. An important feature of the U.S. grain marketing system is that there are now a number of pricing and allocation mechanisms used by most rail carriers. These have evolved since the late 1980’s and have had important changes in their features over time. The operations and impact of these mechanisms are not well understood, yet are frequently the subject of public criticism and studies and at the same time are revered by (some) market participants.
    [Show full text]
  • Iiii3 9080 02993 0523Iiii
    MIT LIBRARIESI IIII390803 0002993 02993 0523IIII0523 .2: HYDDIEAICS THE HYDROFOIL BOAT (Dos Tragflugelboot) AME 'IGCS Dipl..Ing. K. Bililer STRUCTURAL MECHANICS Translated by E.N. Lobouvie, Ph. D. APPLIED MAhETICS December 1959 Translation 293 PrNC-TN~6 (Rev. 9-b8) ' II This tuwstln.to be disdnd oely wNlt~ith m s thmit off tA* IWld States Ord ts TnrlfftwIn. ,IMI ilMMIM liIIi i il li 111 . -,11 THE HYDROFOIL BOAT (Das Tragfliigelboot) by Dipl.-Ing. K. Builler HANSA, No. 33/34 (1952), p. 1090 Translated by E.N. Labouvie, Ph. D. December 1959 Translation 293 ABSTRACT This report gives a short summary of the development of the hydrofoil boat during the past 50 years. The limitations of size, the power required, and the stability of these high-speed boats are discussed. 6nrr I- I I_, I I __I 311~ba~ 0 'THE HYDROFOIL BOAT Although work has been going forward on the development of the hydrofoil boat for more than fifty years and although a number of such boats of the most diverse types and sizes have been constructed, the general public is not very familiar with this type of high-speed craft. However, the state of research and technology as well as the test results obtained with hydrofoil boats built thus far have enabled us for years to utilize hydrofoil boats which are of considerable size and are safe to operate in ship traffic. The technical and economic inter- est presently being shown in these boats justifies the assumption that the hydrofoil boat will soon develop into a familiar means of transportation in high-speed ship traffic.
    [Show full text]
  • ELEVATOR INTERIOR DESIGN DESIGN SERIES Contact & About Table of Contents
    ELEVATOR INTERIOR DESIGN DESIGN SERIES Contact & About Table of Contents Website www.ElevatorID.com Section 1 Contact / About EID • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • 1 Address 100 Marine Blvd Section 2 Elevator Cab Design Introduction • • • • • • • • • • • • • • • • • 3 Lynn, MA 01905 Elevator Cab Design Elevator Cab Series 100 • • • • • • • • • • • • • • • • • • • • • • • • • 5 Telephone (781) 596-4200 Elevator Cab Series 200 • • • • • • • • • • • • • • • • • • • • • • • • • 7 Fax (781) 596-4222 Elevator Cab Series 300 • • • • • • • • • • • • • • • • • • • • • • • • • 9 Elevator Cab Series 400 • • • • • • • • • • • • • • • • • • • • • • • • • 11 Note: An employee directory and further contact information is available on our website. Please visit ElevatorID.com/contact Elevator Cab Series 500 • • • • • • • • • • • • • • • • • • • • • • • • • 13 Section 3 Island Ceiling Design • • • • • • • • • • • • • • • • • • • • • • • • • • • • • 15 Formed to meet the needs of the ever expanding demands Through inventive collaboration and fusion of your About Elevator Interior Design Elevator Component Design Elevator Handrail Design • • • • • • • • • • • • • • • • • • • • • • • • • 17 and creative passions that fuel our world, Elevator Interior ideas along with our product expertise and command of Design provides the finest elevator cabs in the industry. materials, we deliver an elevator cab design that stretches the boundaries of imagination. Section 4 Material Selection Introduction • • • • • • • • • • • • • • • • • • • 19
    [Show full text]
  • Elevator Cab Refurbishment Specification
    Elevator Cab Refurbishment Specification LOCATION OF PROPERTY: EQUIPMENT DESCRIPTION: UC Hastings Three (3) Traction Elevators 100 McAllister St. San Francisco, CA SPECIFICATION TYPE: SPECIFICATION DATE: Elevator Cab Refurbishment April 4, 2018 Part I: General Conditions A. Form of Agreement 1. This Specification was written to be included as an attachment to a refurbishment or construction form of agreement. Throughout this document, the word “Agreement” shall refer to that agreement, as well as any/all attachments, including this specification. It is acknowledged that, in some cases, terms and conditions found in this Specification may overlap with terms and conditions found in the Agreement. In most cases, such overlap will occur because this Specification has terms specific to an elevator refurbishment, versus the Agreement which is a general document. Wherever overlap or conflict exists within or between any portion of the Agreement and any attachment, the most stringent terms and conditions shall apply. 2. If any conflict or discrepancy occurs in this specification with respect to the work specified, Contractor shall notify ECA immediately so that ECA may issue an appropriate amendment to the specification. If such a conflict or discrepancy is discovered after the award of the Agreement, it shall be assumed that Contractor has bid according to the more expensive option. In no case shall a chargeable change order result from a conflict or discrepancy within the Agreement. B. Scope 1. The scope of this specification and the resulting Agreement is for the cab refurbishment of the subject elevator equipment. Contractor is fully responsible for all work required to perform the refurbishment according to industry standards and all applicable codes, laws and guidelines as modified by any authority having jurisdiction, except where specific tasks and functions are explicitly stated within the Agreement to be the responsibility of another party.
