Clean Tech Companies in Silicon Valley 1 27 08 JVSVN

Total Page:16

File Type:pdf, Size:1020Kb

Clean Tech Companies in Silicon Valley 1 27 08 JVSVN Clean Tech Companies in Silicon Valley - Work in Progress, 1/27/08 Seth Fearey, Joint Venture: Silicon Valley Network, 408-931-1511, [email protected] Category Sector Company Name Product/Service City Website Advanced Materials manufacturing Applied MicroStructures, deposition equipment, San Jose www.appliedmst.com Inc. films Advanced Materials manufacturing Solaicx silicon wafers Santa Clara www.solaicx.com Advanced Materials research Accelergy fuels processing Palo Alto www.accelergy.com Advanced Materials research InnovaLight, Inc. solar power modules, Santa Clara www.innovalight.com nano tech Advanced Materials research NanoGram Corporation nano materials for Milpitas www.nanogram.com batteries, solar Advanced Materials research Nanostellar, Inc. diesel, gas engine Redwood City www.nanostellar.com emissions control Advanced Materials research Nanosys Inc solar and fuel cell Palo Alto www.nanosysinc.com materials Advanced Materials research PolyFuel Nano fuel cell Mountain View www.polyfuel.com membranes Advanced Materials research SunVolt Nanosystems materials for low cost Redwood City www.svolt.com photovoltaics Advanced Materials manufacturing Unidym cabon nanotubes for Menlo Park www.unidym.com solar and fuel cells Air; Environmental Offsets TerraPass Inc. wind, biomass, Menlo Park www.terrapass.com Quality efficiency Air; Environmental Offsets Planktos (Sub of Solar Restore ocean Foster City www.planktos.com Quality Energy, Ltd.) plankton, forests; CO2 sequestration Air; Environmental Offsets Climos research in organic San Francisco www.climos.com Quality processes to remove CO2 from the air Energy Efficiency Manufacturer Analogic Tech Power mgt. circuit Sunnyvale www.analogictech.com design, processing Energy Efficiency Manufacturer Azuro, Inc. Low power chip Santa Clara www.azuro.com design automation Energy Efficiency Manufacturer BridgeLux, Inc. LED lighting Sunnyvale wwww.bridgelux.com Energy Efficiency Manufacturer Echelon control networks, San Jose www.echelon.com smart metering 1/27/2008 1 Clean Tech Companies in Silicon Valley - Work in Progress, 1/27/08 Seth Fearey, Joint Venture: Silicon Valley Network, 408-931-1511, [email protected] Category Sector Company Name Product/Service City Website Energy Efficiency Manufacturer Glacier Bay Thermal mgt and Oakland www.glacierbay.com energy cntl systems, refrigeration Energy Efficiency Manufacturer Golden Gate Technology, design tools for San Jose www.ggtcorp.com Inc. battery efficiency Energy Efficiency Manufacturer Philips Lumileds LED lighting San Jose www.lumileds.com Energy Efficiency Service Fat Spaniel Technologies remote energy San Jose www.fatspaniel.com monitoring Energy Efficiency Service Johnson Controls Inc. energy solutions Hayward www.jci.com consulting, financing Energy Efficiency Service WSP Group energy solutions San Francisco http://www.wspgroup.com/energy/ consulting Energy Generation ? Ardica Technologies Micro Fuel Cells San Francisco www.ardica.com Energy Generation ? Cobalt Technologies San Jose Energy Generation ? Solyndra, Inc. Solar Cells, CIGS Santa Clara www.solyndra.com Energy Generation Development Solexant Thin film PV San Jose www.solexant.com technologies Energy Generation Manufacturer ADEMA Technologies Moncrystalline wafers Mountain View www.adematech.com for solar cells Energy Generation Manufacturer Applied Materials Thin film solar Santa Clara www.amat.com manufacturing equipment Energy Generation Manufacturer Calisolar Solar cells Palo Alto www.calisolar.com Energy Generation Manufacturer DayStar Technologies Solar cells using Santa Clara www.daystartech.com (DSTI) CIGS polysilicon Energy Generation Manufacturer Ixys Solar Cells Santa Clara www.ixys.com Energy Generation Manufacturer Miasole Solar Cells, CIGS Santa Clara www.miasole.com Energy Generation Manufacturer Nanosolar, Inc. Solar Cells, Films Palo Alto www.nanosolar.com Energy Generation Manufacturer NuEdison Concentrator San Jose www.nuedison.com Photovoltaics Energy Generation Manufacturer Optony Solar Panels Sunnyvale www.optony.com Energy Generation Manufacturer Pacific SolarTech Concentrator Fremont www.pacificsolartech.com Photovoltaics Energy Generation Manufacturer Silicon Valley Solar Concentrator Santa Clara www.sv-solar.com Photovoltaics Energy Generation Manufacturer