Iron Mountain Mine Case Study Success Through Planning, Partnerships, and Perseverance
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Biofilm Adhesion on the Sulfide Mineral Bornite & Implications for Astrobiology
University of Rhode Island DigitalCommons@URI Open Access Master's Theses 2019 BIOFILM ADHESION ON THE SULFIDE MINERAL BORNITE & IMPLICATIONS FOR ASTROBIOLOGY Margaret M. Wilson University of Rhode Island, [email protected] Follow this and additional works at: https://digitalcommons.uri.edu/theses Recommended Citation Wilson, Margaret M., "BIOFILM ADHESION ON THE SULFIDE MINERAL BORNITE & IMPLICATIONS FOR ASTROBIOLOGY" (2019). Open Access Master's Theses. Paper 1517. https://digitalcommons.uri.edu/theses/1517 This Thesis is brought to you for free and open access by DigitalCommons@URI. It has been accepted for inclusion in Open Access Master's Theses by an authorized administrator of DigitalCommons@URI. For more information, please contact [email protected]. BIOFILM ADHESION ON THE SULFIDE MINERAL BORNITE & IMPLICATIONS FOR ASTROBIOLOGY BY MARGARET M. WILSON A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE IN BIOLOGICAL & ENVIRONMENTAL SCIENCE UNIVERSITY OF RHODE ISLAND 2019 MASTER OF SCIENCE IN BIOLOGICAL & ENVIRONMENTAL SCIENCE THESIS OF MARGARET M. WILSON APPROVED: Thesis Committee: Major Professor Dawn Cardace José Amador Roxanne Beinart Nasser H. Zawia DEAN OF THE GRADUATE SCHOOL UNIVERSITY OF RHODE ISLAND 2019 ABSTRACT We present research observing and documenting the model organism, Pseudomonas fluorescens (P. fluorescens), building biofilm on a natural mineral substrate composed largely of bornite (Cu5FeS4), a copper-iron sulfide mineral, with closely intergrown regions of covellite (CuS) and chalcopyrite (CuFeS2). In examining biofilm establishment on sulfide minerals, we investigate a potential habitable niche for microorganisms in extraterrestrial sites. Geochemical microenvironments on Earth and in the lab can also serve as analogs for important extraterrestrial sites, such as sheltered, subsurface microenvironments on Mars. -
Raman Spectroscopy of Efflorescent
ASTROBIOLOGY Volume 13, Number 3, 2013 ª Mary Ann Liebert, Inc. DOI: 10.1089/ast.2012.0908 Raman Spectroscopy of Efflorescent Sulfate Salts from Iron Mountain Mine Superfund Site, California Pablo Sobron1 and Charles N. Alpers2 Abstract The Iron Mountain Mine Superfund Site near Redding, California, is a massive sulfide ore deposit that was mined for iron, silver, gold, copper, zinc, and pyrite intermittently for nearly 100 years. As a result, both water and air reached the sulfide deposits deep within the mountain, producing acid mine drainage consisting of sulfuric acid and heavy metals from the ore. Particularly, the drainage water from the Richmond Mine at Iron Mountain is among the most acidic waters naturally found on Earth. The mineralogy at Iron Mountain can serve as a proxy for understanding sulfate formation on Mars. Selected sulfate efflorescent salts from Iron Mountain, formed from extremely acidic waters via drainage from sulfide mining, have been characterized by means of Raman spectroscopy. Gypsum, ferricopiapite, copiapite, melanterite, coquimbite, and voltaite are found within the samples. This work has implications for Mars mineralogical and geochemical investigations as well as for terrestrial environmental investigations related to acid mine drainage contamination. Key Words: Acid mine drainage—Efflorescent sulfate minerals—Mars analogue—Iron Mountain—Laser Raman spectroscopy. Astro- biology 13, 270–278. 1. Introduction efflorescent sulfate minerals. This reconnaissance sampling resulted in characterization of the extremely acidic mine ron Mountain, California, is the host of massive sulfide waters (pH values from - 3.6 to + 0.5) and a variety of iron- Ideposits that were mined for copper, zinc, gold, silver, and sulfate efflorescent salts (Nordstrom and Alpers, 1999; pyrite (for sulfuric acid) between the early 1860s and the early Nordstrom et al., 2000). -
Leaching of Pure Chalcocite with Reject Brine and Mno2 from Manganese Nodules
