Edray Herbert Goins, Teoría De Números, Geometría Algebraica

Total Page:16

File Type:pdf, Size:1020Kb

Edray Herbert Goins, Teoría De Números, Geometría Algebraica MATEMÁTICOS ACTUALES Edray Herbert Goins, Teoría de números, geometría algebraica Edray Herber Goins nació en el centro-sur de Los Ángeles y, teniendo en cuenta el reconocimiento que figura en el encabezamiento de su tesis, este matemático parece haber sido orientado por su madre, Eddi Beatrice Goins, y también por su padrino, William Herber Dailey. Él escribe esto: Al autor le gustaría dar el máximo crédito a su madre, Eddi Beatrice Goins, y a su padrino, William Herber Dailey, por su constante orientación, apoyo y protección a lo largo de los años. Edray Goins fue criado junto con su hermano. Del resumen de la charla “Black Mathematician: My Journey from South Central to Studying Dessins d'Enfants” que dio en 2015 en la Universidad de Michigan, en el "Coloquio del Dr. Marjorie Lee Browne" obtenemos los siguientes detalles. En 1939, Annie Beatrice Brown dio a luz en Marshall, Texas, a Eddi Beatrice Brown. Pasó la mayoría de los años 1936- 1942 tomando clases de educación en Bishop College, alternando su tiempo entre tomar clases de educación y ser una madre que se queda en casa. Eddi Beatrice Brown se convirtió en maestra, se casó con Goins, y en 1972 dio a luz a Edray Herber Goins, el protagonista de esta biografía, en el centro-sur de Los Ángeles. Edray siempre ha dicho que su madre y otros maestros en el sistema de Escuelas Públicas Unificadas de Los Ángeles, a las que él asistió, le alentaron y motivaron a estudiar mucho y asumir desafíos de aprendizaje adicionales [Referencia 9]: Incluso a temprana edad, Edray mostraba sed de conocimientos. Pidió a sus maestros que lo dejaran estudiar con anticipación, o bien conocer asignaturas que no formaban parte del plan de estudios. Tuvo mucho éxito en la escuela secundaria y en 1989 ganó la Medalla de Bronce en Matemáticas del Decathlon Académico de Los Ángeles. La prueba preliminar de evaluación escolar en el momento en que Goins estaba en la escuela secundaria consistía en una sección de matemáticas y una sección verbal. La National Merit Scholarship Corporation estableció el Programa Nacional de Becas de Logro en 1964 que tiene como objetivo reconocer a los estudiantes negros destacados de la educación secundaria de los Estados Unidos. Los estudiantes negros pueden ingresar tanto en este programa como en el programa National Merit al realizar el Examen Preliminar de Evaluación Escolar. En 1989, a Goins se le otorgó una Mención de Honor de la National Merit Scholarship, y al año siguiente se graduó en el High School y recibió una National Achievement Scholarship. Esta no fue la única beca que recibió antes de ingresar al Instituto de Tecnología de California, Pasadena, California, ya que en 1990 también recibió una beca Roy A Wilkins de la Asociación Nacional para el Avance de las Personas de Color, una beca Sigma Pi Phi y un Robert A Millikan Physics Scholarship del Instituto de Tecnología de California. En el Instituto de Tecnología de California se dio cuenta rápidamente de que quería ser investigador de matemáticas. Él dijo [Referencia 4]: 1 Sabía desde una etapa bastante temprana de mi vida, desde mi primer año de universidad para ser exactos, que quería ser matemático de investigación. Mostró sus habilidades desde su primer año, recibiendo el Premio Morgan Ward de Matemáticas tanto en 1991 como en 1992. El Instituto de Tecnología de California brinda la siguiente información sobre este premio: El Premio Morgan Ward fue establecido por el Departamento de Matemáticas en 1963 para honrar la memoria del profesor Morgan Ward en reconocimiento a su largo servicio a las matemáticas y al Instituto. La competencia está abierta a todos los estudiantes de primero y segundo año, independientemente de los principales. Una entrada consiste en un problema matemático