Solaria Solar cells & panels Fremont www.solaria.com 1/27/2008 2 Clean Tech Companies in Silicon Valley - Work in Progress, 1/27/08 Seth Fearey, Joint Venture: Silicon Valley Network, 408-931-1511, [email protected] Category Sector Company Name Product/Service City Website Energy Generation Manufacturer SoloPower Solar Cells, CIGS Milpitas www.solopower.com Energy Generation Manufacturer SunPower (SPWR) Solar Panels San Jose www.sunpowercorp.com Energy Generation Research Sierra Solar Power Thin film photovoltaics Sunnyvale www.sierrasolarpower.com Energy Generation Research Silicon Genesis Corp. Solar Cells, Silicon San Jose www.sigen.com Energy Generation Research Solazyme, Inc. Algae-based bio fuels Mountain View www.solazyme.com Energy Generation Research SolFocus, Inc. Concentrator Palo Alto www.solfocus.com Photovoltaics Energy Generation Research Stion Thin Film Solar Cells Menlo Park www.stion.com Energy Generation Research SunDiode Solar Cells Santa Clara www.sundiode.com Energy Generation Service Akeena Solar Solar Installation Los Gatos www.akeenasolar.com Energy Generation Service Cobalt Power Systems Solar Installation Los Altos www.cobaltpower.com Energy Generation Service Independent Energy Solar Installation Santa Cruz www.iesolar.com Systems Energy Generation Service MC Solar Engineering Solar Installation Santa Clara www.mcsolar.com Energy Generation Service Power Solutions Solar Installation San Jose www.solutionsforpower.com Energy Generation Service PowerLight (SunPower) Solar Installation Berkeley www.powerlight.com Energy Generation Service REgrid Power Solar Installation Campbell www.regrid.com Energy Generation Service Solar City Solar Installation Foster City www.solarcity.com Energy Generation Service Solar Technologies Solar Installation Santa Cruz www.solartechnologies.com Energy Generation, Manufacturer Anaerobe Systems Microbes for making Morgan Hill www.anaerobesystems.com Fuels hydrogen from bio- waste Energy Generation, Manufacturing BloomEnergy (Ion Fuel Cell Generators Sunnyvale/Moffett www.bloomenergy.com Fuels America) Energy Generation, Manufacturer Coskata, Inc. Ethanol Production Palo Alto (regional www.coskataenergy.com Fuels Energy Generation, Manufacturer Eaton (Catalytica Energy) Diesel fuel processing Mountain View www.eaton.com Fuels Energy Generation, Research Amyris Biotechnologies Biofuels Emeryville www.amyrishbiotech.com Fuels Energy Generation, Research Direct Carbon Tech Convert coal to Menlo Park Fuels electricity Energy Generation, Research ZeaChem, Inc. cellulose ethanol Menlo Park www.zeachem.com Fuels Research Codexis, Inc. biofuels, catalysts Redwood City www.codexis.com 1/27/2008 3 Clean Tech Companies in Silicon Valley - Work in Progress, 1/27/08 Seth Fearey, Joint Venture: Silicon Valley Network, 408-931-1511, [email protected] Category Sector Company Name Product/Service City Website Energy Generation, Research LS9, inc. biofuels San Carlos www.ls9.com Fuels Energy Generation, Research Live Fuels, Inc. biofuels, national Menlo Park www.livefuels.com Fuels alliance of labs Energy Infrastructure Generator Ausra Solar Power Palo Alto www.ausra.com Generation Energy Infrastructure Generator Bright Source Energy Solar Power Oakland www.brightsourceenergy.com Generation Energy Storage Manufacturing Deeya Energy Novel energy storage Fremont (moving) www.deeyaenergy.com devices Energy Storage ? Li*on Cells Lithium Ion cells in Woodside www.lioncells.com rechargable batteries Energy Storage Research Oorja Protonics Alcohol-based micro Fremont www.oorjaprotonics.com fuel cells Energy Storage ? Quantance ? Sunnyvale Energy Storage Manufacturing World Energy Labs Battery Test Mountain View www.worldenergylabs.com Equipment Manufacturing/ Manufacturing Cal-Star Cement Sustainable cement Newark www.calstarcement.com Industrial Transportation; Manufacturer AC Propulsion conversion to electric Sunnyvale, San www.acpropulsion.com Logistics Dimas Transportation; Manufacturer CalCars Plug-in conversions Palo Alto www.calcars.org Logistics Transportation; Manufacturer g2 Microsystems, Inc. Low power RFID Campbell www.g2microsystems.com Logistics tracking chip design Transportation; Distribution Project Better Place Electric car charging Palo Alto www.projectbetterplace.com Logistics stations Transportation; Manufacturer Tesla Motors Inc. Electric cars San Carlos www.teslamotors.com Logistics Transportation; Research WrightSpeed Electric