metals Article Leaching of Pure Chalcocite with Reject Brine and MnO2 from Manganese Nodules David Torres 1,2,3, Emilio Trigueros 1, Pedro Robles 4 , Williams H. Leiva 5, Ricardo I. Jeldres 5 , Pedro G. Toledo 6 and Norman Toro 1,2,3,* 1 Department of Mining and Civil Engineering, Universidad Politécnica de Cartagena, 30203 Cartagena, Spain; [email protected] (D.T.); [email protected] (E.T.) 2 Faculty of Engineering and Architecture, Universidad Arturo Prat, Almirante Juan José Latorre 2901, Antofagasta 1244260, Chile 3 Departamento de Ingeniería Metalúrgica y Minas, Universidad Católica del Norte, Antofagasta 1270709, Chile 4 Escuela de Ingeniería Química, Pontificia Universidad Católica de Valparaíso, Valparaíso 2340000, Chile; [email protected] 5 Departamento de Ingeniería Química y Procesos de Minerales, Facultad de Ingeniería, Universidad de Antofagasta, Antofagasta 1270300, Chile; [email protected] (W.H.L.); [email protected] (R.I.J.) 6 Department of Chemical Engineering and Laboratory of Surface Analysis (ASIF), Universidad de Concepción, P.O. Box 160-C, Correo 3, Concepción 4030000, Chile; [email protected] * Correspondence: [email protected]; Tel.: +56-552651021 Received: 21 September 2020; Accepted: 24 October 2020; Published: 27 October 2020 Abstract: Chalcocite (Cu2S) has the fastest kinetics of dissolution of Cu in chlorinated media of all copper sulfide minerals. Chalcocite has been identified as having economic interest due to its abundance, although the water necessary for its dissolution is scarce in many regions. In this work, the replacement of fresh water by sea water or by reject brine with high chloride content from desalination plants is analyzed. -
Iron Mountain Mine Superfund Site Long Term O&M Challenges
Iron Mountain Mine Superfund Site Long Term O&M Challenges August 12-14, 2014 James Sickles, U.S. EPA Region 9 National Conference on Mining-Influenced Waters: Approaches for Characterization, Source Control and Treatment Albuquerque,Long Term New O&M MexicoChallenges | 1 Iron Mountain Mine Site • Site Setting • Mining Impacts • Geologic Setting • Mining Chronology • Mining Processes • Site Remedial Components • O&M Challenges • Issues and the Future Long Term O&M Challenges | 2 Site Setting • Located 9 miles northwest of Redding, CA • Consists of more Iron Mountain Shasta Lake than a dozen sulfide mines Sacramento River • Covers approximately 4,400 acres, with over 2,500 feet of relief • Mines produced Spring Creek Reservoir silver, copper, zinc and pyrite Long Term O&M Challenges | 3 Mining Impacts • Fish kills in the Sacramento River • Open-air heap roasting and smelters stripped the land of vegetation for over 100 square miles along lower Spring Creek • Acid mine water seeping into the Sacramento River, created sediment deposits in Keswick Keswick Smelter Reservoir Operations 1895 - 1907 • Drinking water source for the city of Redding is the Sacramento River downstream Long Term O&M Challenges | 4 Mining Impacts • Mining influenced waters (MIW) with pH as low as -3.6 found in Richmond Mine workings • 10,000 pounds of iron, 650 pounds of copper, and 1,800 pounds of zinc were discharged per day prior to remediation • AMD entering Keswick Reservoir precipitated more than 200,000 cubic yards of metal rich sediment into the Spring Creek -
UC Berkeley UC Berkeley Electronic Theses and Dissertations
UC Berkeley UC Berkeley Electronic Theses and Dissertations Title Analyzing Microbial Physiology and Nutrient Transformation in a Model, Acidophilic Microbial Community using Integrated `Omics' Technologies Permalink https://escholarship.org/uc/item/259113st Author Justice, Nicholas Bruce Publication Date 2013 Supplemental Material https://escholarship.org/uc/item/259113st#supplemental Peer reviewed|Thesis/dissertation eScholarship.org Powered by the California Digital Library University of California Analyzing Microbial Physiology and Nutrient Transformation in a Model, Acidophilic Microbial Community using Integrated ‘Omics’ Technologies By Nicholas Bruce Justice A dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Microbiology in the Graduate Division of the University of California, Berkeley Committee in charge: Professor Jillian Banfield, Chair Professor Mary Firestone Professor Mary Power Professor John Coates Fall 2013 Abstract Analyzing Microbial Physiology and Nutrient Transformation in a Model, Acidophilic Microbial Community using Integrated ‘Omics’ Technologies by Nicholas Bruce Justice Doctor of Philosophy