junto con una solución o una contribución significativa hacia una solución. ... La solución al problema puede tener cualquier fuente, pero esta fuente debe indicarse en la entrada. Las entradas pueden juzgarse en función de la naturaleza del problema, la originalidad y la elegancia de la solución. También ganó una beca de la American Physical Society de 1991-92. En Physics Today (noviembre de 1991) se dan detalles de estas becas: La American Physical Society ha otorgado becas patrocinadas por empresas para el año académico 1991-92 a 22 estudiantes minoritarios que se especializan en física. ... Las becas se otorgan a estudiantes afroamericanos, hispanos o nativos americanos que son estudiantes de último año de secundaria o estudiantes de primer año o segundo año de universidad. Las selecciones se basan en calificaciones académicas y logros, declaraciones personales ... y cartas de referencia. Cada beca consta de 2000 dólares, que se pueden usar para matrícula, alojamiento y comida, y se pueden renovar una vez. De hecho, la beca de la American Physical Society de Goins se renovó para el año 1992-93. También en 1993 se le otorgó una beca de la Fundación Filantrópica de Los Ángeles que es para estudiantes que necesitan ayuda financiera y participan en actividades escolares extracurriculares y servicio comunitario. En el Instituto de Tecnología de California, Goins fue asesorado por el profesor de matemáticas Dinakar Ramakrishnan y el profesor de física teórica Steven C Frautschi. En junio de 1994, Goins se graduó con un B.S. especializándose en Matemáticas y Física. Había ganado varios premios durante sus años de pregrado en el Instituto de Tecnología de California, a saber, la Dean's Cup for Service (1993), el Doris S Perpall Speaking Award a la mejor presentación en Humanities (1993) y el Rodman W Paul History Prize (1994). En 1994, Goins recibió una Beca de Investigación de Graduados de la Fundación Nacional de Ciencias (Mención de Honor) y una Beca de Graduados del Consorcio Nacional de Ciencias Físicas que le permitió comenzar la investigación para un doctorado. en la universidad de Stanford. Durante los veranos de 1995 y 1996 realizó una pasantía de verano de junio a agosto en la Agencia de Seguridad Nacional, Fort George Meade, Maryland. En 1996 se le otorgó el Premio al Estudiante Graduado Sobresaliente del Centro de Servicios Comunitarios Black, Universidad de Stanford. Sus asesores de tesis en Stanford fueron Daniel Willis Bump y Karl Cooper Rubin. En 1999 recibió una serie de premios y honores de la Universidad de Stanford por sus destacadas contribuciones: el Premio James W Lyons al Servicio, Universidad de Stanford; el Premio al Servicio de Graduados, Consejo de Estudiantes Graduados, Universidad de Stanford; y el destacado estudiante de posgrado, Asociación de Estudiantes de Posgrado Chicano/Latino, 2 Universidad de Stanford. Obtuvo el doctorado (Ph.D.) en septiembre de 1999 por su tesis Curvas elípticas y representaciones icosaédricas de Galois. Goins da los siguientes reconocimientos en su tesis: El autor desea agradecer a su asesor, Dan Bump, por sugerir el problema original; su co-asesor no oficial Karl Rubin por sus invaluables sugerencias y la comprensión de que la curva elíptica es isógena a su conjugado; y al estudiante graduado William Stein por su ayuda en el cálculo de coeficientes a través del algoritmo de símbolo modular de Cremona. Esta tesis no podría haberse completado sin su ayuda. El autor también quisiera agradecer a las siguientes personas por conversaciones útiles: David Carlton, Jordan Ellenberg, Ralph Greenburg, Kenneth Ribet y Richard Taylor. Los documentos de Ki-ichiro Hashimoto y Yuji Hasegawa también fueron útiles para obtener información sobre las propiedades de las curvas Q. Toda la investigación fue patrocinada por una beca generosa del Consorcio Nacional de Ciencias Físicas (NSPC) y la Agencia de Seguridad Nacional (NSA). Aunque