cars Burlingame www.wrightspeed.com Logistics 1/27/2008 4 Clean Tech Companies in Silicon Valley - Work in Progress, 1/27/08 Seth Fearey, Joint Venture: Silicon Valley Network, 408-931-1511, [email protected] Category Sector Company Name Product/Service City Website Water Purification; Boka water purification Menlo Park Management Water Purification; Crystal Clear solar and nanotech Menlo Park www.simplyclearwater.com Management Technologies for water purification and desalization Financing Services Clean Power Markets financing (new) Los Altos www.cleanpowermarkets.com Financing Services MMA Renewable Renewable energy San Francisco www.mmarenewableventures.com Ventures generation Financing Services OnGrid Solar Financial analysis for San Jose www.ongrid.net solar, consulting Financing
Recommended publications
  • Nanosolar Is Leading the “Third Wave” of Solar Power Technology: the First
    Nanosolar is leading the “Third Wave” of solar power technology: ▪ The First Wave started with the introduction of silicon-wafer based solar cells over three decades ago. While ground-breaking, it is visible until today that this technology came out of a market environment with little concern for cost, capital efficiency, and the product cost / performance ratio. Despite continued incremental improvements, silicon-wafer cells have a built-in disadvantage of fundamentally high materials cost and poor capital efficiency. Because silicon does not absorb light very strongly, silicon wafer cells have to be very thick. And because wafers are fragile, their intricate handling complicates processing all the way up to the panel product. ▪ The Second Wave came about a decade ago with the arrival of the first commercial "thin-film" solar cells. This established that new solar cells based on a stack of layers 100 times thinner than silicon wafers can make a solar cell that is just as good. However, the first thin-film approaches were handicapped by two issues: 1. The cell's semiconductor was deposited using slow and expensive high-vacuum based processes because it was not known how to employ much simpler and higher-yield printing processes (and how to develop the required semiconductor ink). 2. The thin films were deposited directly onto glass as a substrate, eliminating the opportunity of ▪ using a conductive substrate directly as electrode (and thus avoiding bottom-electrode deposition cost), ▪ achieving a low-cost top electrode of high performance, ▪ employing the yield and performance advantages of individual cell matching & sorting, ▪ employing high-yield continuous roll-to-roll processing, and ▪ developing high-power high-current panels with lower balance-of-system cost.
    [Show full text]
  • How Founders Use External Advice to Improve Their Firm's Chance of Succeeding
    The dynamics of forming a technology based start-up: How founders use external advice to improve their firm's chance of succeeding by Nick Cravalho B.S. Mechanical Engineering University of California, Berkeley, 2000 Submitted to the System Design and Management Program in Partial Fulfillment of the Requirements for the Degree of Master of Science in Engineering and Management at the Massachusetts Institute of Technology May 2007 2007 Nick Cravalho. All rights reserved The author hereby grants to MIT permission to reproduce and to distribute publicly paper and electronic copies of this thesis document in whole or in part in any medium not known or hereafter created. Signature of Author Nick Cravalho System Design and Management Program May 2007 Certified by Diane Burton Thesis Supervisor Sloan School of Management Certified by _ Patrick Hale Director OASSACHUSETTS INS System Design and Management Program OF TECHNOLOGY FEB 0 1 2008 BARKER LIBRARIES The dynamics of forming a technology based start-up: How founders use external advice to improve their firm's chance of succeeding by Nick Cravalho Submitted to the System Design and Management Program on May 11, 2007 in Partial Fulfillment of the Requirements for the Degree of Master of Science in Engineering and Management Abstract External advice can be a valuable resource for founders of high technology startup companies. As with any resource, the pursuit and efficient use of the external advice resource is one of the greatest challenges for founders. This thesis examines how the founders of eleven US venture-backed high-tech companies leveraged external advice to their advantage.