in Microbiology University of California, Berkeley Professor Jillian F. Banfield, Chair Understanding how microorganisms contribute to nutrient transformations within their community is critical to prediction of overall ecosystem function, and thus is a major goal of microbial ecology. Communities of relatively tractable complexity provide a unique opportunity to study the distribution of metabolic characteristics amongst microorganisms and how those characteristics subscribe diverse ecological functions to co-occurring, and often closely related, species. The microbial communities present in the low-pH, metal-rich environment of the acid mine drainage (AMD) system in Richmond Mine at Iron Mountain, CA constitute a model microbial community due to their relatively low diversity and extensive characterization over the preceding fifteen years. -
Effects of Copper on Fish and Aquatic Resources
Effects of Copper on Fish and Aquatic Resources Prepared for By Dr. Carol Ann Woody & Sarah Louise O’Neal Fisheries Research and Consulting Anchorage, Alaska June 2012 Effects of Copper on Fish and Aquatic Resources Introduction The Nushagak and Kvichak river watersheds in Bristol Bay Alaska (Figure 1) together produced over 650 million sockeye salmon during 1956-2011, about 40% of Bristol Bay production (ADFG 2012). Proposed mining of copper–sulfide ore in these watersheds will expose rocks with elevated metal concentrations including copper (Cu) (Figure 1; Cox 1996, NDM 2005a, Ghaffari et al. 2011). Because mining can increase metal concentrations in water by several orders of magnitude compared to uncontaminated sites (ATSDR 1990, USEPA 2000, Younger 2002), and because Cu can be highly toxic to aquatic life (Eisler 2000), this review focuses on risks to aquatic life from potential increased Cu inputs from proposed development. Figure 1. Map showing current mining claims (red) in Nushagak and Kvichak river watersheds as of 2011. Proven low- grade copper sulfide deposits are located in large lease block along Iliamna Lake. Documented salmon streams are outlined in dark blue. Note many regional streams have never been surveyed for salmon presence or absence. Sources: fish data from: www.adfg.alaska.gov/sf/SARR/AWC/index.cfm?ADFG =main.home mine data from Alaska Department of Natural Resources - http://www.asgdc.state.ak.us/ Core samples collected from Cu prospects near Iliamna Lake (Figure 1) show high potential for acid generation due to iron sulfides in the rock (NDM 2005a). When sulfides are exposed to oxygen and water sulfuric acid forms, which can dissolve metals in rock. -
MAP SHOWING LOCATIONS of MINES and PROSPECTS in the DILLON Lox 2° QUADRANGLE, IDAHO and MONTANA
DEPARTMENT OF THE INTERIOR U.S. GEOLOGICAL SURVEY MAP SHOWING LOCATIONS OF MINES AND PROSPECTS IN THE DILLON lox 2° QUADRANGLE, IDAHO AND MONTANA By JeffreyS. Loen and Robert C. Pearson Pamphlet to accompany Miscellaneous Investigations Series Map I-1803-C Table !.--Recorded and estimated production of base and precious metals in mining districts and areas in the Dillon 1°x2° guadrangle, Idaho and Montana [Production of other commodities are listed in footnotes. All monetary values are given in dollars at time of production. Dashes indicate no information available. Numbers in parentheses are estimates by the authors or by those cited as sources of data in list that follows table 2. <,less than; s.t., short tons] District/area Years Ore Gold Silver Copper Lead Zinc Value Sources name (s. t.) (oz) (oz) (lb) (lb) (lb) (dollars) of data Idaho Carmen Creek 18 70's-190 1 (50,000) 141, 226 district 1902-1980 (unknown) Total (50,000) Eldorado 1870's-1911 17,500 (350 ,000) 123, 226 district 1912-1954 (13,000) (8,000) (300,000) Total (650,000) Eureka district 1880's-1956 (13 ,500) 12,366 (2,680,000) 57,994 (4,000) ( 4,000 ,000) 173 Total (4,000,000) Gibbonsville 1877-1893 (unknown) district 1894-1907 (83,500) (1,670,000) 123, 226 1908-1980 ( <10 ,000) 123 Total (2,000,000) Kirtley Creek 1870's-1890 2,000 40,500 173 district 1890's-1909 (<10,000) 1910-1918 24,300 (500 ,000) 123 1919-1931 (unknown) 1932-1947 2,146 (75 ,000) 173 Total (620,000) McDevitt district 1800's.-1980 (80,000) Total (80,000) North Fork area 1800's-1980 (unknown) Total ( <10 ,000) Pratt Creek 1870's-1900 (50 ,000) district Total (50,000) Sandy Creek 1800 's-1900 (unknown) district 1901-1954 19,613 4,055 4,433 71,359 166,179 (310,000) 17 3, 200 Total (310 ,000) Montana Anaconda Range 1880's-1980 (<100,000) area Total (<100,000) Argenta district 1864-1901 (1 ,500 ,000) 1902-1965 311,796 72,241 562,159 604,135 18,189,939 2,009,366 5,522,962 88 Total (7,000,000) Baldy Mtn. -