la fecha en que presentó su Ph.D. La tesis se muestra claramente en una copia en la web como "agosto de 1999" y "Copyright por Edray Herber Goins 1999", la Universidad de Stanford tiene una copia de la tesis en su sitio web con fecha "octubre de 2002" y tiene "Copyright por Edray Herber Goins 2003". Esto es desconcertante, pero la fecha de 1999 seguramente es correcta, ya que esa copia tiene las firmas de los examinadores, mientras que la copia de 2002 no. En su tesis, Goins examinó los casos de la Conjetura de Artin y presenta los antecedentes al comienzo de la tesis: En 1917, Erich Hecke probó una serie de resultados sobre ciertos caracteres que ahora se conocen comúnmente como caracteres de Hecke; un coro- lario establece que las representacio- nes complejas unidimensionales de Galois dan lugar a toda la serie L. Reveló, a través de una serie de con- ferencias en el Instituto de Estudios Avanzados de Princeton en los años si- guientes, la relación entre representa- ciones tales como generalizaciones de caracteres de Dirichlet y formas mo- dulares como las funciones propias de un conjunto de operadores de conmu- tación autoadjuntos. Muchos matemá- ticos se inspiraron en su visión innovadora y su novedosa prueba de la continuación analítica de la serie L y su ecuación funcional. En la década de 1930, Emil Artin conjeturó que una generalización de tal resultado debería ser cierta; es decir, las representaciones proyectivas complejas irreducibles de grupos de Galois finitos también deberían dar lugar a toda la serie L. Llegó a esta conclusión después de probarse a sí mismo que tanto las representaciones tridimensionales como las 4 dimensiones del grupo simple de orden 60, el grupo alterno A5, dan lugar a la serie L con singularidades. En el espíritu de Hecke, formuló su conjetura en términos de la continuación analítica de la serie L y su ecuación funcional. Es sabido, debido a la percepción de Robert Langlands en la década de 1970 que relaciona los caracteres de Hecke con la teoría de la representación, que para probar la conjetura es suficiente demostrar que tales representaciones son automorfas.
Recommended publications
  • [The PROOF of FERMAT's LAST THEOREM] and [OTHER MATHEMATICAL MYSTERIES] the World's Most Famous Math Problem the World's Most Famous Math Problem
    0Eft- [The PROOF of FERMAT'S LAST THEOREM] and [OTHER MATHEMATICAL MYSTERIES] The World's Most Famous Math Problem The World's Most Famous Math Problem [ THE PROOF OF FERMAT'S LAST THEOREM AND OTHER MATHEMATICAL MYSTERIES I Marilyn vos Savant ST. MARTIN'S PRESS NEW YORK For permission to reprint copyrighted material, grateful acknowledgement is made to the following sources: The American Association for the Advancement of Science: Excerpts from Science, Volume 261, July 2, 1993, C 1993 by the AAAS. Reprinted by permission. Birkhauser Boston: Excerpts from The Mathematical Experience by Philip J. Davis and Reuben Hersh © 1981 Birkhauser Boston. Reprinted by permission of Birkhau- ser Boston and the authors. The Chronicleof Higher Education: Excerpts from The Chronicle of Higher Education, July 7, 1993, C) 1993 Chronicle of HigherEducation. Reprinted by permission. The New York Times: Excerpts from The New York Times, June 24, 1993, X) 1993 The New York Times. Reprinted by permission. Excerpts from The New York Times, June 29, 1993, © 1993 The New York Times. Reprinted by permission. Cody Pfanstieh/ The poem on the subject of Fermat's last theorem is reprinted cour- tesy of Cody Pfanstiehl. Karl Rubin, Ph.D.: The sketch of Dr. Wiles's proof of Fermat's Last Theorem in- cluded in the Appendix is reprinted courtesy of Karl Rubin, Ph.D. Wesley Salmon, Ph.D.: Excerpts from Zeno's Paradoxes by Wesley Salmon, editor © 1970. Reprinted by permission of the editor. Scientific American: Excerpts from "Turing Machines," by John E. Hopcroft, Scientific American, May 1984, (D 1984 Scientific American, Inc.