    [Show full text]
  • Solar Energy: a New Day Dawning?: Silicon Valley Sunrise Oliver Morton Oliver Morton Is Nature's Chief News and Features Editor
    Solar energy: A new day dawning?: Silicon Valley sunrise Oliver Morton Oliver Morton is Nature's chief news and features editor. Abstract Sunlight is a ubiquitous form of energy, but not as yet an economic one. In the first of two features, Oliver Morton looks at how interest in photovoltaic research is heating up in California's Silicon Valley. In the second, Carina Dennis talks to Australian researchers hoping to harness the dawn Sun's heat. The Sun provides Earth with as much energy every hour as human civilization uses every year. If you are a solar­energy enthusiast, that says it all. No other energy supply could conceivably be as plentiful as the 120,000 terawatts the Sun provides ceaselessly and unbidden. If the tiniest fraction of that sunlight were to be captured by photovoltaic cells that turn it straight into electricity, there would be no need to emit any greenhouse gases from any power plant. Thanks to green thoughts like that, and to generous subsidies from governments in Japan and Germany, the solar­cell market has been growing on average by a heady 31% a year for the past decade (see chart, below). One of the most bullish industry analysts, Michael Rogol, sees the industry increasing from about US$12 billion in 2005 to as much as $70 billion in 2010. Although not everyone predicts such impressive growth, a 20–25% annual rise is widely expected. The market for shares in solar­energy companies is correspondingly buoyant. And yet in the projections of energy supply made by policy analysts and climate wonks, solar remains so marginal as to be barely on the map at all.
    [Show full text]
  • EV World Update
    http://evworld.com/newsletter/update_premium2008.cfm 10/1/09 3:54 PM EDITION: 9.40 | 27 Sep 2009 Platinum Sponsors INSIDER COMMENTARY Corporate Sponsorship Info CURRENTS Canadian Healthcare and Electric Cars The Canadian healthcare system didn't happen by fiat, it had to be fought for and the man leading the fight was a Saskatchewan minister turned politician. 30 Sep 2009 The Most Expensive Car on the Block He owns Toronto Electric, manufacturers of industrial cranes and electric motors. And now, after two years development, he also owns one of the neatest little EVs this side of the Canadian-U.S. border. 28 Sep 2009 Lithium From A Canadian Perspective Canadian Lithium Corp's Kerry Knoll discusses at PHEV'09 the prospects for lithium production as the auto industry moves to introduce electric cars requiring this lightest of all metals. 28 Sep 2009 PHOTO OF THE WEEK: Yike Bike has to be one of the most innovative electric bicycles yet developed. Constructed of carbon fiber, the electric bicycle weighs just 10 Of Dysprosium, Neodymium and kg (22 lbs). Powered by lithium ferrous phosphate batteries, the Yike has a top speed Other Wrinkles of 20 km/hr and range up to 10 km. Maximum carrying capacity is 100 kg (220 lbs). More than 40 electric cars debuted in Watch the YouTube Yike Bike video here. Frankfurt, a clear indication that we're on the road towards an EV World, but bumps, potholes and potential detours still lie ahead. 27 Sep 2009 In This Edition: My Montreal Keynote FEATURED THIS WEEK AONE Surprise Are We Ready for 2012? Detroit Moves
    [Show full text]
  • Take This Car and PLUG IT Eager Hybrid Owners Can’T Wait to Connect Their Cars to the Power Grid
    CHARGING: Makers of the hybrid-electric cars that are on the road today call them “grid independent,” but making them chargeable from the grid could enormously boost their gasoline fuel efficiency. S Take This Car And PLUG IT Eager hybrid owners can’t wait to connect their cars to the power grid A funny thing has happened on what University, in Cambridge, Mass.— W U.S. policy makers thought was going to who have made tinkering with hybrids be the high road to a hydrogen economy. their primary extracurricular activity. Initiatives aimed at putting hydrogen Now, a derivative of hybrids that fuel cell–powered cars on the road by will improve fuel economy even more 2020—visualized by President George by maximizing the use of the electric W. Bush in his 2003 State of the Union motor is poised to make what is already address as the centerpiece of his plans an undeniably attractive concept to wean the country from fossil fuels— downright irresistible. Some of the most are taking longer than promised. At the eager owners of the Prius, the world’s time of the speech, hybrid-electric cars, most popular hybrid, have been hacking which offer higher fuel efficiency than the cars, swapping their 1.3-kilowatthour regular cars because of electric motors battery packs for bigger ones with that help drive the wheels, were seen in capacities as large as 9 kWh. E the United States as but a minor detour The modifications also include the or way station en route to a world of addition of plugs so the new, bigger hydrogen fuel cells.