    [Show full text]
  • Grain and Soybean Industry Dynamics and Rail Service
    Grain and Soybean Industry Dynamics and Rail Service Analytical Models of Rail Service Operations Final Report Michael Hyland, Hani Mahmassani, Lama Bou Mjahed, and Breton Johnson Northwestern University Transportation Center (NUTC) Parr Rosson Texas A&M University 1 Executive Summary To remain globally competitive, the United States’ grain industry and associated transportation services underwent significant restructuring over the past fifteen years. New technologies, helped by weather changes, led to sustained yield volume increases in the Upper Midwest. To move larger volumes faster and at lower cost, the railroad industry introduced shuttle train service. Traveling as a unit to the same destination, shuttle trains save considerable time in transit and potential delay, bypassing intermediate classification yards. Grain shippers concurrently began consolidating and storing grain in larger, more efficient terminal elevators (shuttle loaders) instead of country elevators. This report examines the effectiveness of shuttle train service and the terminal elevators supporting the shuttle train system, under different demand levels, through the formulation of simple mathematical models. In order to compare shuttle and conventional rail service, this paper introduces three distinct models. The first model, referred to as the ‘time model’, determines the time it takes to transport grain from the farm to a destination (e.g. an export elevator). The second model, referred to as the ‘engineering cost model’, determines the aggregate variable costs of transporting grain from the farm to an export elevator. The third model, referred to as the ‘capacity model’, determines the maximum attainable capacity (i.e. throughput) of a rail network as a function of demand for rail transport and the percentage of railcars on the network being moved via shuttle service and conventional service.
    [Show full text]
  • Nebraska Railway Council Study
    NEBRASKA RAILWAY COUNCIL STUDY Wilbur Smith Associates in association with HWS Consulting Group Denver Tolliver, Ph.D. NEBRASKA RAILWAY COUNCIL STUDY prepared by Wilbur Smith Associates in association with HWS Consulting Group Denver Tolliver, Ph.D. December 4, 2003 TABLE OF CONTENTS Chapter Page No. 1 Nebraska Rail System 1-1 Rail System Components 1-1 Freight Railroads 1-1 Rail System Use 1-5 Rail Freight Traffic 1-6 Traffic Density 1-8 2 Grain Transportation 2-1 Modal Share 2-1 Rail Shipments 2-2 Strategic Agricultural Issues 2-4 Railroad Rates and Grain Elevator Network Characteristics 2-8 3 Light Density Lines 3-1 Light Density Line System 3-1 Screening Process 3-3 Core System Delineation 3-5 LDL Core System 3-6 Appendices Appendix A – Grain Transportation Analysis Appendix B – Light Density Lines Appendix C – LDL Elevator Locations Nebraska Railway Council Study i EXHIBITS Exhibit No. Page No. 1-1 Nebraska Rail System 1-2 1-2 Nebraska Freight Railroads 2002 1-3 1-3 Nebraska Rail Movements 2000 1-6 1-4 Nebraska Rail Commodity Volumes 2000 1-7 1-5 Destination of Shipments Originating in Nebraska 1-9 1-6 Origination of Shipments Terminating in Nebraska 1-10 1-7 Nebraska Rail Density 1-11 2-1 Nebraska Cereal Grain Transportation 1997 2-1 2-2 Nebraska Rail Grain Shipments 2000 2-2 2-3 Rail Grain Destinations 2000 2-3 2-4 Major Grain Elevators and Corn Production by County 2-5 2-5 Ethanol Plants Nebraska 2-6 2-6 Inbound Grain Shipment Distances 2-8 2-7 Grain Elevator Delivery Truck Configurations 2-9 2-8 Shuttle Elevator Radial Market 2-10 3-1 Nebraska Light Density Line System 3-2 3-2 LDL System by Railroad 3-1 3-3 Screening Process Flow Diagram 3-4 3-4 LDL Core System 3-7 3-5 Core System Light Density Lines 3-8 Nebraska Railway Council Study ii Chapter 1 NEBRASKA RAIL SYSTEM This chapter defines the Nebraska rail system by describing the major characteristics of each of the system’s components and the use made of them.