    [Show full text]
  • On Selmer Groups of Geometric Galois Representations Tom Weston
    On Selmer Groups of Geometric Galois Representations Tom Weston Department of Mathematics, Harvard University, Cambridge, Mass- chusetts 02140 E-mail address: [email protected] iii Dedicated to the memory of Annalee Henderson and to Arnold Ross Contents Introduction ix Acknowledgements xii Notation and terminology xv Fields xv Characters xv Galois modules xv Schemes xv Sheaves xvi Cohomology xvi K-theory xvi Part 1. Selmer groups and deformation theory 1 Chapter 1. Local cohomology groups 3 1. Local finite/singular structures 3 2. Functorialities 4 3. Local exact sequences 5 4. Examples of local structures 6 5. Ordinary representations 7 6. Cartier dual structures 8 7. Local structures for archimedean fields 9 Chapter 2. Global cohomology groups 11 1. Selmer groups 11 2. Functorialities 13 3. The global exact sequence 13 4. A finiteness theorem for Selmer groups 14 5. The Kolyvagin pairing 16 6. Shafarevich-Tate groups 18 7. The Bockstein pairing 20 Chapter 3. Annihilation theorems for Selmer groups 21 1. Partial geometric Euler systems 21 2. The key lemmas 22 3. The annihilation theorem 25 4. Right non-degeneracy of the Bockstein pairing 27 5. A δ-vanishing result 28 Chapter 4. Flach systems 31 1. Minimally ramified deformations 31 v vi CONTENTS 2. Tangent spaces and Selmer groups 34 3. Good primes 36 4. Flach systems 38 5. Cohesive Flach systems 39 6. Cohesive Flach systems of Eichler-Shimura type 40 Chapter 5. Flach systems of Eichler-Shimura type 43 1. The map on differentials 43 2. The Tate pairing 45 3. A special case 47 4.
    [Show full text]
  • OF the AMERICAN MATHEMATICAL SOCIETY 157 Notices February 2019 of the American Mathematical Society
    ISSN 0002-9920 (print) ISSN 1088-9477 (online) Notices ofof the American MathematicalMathematical Society February 2019 Volume 66, Number 2 THE NEXT INTRODUCING GENERATION FUND Photo by Steve Schneider/JMM Steve Photo by The Next Generation Fund is a new endowment at the AMS that exclusively supports programs for doctoral and postdoctoral scholars. It will assist rising mathematicians each year at modest but impactful levels, with funding for travel grants, collaboration support, mentoring, and more. Want to learn more? Visit www.ams.org/nextgen THANK YOU AMS Development Offi ce 401.455.4111 [email protected] A WORD FROM... Robin Wilson, Notices Associate Editor In this issue of the Notices, we reflect on the sacrifices and accomplishments made by generations of African Americans to the mathematical sciences. This year marks the 100th birthday of David Blackwell, who was born in Illinois in 1919 and went on to become the first Black professor at the University of California at Berkeley and one of America’s greatest statisticians. Six years after Blackwell was born, in 1925, Frank Elbert Cox was to become the first Black mathematician when he earned his PhD from Cornell University, and eighteen years later, in 1943, Euphemia Lofton Haynes would become the first Black woman to earn a mathematics PhD. By the late 1960s, there were close to 70 Black men and women with PhDs in mathematics. However, this first generation of Black mathematicians was forced to overcome many obstacles. As a Black researcher in America, segregation in the South and de facto segregation elsewhere provided little access to research universities and made it difficult to even participate in professional societies.