    [Show full text]
  • Solar PV Technology Development Report 2020
    EUR 30504 EN This publication is a Technical report by the Joint Research Centre (JRC), the European Commission’s science and knowledge service. It aims to provide evidence-based scientific support to the European policymaking process. The scientific output expressed does not imply a policy position of the European Commission. Neither the European Commission nor any person acting on behalf of the Commission is responsible for the use that might be made of this publication. For information on the methodology and quality underlying the data used in this publication for which the source is neither Eurostat nor other Commission services, users should contact the referenced source. The designations employed and the presentation of material on the maps do not imply the expression of any opinion whatsoever on the part of the European Union concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. Contact information Name: Nigel TAYLOR Address: European Commission, Joint Research Centre, Ispra, Italy Email: [email protected] Name: Maria GETSIOU Address: European Commission DG Research and Innovation, Brussels, Belgium Email: [email protected] EU Science Hub https://ec.europa.eu/jrc JRC123157 EUR 30504 EN ISSN 2600-0466 PDF ISBN 978-92-76-27274-8 doi:10.2760/827685 ISSN 1831-9424 (online collection) ISSN 2600-0458 Print ISBN 978-92-76-27275-5 doi:10.2760/215293 ISSN 1018-5593 (print collection) Luxembourg: Publications Office of the European Union, 2020 © European Union, 2020 The reuse policy of the European Commission is implemented by the Commission Decision 2011/833/EU of 12 December 2011 on the reuse of Commission documents (OJ L 330, 14.12.2011, p.
    [Show full text]
  • GHG Emissions Control Options Opportunities for Conservation
    SPECIAL REPORT 298: DRIVING AND THE BUILT ENVIRONMENT: THE EFFECTS OF COMPACT DEVELOPMENT ON MOTORIZED TRAVEL, ENERGY USE, AND CO2 EMISSIONS GHG Emissions Control Options Opportunities for Conservation Kara Kockelman Matthew Bomberg Melissa Thompson Charlotte Whitehead The University of Texas at Austin Paper prepared for the Committee on the Relationships Among Development Patterns, Vehicle Miles Traveled, and Energy Consumption Transportation Research Board and the Division on Engineering and Physical Sciences 2009 GHG Emissions Control Options Opportunities for Conservation KARA KOCKELMAN MATTHEW BOMBERG MELISSA THOMPSON CHARLOTTE WHITEHEAD The University of Texas at Austin his paper summarizes the magnitude of greenhouse gas (GHG) emissions reductions one can T expect from a variety of widely discussed (and often debated) policies and design strategies. These include vehicle technologies, transport modes, fuel types, appliances, home and building design, and land use patterns. Through a detailed review of existing literature, the work strives to identify the greatest opportunities for carbon savings, reflecting, to some extent, cost implications and behavioral shifts needed. Greatest near-term gains mostly emerge in relatively conventional vehicle design shifts, dietary changes, and home weathering. In the medium term, significant energy and emissions savings are likely to come from fuel economy regulations approximating those abroad, appliance upgrades, plug-in hybrid purchases, home heating and cooling practices, and power generation processes. In the longer term, building design practices, carbon capture and sequestration, and a shift towards cellulosic and other fuels appear promising. Ultimately, however, to achieve 50- to 80-percent reductions in GHG emissions, relative to current or past levels, major behavioral shifts are probably needed, motivated by significant fuel economy legislation, energy taxes, household-level carbon budgets, and cooperative behavior in the interest of the global community.