    [Show full text]
  • Accessibility Review
    Accessibility Review Bell Island Ferry Service Department of Transportation & Works October 2017 MV Legionnaire MV Flanders Kathy J. Hawkins Manager, InclusionNL [email protected] www.inclusionNL.ca TF: (844) 517-1376 [email protected] Table of Contents Introduction …………………………………………………………………………………………….. 3 CTA Ferry Accessibility Code of Practice …………………………………………………… 3 1. Vessel Accessibility …………………………………………………………………………….. 5 MV Legionnaire………………………………………………………………………………….. 6 MV Flanders…………………………………………………………………………………….… 8 2. Maintenance……………………………………………………………………………………….. 10 3. Communication ………………………………………………………………………………….. 11 4. Disability Related Supports …………………………………………………………….…… 12 5. Personnel Training ………………………………………………………………………….…… 12 Overview of Recommendations ………………………………………………………………. 14 2 | Page Introduction The Dept. of Transportation and Works have engaged in a partnership with InclusionNL to review the accessibility features available on the vessels operating on the Bell Island Ferry Services (BIFS). As a part of this partnership, InclusionNL has completed an accessibility review of the MV Legionnaire and the MV Flanders. Staff has also spoken with passengers using the BIFS and have received complaints regarding barriers they may have experienced related to the accessibility on either of the vessels. The Bell Island Ferry Service is operational with two passenger ferries, the MV Legionnaire and the MV Flanders. Both ferries have unique characteristics related specifically to the accessibility of the ferry as passengers
    [Show full text]
  • Motor Alignment Procedure with Machine Installed & Cables On
    Document Name Date Rev. Page Bulletin MOTOR ALIGNMENT PROCEDURE 12/13/18 B 1 of 2 1006 MACHINE INSTALLED MOTOR ALIGNMENT PROCEDURE WITH MACHINE INSTALLED & CABLES ON Procedure: 1. With car empty, land counterweight, then release the brake. Turn the brake drum or disc until balance is made. 2. Loosen the brake springs on the brake. Unbolt the brake and slide the brake as far as possible toward the machine (gear-box) housing, making sure the brake shoes are clear of the drum or disc. 3. Take all bolts out of the motor coupling and install two (2) 5/16" tram rods (approximately 7" long) into the motor coupling (180° apart). Put two (2) 90° Starrett Model #196 indicators on one (1) tramming rod with one against the face of the brake drum or disc, and the other on the O.D. of the brake drum or disc. See Fig. 1 for indicator positioning. 4. Turn the tram rods horizontally with the drum or disc until a "0" reading is obtained. Swing the tram rods, turning with the indicator, 180° on the brake drum or disc. 5. While taking readings of the indicators, you should tap the motor (depending on reading) as you swing 180°. They should both read "0" on the drum or disc. 6. This would indicate that the motor is straight in line with the brake drum or disc, and swinging the indicators to an upright position on top of the drum or disc, you would need to again take a reading. The indicator on the face tells you whether the back of the motor is high or low, while the indicator on the O.D.