    [Show full text]
  • Algebra & Number Theory
    Algebra & Number Theory Volume 4 2010 No. 2 mathematical sciences publishers Algebra & Number Theory www.jant.org EDITORS MANAGING EDITOR EDITORIAL BOARD CHAIR Bjorn Poonen David Eisenbud Massachusetts Institute of Technology University of California Cambridge, USA Berkeley, USA BOARD OF EDITORS Georgia Benkart University of Wisconsin, Madison, USA Susan Montgomery University of Southern California, USA Dave Benson University of Aberdeen, Scotland Shigefumi Mori RIMS, Kyoto University, Japan Richard E. Borcherds University of California, Berkeley, USA Andrei Okounkov Princeton University, USA John H. Coates University of Cambridge, UK Raman Parimala Emory University, USA J-L. Colliot-Thel´ ene` CNRS, Universite´ Paris-Sud, France Victor Reiner University of Minnesota, USA Brian D. Conrad University of Michigan, USA Karl Rubin University of California, Irvine, USA Hel´ ene` Esnault Universitat¨ Duisburg-Essen, Germany Peter Sarnak Princeton University, USA Hubert Flenner Ruhr-Universitat,¨ Germany Michael Singer North Carolina State University, USA Edward Frenkel University of California, Berkeley, USA Ronald Solomon Ohio State University, USA Andrew Granville Universite´ de Montreal,´ Canada Vasudevan Srinivas Tata Inst. of Fund. Research, India Joseph Gubeladze San Francisco State University, USA J. Toby Stafford University of Michigan, USA Ehud Hrushovski Hebrew University, Israel Bernd Sturmfels University of California, Berkeley, USA Craig Huneke University of Kansas, USA Richard Taylor Harvard University, USA Mikhail Kapranov Yale
    [Show full text]
  • CV and Bibliography Karl Rubin Education 1981 Ph.D., Mathematics, Harvard University 1977 M.A., Mathematics, Harvard University 1976 A.B
    Karl Rubin phone: 949-824-1645 Department of Mathematics fax: 508-374-0599 UC Irvine [email protected] Irvine, CA 92697-3875 http://www.math.uci.edu/~krubin CV and Bibliography Karl Rubin Education 1981 Ph.D., Mathematics, Harvard University 1977 M.A., Mathematics, Harvard University 1976 A.B. summa cum laude, Mathematics, Princeton University Employment 2019{ Distinguished Professor Emeritus, University of California Irvine 2004{2020 Thorp Professor of Mathematics, University of California Irvine 2013{2016 Chair, Department of Mathematics, UC Irvine 1997{2006 Professor, Stanford University 1996{1999 Distinguished University Professor, Ohio State University 1987{1996 Professor, Ohio State University 1988{1989 Professor, Columbia University 1984{1987 Assistant Professor, Ohio State University 1982{1983 Instructor, Princeton University Selected visiting positions Universit¨atErlangen-N¨urnberg Harvard University Institute for Advanced Study (Princeton) Institut des Hautes Etudes Scientifiques (Paris) Mathematical Sciences Research Institute (Berkeley) Max-Planck-Institut f¨urMathematik (Bonn) Selected honors and awards 2012 Fellow of the American Mathematical Society 1999 Humboldt-Forschungspreis (Humboldt Foundation Research Award) 1994 Guggenheim Fellowship 1992 AMS Cole Prize in Number Theory 1988 NSF Presidential Young Investigator Award 1987 Ohio State University Distinguished Scholar Award 1985 Sloan Fellowship 1981 NSF Postdoctoral Fellowship 1979 Harvard University Graduate School of Arts and Sciences Fellow 1976 NSF Graduate Fellowship
    [Show full text]
  • Algebraic Tori in Cryptography
    Fields Institute Communications Volume 00, 0000 Algebraic tori in cryptography Karl Rubin Department of Mathematics, Stanford University, Stanford CA 94305, USA [email protected] Alice Silverberg Department of Mathematics, Ohio State University, Columbus OH 43210, USA [email protected] Abstract. We give a mathematical interpretation in terms of algebraic tori of the LUC and XTR cryptosystems and a conjectured generaliza- tion. 1 Introduction In a series of papers culminating in [7], Edouard Lucas introduced and explored the properties of certain recurrent sequences that became known as Lucas functions. Since then, generalizations and applications of Lucas functions have been studied (see [17, 18, 20]), and public key discrete log based cryptosystems (such as LUC) have been based on them (see [8, 12, 13, 19, 1]). The Lucas functions arise when studying quadratic field extensions. Cryptographic applications of generalizations to cubic and sextic field extensions are given in [4] and [3, 6], respectively. The cryptosystem in [6] is called XTR. An approach for constructing a generalization of these cryptosystems to the case of degree 30 extensions is suggested in [3, 2]. The × idea of these cryptosystems is to represent certain elements of Fqn (for n = 2, 6, and 30, respectively) using only ϕ(n) elements of Fq, and do a variant of the Diffie- Hellman key exchange protocol. For XTR and LUC, traces are used to represent the elements. In [2], symmetric functions are proposed in place of the trace (which is the first symmetric function). In [11] we use algebraic tori to construct public key cryptosystems. These × systems are based on the discrete log problem in a subgroup of Fqn in which the elements can be represented by only ϕ(n) elements of Fq.