Sediment-Hosted Copper Deposits of the World: Deposit Models and Database
Sediment-Hosted Copper Deposits of the World: Deposit Models and Database By Dennis P. Cox1, David A. Lindsey2 Donald A. Singer1, Barry C. Moring1, and Michael F. Diggles1 Including: Descriptive Model of Sediment-Hosted Cu 30b.1 by Dennis P. Cox1 Grade and Tonnage Model of Sediment-Hosted Cu by Dennis P. Cox1 and Donald A. Singer1 Descriptive Model of Reduced-Facies Cu 30b.2 By Dennis P. Cox1 Grade and Tonnage Model of Reduced Facies Cu by Dennis P. Cox1 and Donald A. Singer1 Descriptive Model of Redbed Cu 30b.3, by David A. Lindsey2 and Dennis P. Cox1 Grade and Tonnage Model of Redbed Cu by Dennis P. Cox1 and Donald A. Singer1 Descriptive Model of Revett Cu 30b.4, by Dennis P. Cox1 Grade and Tonnage Model of Revett Cu by Dennis P. Cox1 and Donald A. Singer1 Open-File Report 03-107 Version 1.3 2003, revised 2007 Available online at http://pubs.usgs.gov/of/2003/of03-107/ Any use of trade, product or firm names is for descriptive purposes only and does not imply endorsement by the U.S. Government. U.S. DEPARTMENT OF THE INTERIOR U.S. GEOLOGICAL SURVEY 1 345 Middlefield Road, Menlo Park, CA 94025 2 Box 25046, Denver Federal Center, Denver, CO 80225 Introduction This publication contains four descriptive models and four grade-tonnage models for sediment hosted copper deposits. Descriptive models are useful in exploration planning and resource assessment because they enable the user to identify deposits in the field and to identify areas on geologic and geophysical maps where deposits could occur. -
Hydrothermal Synthesis of Copper Sulfide Flowers and Nanorods For
Research Article iMedPub Journals 2018 www.imedpub.com Journal of Nanoscience & Nanotechnology Research Vol.2 No.2:7 Hydrothermal Synthesis of Copper Sulfide Shurui Yang1, Yan Ran1, Huimin Wu1, Flowers and Nanorods for Lithium-Ion Shiquan Wang1*, Battery Applications Chuanqi Feng1 and Guohua Li2 Abstract 1 Ministry-of-Education Key Laboratory for Synthesis and Applications of Copper sulfide flowers and nanorods were prepared by a surfactant-assisted Organic Functional Molecules, Hubei hydrothermal process, using copper chloride and thiourea or thioacetamide Collaborative Innovation Center for as reactant in the presence of polyethylene glycol (PEG). The influences of Advanced Organic, Chemical Materials, sulfurating reagents and reaction temperatures on the morphologies of CuS Hubei University, Wuhan, P.R. China particles are investigated. The microstructures and morphologies of as-prepared 2 School of Chemical Engineering and CuS were characterized by using powder X-ray diffraction (XRD), scanning Materials Science, Zhejiang University of electron microscopy (SEM), transmission electron microscopy (TEM), and energy- Technology, Hangzhou, P.R. China dispersive X-ray analysis (EDX), respectively. The morphologies of CuS prepared with thiourea are mainly flower-like, but the morphologies of CuS prepared with thioacetamide are nanorods and microtubes under the same reaction conditions. Due to the stability of structure, the CuS prepared with thiourea presents better *Corresponding author: cyclability compared to the CuS prepared with thioacetamide. -
Governs the Making of Photocopies Or Other Reproductions of Copyrighted Materials