    [Show full text]
  • Nanosolar & U.S. Department of Energy Solar America Initiative
    Securing our Energy Independence and Sustaining our Environment March 2011 1 Our High-Speed Solar Cell and Panel Factories Can Be Built Cost Effectively Anywhere in the World We Do Not Need to Manufacture in Asia to Be Competitive: We can build in San Jose! San Jose, California, Global Headquarters & Solar Cell Production Factory, 200,000 sq ft Luckenwalde, Germany, Panel Assembly Factory, 500,000 sq ft 2 We Print Nanotechnology-enabled Ink on Rolls of Very Inexpensive Aluminum Foil Rapid processing using low cost equipment and the lowest cost metal substrate 3 Our Flexible Foil Cells Are Built in San Jose, CA . Rolls of printed foil processed and thin film layers added to complete electrical structure . Foil cut into individual, rectangular cells . Flexibility to tune cells’ power output for Utility, Commercial and Residential solar markets 4 We then Assemble these Cells into Utility-scale Panels . 84 cells welded together to form one solar panel . Cells sandwiched between two tempered glass plates . Glass plate edges sealed to protect against weather Specifically designed from the start to make Nanosolar utility-scale solar power plants competitive with fossil fuels 5 Nanosolar Power Plants Are Built in Municipal Areas Connection to Distribution Voltage Lowers Delivery Costs Nanosolar power plants can be constructed on landfills, brown fields and green fields, as well as on flat rooftops 6 Nanosolar CA Factory Expansion Can Create Thousands of Skilled Solar Jobs Each Year For every 100 MW of production: . Navigant: 1,000 downstream jobs in system integration, installation, and O&M . Deutsche Bank : 3,700 downstream jobs in system integration, installation, and O&M .
    [Show full text]
  • Evolution of the Household Vehicle Fleet: Anticipating Fleet Composition, Phev Adoption and Ghg Emissions in Austin, Texas
    EVOLUTION OF THE HOUSEHOLD VEHICLE FLEET: ANTICIPATING FLEET COMPOSITION, PHEV ADOPTION AND GHG EMISSIONS IN AUSTIN, TEXAS Sashank Musti Graduate Research Assistant The University of Texas at Austin – 6.508, E. Cockrell Jr. Hall Austin, TX 78712-1076 [email protected] Kara M. Kockelman (Corresponding author) Professor and William J. Murray Jr. Fellow Department of Civil, Architectural and Environmental Engineering The University of Texas at Austin – 6.9 E. Cockrell Jr. Hall Austin, TX 78712-1076 [email protected] Phone: 512-471-0210 & FAX: 512-475-8744 Published in Transportation Research Part A, 45 (8):707-720, 2011. Key Words: Vehicle choice, fleet evolution, vehicle ownership, plug-in hybrid electric vehicles (PHEVs), climate change policy, stated preference, opinion survey, microsimulation ABSTRACT In today‟s world of volatile fuel prices and climate concerns, there is little study on the relation between vehicle ownership patterns and attitudes toward potential policies and vehicle technologies. This work provides new data on ownership decisions and owner preferences under various scenarios, coupled with calibrated models to microsimulate Austin‟s personal-fleet evolution. Results suggest that most Austinites (63%, population-corrected share) support a feebate policy to favor more fuel efficient vehicles. Top purchase criteria are price, type/class, and fuel economy (with 30%, 21% and 19% of respondents placing these in their top three). Most (56%) respondents also indicated that they would consider purchasing a PHEV if it were to cost $6,000 more than its conventional, gasoline-powered counterpart. And many respond strongly to signals on the external (health and climate) costs of a vehicle‟s emissions, more strongly than they respond to information on fuel cost savings.
    [Show full text]
  • Buffer Against Degradation Cheap, Efficient, and Stable Thin Photovoltaics That Use Abundant and Non-Toxic Materials Can Deliver Widespread
    PUBLISHED: 27 MARCH 2017 | VOLUME: 2 | ARTICLE NUMBER: 17057 news & views THIN-FILM PHOTOVOLTAICS Buffer against degradation Cheap, efficient, and stable thin photovoltaics that use abundant and non-toxic materials can deliver widespread renewable energy. New results using Earth-abundant and potentially cheap ZnO/Sb2Se3 solar cells indicate promising levels of stability. Supratik Guha ollowing years of research and development, photovoltaic (PV) Ftechnologies today are becoming VOC increasingly competitive with conventional forms of electrical power generation. About 93% of solar cells manufactured Metal electrode layer today are silicon-based. Even though they are built on relatively expensive Absorber layer (such as Sb2Se3) silicon wafers, silicon solar cells enjoy dominance because they were able to Buer layer (such as ZnO) capitalize on the progress of established Conductive coating Transparent to sunlight silicon microelectronics technology, and (such as fluorine-doped SnO2) today they offer the best blend of cost and Glass substrate performance. However, silicon still has Sunlight limitations, chiefly the need for structurally high-quality silicon substrates and poor optical absorption requiring active device Figure 1 | Typical architecture of a thin-film solar cell. A thin-film solar cell is built around a thin-film material tens of micrometres thick. To absorber material, whose role is to efficiently absorb light and create electron–hole pairs. The absorber overcome this, there has been sustained layer is matched to a buffer layer, usually a semiconductor. This creates an electrical field that separates interest in developing micron-thick PV the electrons and holes spatially. The separated electrons and holes are then conducted away by electrical contacts, one of which is transparent to let the sunlight in.