    [Show full text]
  • Torus-Based Cryptography 11
    TORUS-BASED CRYPTOGRAPHY KARL RUBIN AND ALICE SILVERBERG Abstract. We introduce cryptography based on algebraic tori, give a new public key system called CEILIDH, and compare it to other discrete log based systems including LUC and XTR. Like those systems, we obtain small key sizes. While LUC and XTR are essentially restricted to exponentiation, we are able to perform multiplication as well. We also disprove the open conjectures from [2], and give a new algebro-geometric interpretation of the approach in that paper and of LUC and XTR. 1. Introduction This paper accomplishes several goals. We introduce a new concept, namely torus- based cryptography, and give a new torus-based public key cryptosystem that we call CEILIDH. We compare CEILIDH with other discrete log based systems, and show that it improves on Diffie-Hellman and Lucas-based systems and has some advantages over XTR. Moreover, we show that there is mathematics underlying XTR and Lucas-based systems that allows us to interpret them in terms of algebraic tori. We also show that a certain conjecture about algebraic tori has as a consequence new torus-based cryptosystems that would generalize and improve on CEILIDH and XTR. Further, we disprove the open conjectures from [2], and thereby show that the approach to generalizing XTR that was suggested in [2] cannot succeed. What makes discrete log based cryptosystems work is that they are based on the mathematics of algebraic groups. An algebraic group is both a group and an algebraic variety. The group structure allows you to multiply and exponentiate. The variety structure allows you to express all elements and operations in terms of polynomials, and therefore in a form that can be efficiently handled by a computer.
    [Show full text]
  • Schedule of Lectures for the Conference on Number Theory and FERMAT’S LAST THEOREM August 9-18, 1995 Boston University
    Schedule of Lectures for The Conference on Number Theory and FERMAT’S LAST THEOREM August 9-18, 1995 Boston University All lectures will be held in Jacob Sleeper Hall, room 129 (balcony = room 229) in the College of General Studies at 871 Commonwealth Avenue. Wednesday. August 9 9:00-10:00: Glenn Stevens Overview of the proof of Fermat’s Last Theorem. 10:30-11:30: Joe Silverman Geometry of elliptic curves. 1:30 - 2:30: Jaap Top⇤ and Modular curves. David Rohrlich 3:00 - 4:00: Larry Washington Galois cohomology and Tate duality. Thursday. August 10 9:00-10:00: Joe Silverman Arithmetic of elliptic curves. 10:30-11:30: Jaap Top⇤ and The Eichler-Shimura relations. David Rohrlich 1:30 - 2:30: John Tate Finite group schemes. 3:00 - 4:00: Jerry Tunnell⇤ and Modularity of ⇢E,3. Steve Gelbart Friday. August 11 9:00-10:00: Dick Gross Serre’s Conjectures. 10:30-11:30: Barry Mazur Deformations of Galois representations: Introduction. 1:30 - 2:30: Hendrik Lenstra Explicit construction of deformation rings. 3:00 - 4:00: Jerry Tunnell⇤ and On the Langlands Program. Steve Gelbart Saturday. August 12 9:00-10:00: Jerry Tunnell⇤ and Proof of certain cases of Artin’s Conjecture. Steve Gelbart 10:30-11:30: Barry Mazur Deformations of Galois representations: Examples. 1:30 - 2:30: Dick Gross Ribet’s Theorem. 3:00 - 4:00: Gerhart Frey Fermat’s Last Theorem and elliptic curves. Sunday. August 13. Twenty Minute Talks. ( = speaker) ⇤ Monday. August 14 9:00-10:00: Jacques Tilouine Hecke algebras and the Gorenstein property.