Warning Concerning Copyright Restrictions The Copyright Law of the United States (Title 17, United States Code) governs the making of photocopies or other reproductions of copyrighted materials. Under certain conditions specified in the law, libraries and archives are authorized to furnish a photocopy or other reproduction. One of these specified conditions is that the photocopy or reproduction is not to be used for any purpose other than private study, scholarship, or research. If electronic transmission of reserve material is used for purposes in excess of what constitutes "fair use," that user may be liable for copyright infringement. (Photo: Kennecott) Bingham Canyon Landslide: Analysis and Mitigation GE 487: Geological Engineering Design Spring 2015 Jake Ward 1 Honors Undergraduate Thesis Signatures: 2 Abstract On April 10, 2013, a major landslide happened at Bingham Canyon Mine near Salt Lake City, Utah. The Manefay Slide has been called the largest non-volcanic landslide in modern North American history, as it is estimated it displaced more than 145 million tons of material. No injuries or loss of life were recorded during the incident; however, the loss of valuable operating time has a number of slope stability experts wondering how to prevent future large-scale slope failure in open pit mines. This comprehensive study concerns the analysis of the landslide at Bingham Canyon Mine and the mitigation of future, large- scale slope failures. The Manefay Slide was modeled into a two- dimensional, limit equilibrium analysis program to find the controlling factors behind the slope failure. It was determined the Manefay Slide was a result of movement along a saturated, bedding plane with centralized argillic alteration. -
Analysis of the Oxidation of Chalcopyrite,Chalcocite, Galena
PLEASE 00 Nor REMOVE FRCM LIBRARY Bureau of Mines Report of Investigations/1987 Analysis of the Oxidation of Chalcopyrite, Chalcocite, Galena, Pyrrhotite, Marcasite, and Arsenopyrite By G. W. Reimers and K. E. Hjelmstad UBRARY ""OKANERESEARC H CENTER .... RECEIVED OCT 021 1981 US BUREAU Of MINES t 315 MONTGOMBlY ",'IE. SPOICANl,. WI>. 99201 UNITED STATES DEPARTMENT OF THE INTERIOR Report of Investigations 9118 Analysis of the Oxidation of Chalcopyrite, Chalcocite, Galena!' Pyrrhotite, Marcasite, and Arsenopyrite By G. W. Reimers and K. E. Hjelmstad UNITED STATES DEPARTMENT OF THE INTERIOR Donald Paul Hodel, Secretary BUREAU OF MINES David S. Brown, Acting Director Library of Congress Cataloging in Publication Data : Reimers, G. W. (George W.) Analysis of the oxidation of chalcopyrite, chalcocite, galena, pyr rhotite, marcasite, and arsenopyrite. (Bureau of Mines report of investigations; 9118) Bibliography: p. 16 . Supt. of Docs. no.: 128.23: 9118. 1. Pyrites. 2. Oxidation. I. Hjelmstad, Kenneth E. II . Title. III. Series: Reportofinvestiga tions (United States. Bureau of Mines) ; 9118. TN23.U43 [QE389.2] 622 s [622'.8] 87-600136 CONTENTS Abst 1 Introduction ••••••••• 2 Equipment and test • .,.,.,.,.,.,., .•. .,., ..... .,.,.,.,., ... ., . ., ........ ., .... ., ..... ., .. ., . .,. 3 Samp Ie ., .. ., ., ., ., ., ., ., ., ., ., ., .. ., .• ., .. ., ..... ., •.••• ., . ., ., ..•. ., ., ., . ., ., ., ., • ., ., ., ., • 4 Results and discussion .. ., . .,.,.,. ........ .,., ...... ., ., .... " . ., . .,.,., . .,., . .,., ,.,.., ., . ., -
Iron Mountain Mines, Inc. P.O
Iron Mountain Mines, Inc. P.O. Box 992867, Redding, CA 96099 Tel (530) 275-4550 Fax (530) 275-4559 SHASTA COUNTY RECORDERS OFFICE NOTICE OF ADVERSE CLAIMS APPLICATION FOR RELOCATION OF PATENTS DECLARATION AND AFFIDAVIT AGAINST JOINT AND SEVERAL TRESPASSERS I, T.W. (Ted) Arman, am the purchaser of Iron Mountain Mines, I am the sole shareholder of Iron Mountain Mines, Inc., and successor in interests as grantee and assignee of all rights, privileges, and immunities of patent title from Colonel William Magee, Mr. Charles Camden, Iron Mountain Corporation, Iron Mountain Investment Co., Mountain Copper Co., and Stauffer Chemical Co. concerning the locations, pursuant to the mining law of 1866, of the Noble and Scott consolidated, Home Stake, Home Stake extension, Home Stake fraction, Copper Mountain, Mountain Copper, Monarch Copper, Boston Copper, Tehama Copper, Geology Copper, Leap Year Copper, Redding Copper, Sugar Loaf Copper, Trinity Copper, Shasta Copper, Halite, Limonite, Depending, Cuprite, Purity, and Letier lode mining claims, which mining property was originally patented May 1, 1862, that is the apex of the Flat Creek mining district for which I am the successor in interest as grantee. I purchased these patented mineral estates along with other patented properties in December, 1976. This purchase included an option for the purchase of the remaining patented mineral estates, which purchase was upset and interfered with by agents and agencies of the state and federal governments who conspired by false claims, malice, fraud, oppression,