    [Show full text]
  • Study on Medium Capacity Transit System Project in Metro Manila, the Republic of the Philippines
    Study on Economic Partnership Projects in Developing Countries in FY2014 Study on Medium Capacity Transit System Project in Metro Manila, The Republic of The Philippines Final Report February 2015 Prepared for: Ministry of Economy, Trade and Industry Ernst & Young ShinNihon LLC Japan External Trade Organization Prepared by: TOSTEMS, Inc. Oriental Consultants Global Co., Ltd. Mitsubishi Heavy Industries, Ltd. Japan Transportation Planning Association Reproduction Prohibited Preface This report shows the result of “Study on Economic Partnership Projects in Developing Countries in FY2014” prepared by the study group of TOSTEMS, Inc., Oriental Consultants Global Co., Ltd., Mitsubishi Heavy Industries, Ltd. and Japan Transportation Planning Association for Ministry of Economy, Trade and Industry. This study “Study on Medium Capacity Transit System Project in Metro Manila, The Republic of The Philippines” was conducted to examine the feasibility of the project which construct the medium capacity transit system to approximately 18km route from Sta. Mesa area through Mandaluyong City, Ortigas CBD and reach to Taytay City with project cost of 150 billion Yen. The project aim to reduce traffic congestion, strengthen the east-west axis by installing track-guided transport system and form the railway network with connecting existing and planning lines. We hope this study will contribute to the project implementation, and will become helpful for the relevant parties. February 2015 TOSTEMS, Inc. Oriental Consultants Global Co., Ltd. Mitsubishi Heavy
    [Show full text]
  • Along the Railroad Or I-5 in Tigard?
    DECISION BRIEFING BOOK Along the Railroad or I-5 in Tigard? Version 1 Discussion Draft: May 18, 2017 What is the Southwest Corridor Decision Overview Light Rail Project? For “through-routed” light The project is a proposed 12-mile rail that would travel through MAX line connecting downtown downtown Tigard to reach Portland to Tigard and Tualatin. Bridgeport Village, the line could After several years of early planning, run alongside either a freight the project is now undergoing railroad or I-5 south of downtown environmental review. Tigard. (For a “branched” route that would split to serve each What is the purpose of the place separately, running next to decision briefing books? I-5 is the only possible alignment Several project decisions remain, south of downtown Tigard.) including options for alignments, stations, maintenance facilities and Both alignments would run station access improvements. alongside the WES Commuter Rail tracks just south of downtown Through fall 2017, individual decision Tigard and along the west side briefing books will be released to inform conversations about the of I-5 just north of Bridgeport key considerations for each major Village, but would differ between decision. Because the environmental Landmark Lane and south of Upper Boones Ferry Road. impact analysis is ongoing, briefing The Railroad alignment would run alongside the freight rail tracks books will be updated as new through the stretch where the two alignments differ. The alignment information becomes available. would be elevated from just north of Landmark Lane to just south of When will the decisions be made? Bonita Road, and would include an elevated station at Bonita.
    [Show full text]
  • Mid-American Elevator Transit Hydraulic Series Brochure
    TRANSIT LINE SPECIFICALLY DESIGNED ELEVATORS FOR TRANSIT STATION APPLICATIONS Uniquely engineered for transit station demands: • Subways • Elevated trains • Bus depots • Airports HYDRAULIC ELEVATORS Mid-American Elevator specializes in the finest, most complex, highly customized elevators and lifting solutions. HYDRAULIC ELEVATORS INSTALLING AND MAINTAINING TRANSIT ELEVATORS THAT MEET PRECISE SPECIFICATIONS AND JOB SITE REQUIREMENTS Our transit elevator system has The Advantages of a Hydraulic Transit Elevator been developed over 30 years of A hydraulic transit elevator is primarily experience installing, modernizing, used in low-rise applications. Typically servicing and maintaining elevators serving 2 – 5 floors, their height can occasionally top 50 feet, especially in in transit systems around the United roped hydraulic configurations. States. We can custom design any Hydraulic elevators offer speeds up transit elevator to meet the precise to approximately 200 feet per minute, and have the unsurpassed ability to specifications and needs of the handle large capacities. Mid-American transit authority and the particular provides hydraulic elevator and lifting requirements of the job site. systems with lifting capacities exceed- ing 100,000 lbs. CUSTOM-BUILT FOR THE UNIQUE CHALLENGES OF THE TRANSIT ENVIRONMENT 30 YEARS OF TRANSIT EXPERIENCE SETTING THE HIGHEST STANDARDS: WE DESIGN, BUILD & MAINTAIN VERTICAL TRANSPORTATION SOLUTIONS FOR THE TRANSIT MARKET Advantages Versus Traction Water and Urine Resistance Elevators These transit elevators are designed Hydraulic elevators have the advan- to be completely resistant to biohaz- tage of transferring the majority of the ard contaminants and provide a seal elevator structural loads into the pit between the subfloor and the surface floor, unlike traction elevators that are from urine or costly water damage.
    [Show full text]