    [Show full text]
  • Solar Photovoltaic Manufacturing: Industry Trends, Global Competition, Federal Support
    U.S. Solar Photovoltaic Manufacturing: Industry Trends, Global Competition, Federal Support Michaela D. Platzer Specialist in Industrial Organization and Business January 27, 2015 Congressional Research Service 7-5700 www.crs.gov R42509 U.S. Solar PV Manufacturing: Industry Trends, Global Competition, Federal Support Summary Every President since Richard Nixon has sought to increase U.S. energy supply diversity. Job creation and the development of a domestic renewable energy manufacturing base have joined national security and environmental concerns as reasons for promoting the manufacturing of solar power equipment in the United States. The federal government maintains a variety of tax credits and targeted research and development programs to encourage the solar manufacturing sector, and state-level mandates that utilities obtain specified percentages of their electricity from renewable sources have bolstered demand for large solar projects. The most widely used solar technology involves photovoltaic (PV) solar modules, which draw on semiconducting materials to convert sunlight into electricity. By year-end 2013, the total number of grid-connected PV systems nationwide reached more than 445,000. Domestic demand is met both by imports and by about 75 U.S. manufacturing facilities employing upwards of 30,000 U.S. workers in 2014. Production is clustered in a few states including California, Ohio, Oregon, Texas, and Washington. Domestic PV manufacturers operate in a dynamic, volatile, and highly competitive global market now dominated by Chinese and Taiwanese companies. China alone accounted for nearly 70% of total solar module production in 2013. Some PV manufacturers have expanded their operations beyond China to places like Malaysia, the Philippines, and Mexico.
    [Show full text]
  • Beyond New Plug-Ins: Fixing Gas Guzzlers
    Beyond New Plug-Ins: Fixing Gas Guzzlers January 19, 2010 Felix Kramer, Founder The California Cars Initiative [email protected] For updated PDF of presentations: www.calcars.org/downloads 2008: First preview of a new industry Ali Emadi, Felix Kramer, Andy Grove, Andy Frank 1 Beyond New Plug-Ins Nonprofit Startup: CalCars’ successes & challenges • 2004: “no technical/business case for PHEVs—and no one wants to plug in.” • We always saw conversions as a strategy to build support & awareness: – Hybrid retrofits previewed validated, mass-produced PHEVs. – Education and coalitions crossed multiple constituencies and ideologies. – Open-source exchange germinated conversion company ecosystem. – Public and influencers pressured industry and government. Technology (demos) Advocacy (buyers) 2004 2006 2009 2 Beyond New Plug-Ins Conversions: line extensions: new: back to retrofits! …& from GROUND-UP Chevy Bright NEW DESIGNS: “Volt” “Idea” …Next: GAS-GUZZLER CONVERSIONS! 3 Beyond New Plug-Ins Link for info and to order at CalCars.org home page 2005-2009: 27+ books highlight PHEVs 4 Beyond New Plug-Ins 20+ carmakers interested; races to be first; first timetables (see CalCars Carmakers page summary) Volt 2010; Converj next; selling in China Ampera; blended PHEV SUV? 2011 first Karma 2010, Nina 2012 2012 sales to consumers 2005 prototypes if & when: 5 Beyond New Plug-Ins More @ CalCars Photos pages For CalCars, after seven years, a challenging new campaign Gore; Clinton Plug-in drivers with GM’s Tony Posawatz Google’s Brin+Page, HEVT’s Ali Emadi, CalCars’ Felix Kramer, Intel’s Andy Grove, Efficient Drivetrains’ Andy Frank 6 Beyond New Plug-Ins It’s about penetrating a U.S.
    [Show full text]