    [Show full text]
  • In Search of an 8: Rank Computations on a Family of Quartic Curves
    IN SEARCH OF AN 8: RANK COMPUTATIONS ON A FAMILY OF QUARTIC CURVES KATHLEEN P. ANSALDI, ALLISON R. FORD, JENNIFER L. GEORGE, KEVIN M. MUGO, AND CHARLES E. PHIFER Abstract. We consider the family of elliptic curves y2 = (1 − x2)(1 − k2x2) for rational numbers k 6= −1, 0, 1. Every rational elliptic curve with torsion subgroup either Z2 × Z4 or Z2 × Z8 is birationally equivalent to this quartic curve for some k. We use this canonical form to search for such curves with large rank. Our algorithm consists of the following steps. We compute a list of rational k by considering those associated to a given list of rational points (x, y). We then eliminate certain k by considering the associated 2-Selmer groups. Finally, we use Cremona’s mwrank to find the ranks. Using these steps, we found two 6 elliptic curves with Mordell-Weil group E(Q) ' Z2 × Z4 × Z . 1. Introduction In this paper, we consider rational elliptic curves of the form (1) E : y2 = (1 − x2)(1 − k2x2), k 6= −1, 0, 1. Upon writing k = p/q, this curve is birationally equivalent to the integral cubic curve Y 2 = X3 + AX + B in terms of the integers (2) A = −27(p4 + 14p2q2 + q4),B = −54(p6 − 33p4q2 − 33p2q4 + q6). Every rational elliptic curve with torsion subgroup either Z2 × Z4 or Z2 × Z8 is birationally equivalent to this quartic curve for some k. We are interested in finding rational elliptic curves with torsion subgroup Z2 × Z4 having large rank. Recently, Elkies [5] found such a curve of rank 8; it corresponds to k = 556536737101/589636934451.
    [Show full text]
  • Program of the Sessions, New Orleans, LA
    Program of the Sessions New Orleans, Louisiana, January 5–8, 2007 2:00PM D’Alembert, Clairaut and Lagrange: Euler and the Wednesday, January 3 (6) French mathematical community. Robert E. Bradley, Adelphi University AMS Short Course on Aspects of Statistical Learning, I 3:15PM Break. 3:30PM Enter, stage center: The early drama of hyperbolic 8:00 AM –4:45PM (7) functions in the age of Euler. Organizers: Cynthia Rudin, Courant Institute, New Janet Barnett, Colorado State University-Pueblo York University Miroslav Dud´ik, Princeton University 8:00AM Registration. 9:00AM Opening remarks by Cynthia Rudin and Miroslav Thursday, January 4 Dud´ik. 9:15AM Machine Learning Algorithms for Classification. MAA Board of Governors (1) Robert E. Schapire, Princeton University 10:30AM Break. 8:00 AM –5:00PM 11:00AM Occam’s Razor and Generalization Bounds. (2) Cynthia Rudin*, Center for Neural Science and AMS Short Course on Aspects of Statistical Learning, Courant Institute, New York University, and II Miroslav Dud´ik*, Princeton University 2:00PM Exact Learning of Boolean Functions and Finite 9:00 AM –1:00PM (3) Automata with Queries. Lisa Hellerstein, Polytechnic University Organizers: Cynthia Rudin, Courant Institute, New York University 3:15PM Break. Miroslav Dud´ik, Princeton University 3:45PM Panel Discussion. 9:00AM Online Learning. (8) Adam Tauman Kalai, Weizmann Institute of MAA Short Course on Leonhard Euler: Looking Back Science and Toyota Technological Institute after 300 Years, I 10:15AM Break. 10:45AM Spectral Methods for Visualization and Analysis of 8:00 AM –4:45PM (9) High Dimensional Data. Organizers: Ed Sandifer, Western Connecticut Lawrence Saul, University of California San Diego State University NOON Question and answer session.
    [Show full text]
  • Robert POLLACK [email protected] (Updated January 6, 2021)
    Robert POLLACK http://math.bu.edu/people/rpollack [email protected] (updated January 6, 2021) Employment 2015{present Boston University, Professor 2009{2015 Boston University, Associate Professor 2004{2009 Boston University, Assistant Professor 2002{2004 University of Chicago, VIGRE Dickson Instructor 2003{2004 University of Chicago, NSF Postdoctoral Fellow 2001{2002 University of Washington, NSF Postdoctoral Fellow Research Interests ? Algebraic number theory ? Elliptic curves and modular forms ? p-adic L-functions and Iwasawa theory ? p-adic variation of automorphic forms Education June 2001 Harvard University, Ph.D. June 1997 Harvard University, M.A. May 1996 Washington University, B.S. Visiting positions 2016{2018 Max Planck Institute for Mathematics (Bonn), Visiting Scientist Awards 2016{2017 Simons Fellowship in Mathematics 2010 Gitner Award for Distinguished Teaching (College-wide award) 2006{2007 Sloan Research Fellowship Research grants 2017{2021 NSF grant DMS-1702178 Iwasawa theory of extended eigenvarieties 2013{2017 NSF grant DMS-1303302 p-adic variation in Iwasawa theory 2010{2013 NSF grant DMS-1001768 p-adic local Langlands and Iwasawa theory 2007{2010 NSF grant DMS-0701153 Overconvergent cohomology of higher rank groups 2004{2007 NSF grant DMS-0439264 (joint with Tom Weston) p-adic variation of supersingular Iwasawa invariants 2001{2004 NSF postdoctoral fellowship DMS-0102036 p-adic L-series of modular forms at supersingular primes Other grants 2016{2017 NSF conference grant DMS-1601028 (co-PI) L-functions and Arithmetic 2014{2015 NSF conference grant DMS-1404999 (co-PI) p-adic Variation and Number Theory 2013{2016 NSF grant DMS-1404999 (co-PI) Boston University/Keio University Workshops 2005 NSF conference grant DMS-0509836 Open Questions and Recent Developments in Iwasawa Theory Papers accepted in peer reviewed journals ? On µ-invariants and congruences with Eisenstein series Compositio Mathematica, 155 (2019), no.
    [Show full text]
  • Program of the Sessions Atlanta, Georgia, January 4–7, 2017
    Program of the Sessions Atlanta, Georgia, January 4–7, 2017 3:15PM Concentration in first-passage Monday, January 2 (4) percolation. AMS Short Course on Random Growth Philippe Sosoe,HarvardUniversity (1125-60-3157) Models, Part I NSF-EHR Grant Proposal Writing Workshop 9:00 AM –4:30PM M301, Marquis Level, Marriott Marquis 3:00 PM –6:00PM A707, Atrium Level, Marriott Marquis Organizers: Michael Damron,Georgia Institute of Technology AMS Short Course Reception Firas Rassoul-Agha, University of Utah 4:30 PM –5:30PM M302, Marquis Timo Sepp¨al¨ainen, Level, Marriott Marquis University of Wisconsin at Madison 8:00AM Registration 9:00AM Introduction to random growth models, I. Tuesday, January 3 (1) Michael Damron, Georgia Institute of Technology (1125-60-3158) AMS Department Chairs Workshop 10:15AM Break 8:00 AM –6:30PM M103, M104 & M105, 10:45AM Introduction to random growth models, Marquis Level, Marriott Marquis (2) II. Michael Damron, Georgia Institute of Presenters: Malcolm Adams,University Technology of Georgia Matthew Ando, NOON Break University of Illinois at 1:30PM Infinite geodesics, asymptotic directions, Urbana-Champaign (3) and Busemann functions. Krista Maxson,Universityof Jack Hanson, The City College of New Science & Arts of Oklahoma York (1125-60-3159) Douglas Mupasiri, 3:15PM Break University of Northern Iowa The time limit for each AMS contributed paper in the sessions meeting will be found in Volume 38, Issue 1 of Abstracts is ten minutes. The time limit for each MAA contributed of papers presented to the American Mathematical Society, paper varies. In the Special Sessions the time limit varies ordered according to the numbers in parentheses following from session to session and within sessions.
    [Show full text]